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Abstract 10 

Reconstruction of paleo-precipitation can provide an insight into past climate and precipitation. De Ploey et al. 11 

(1995) presents a highly simplified erosion equation to consider precipitation and erosion susceptibility. This 12 

empirical model allows estimation of total precipitation and erosion susceptibility across a range of catchment 13 

characteristics (including catchment area, slope, elevation, vegetation cover) and when limited catchment or 14 

meteorological data is available. The presented study tests the De Ploey equation using dated lacustrine records 15 

of catchment soil deposition both spatially and temporally. The objective is to examine the De Ploey equation’s 16 

ability and efficiency in reconstructing past long-term precipitation using sedimentological parameters. The 17 

erosion susceptibility factor is described as a ‘black box’ value by De Ploey et al. (1995). This research unravels 18 

the erosion susceptibility variable, identifying it to change spatially and temporally according to precipitation, 19 

vegetation cover and composition (the extent of tree establishment across the catchment), total lacustrine 20 

deposition and geochemical signatures in the archive. Calculation of the erosion sustainability variable and it’s 21 

use within the De Ploey erosion equation illustrate a reconstruction of an indicative mean annual precipitation 22 

and erosion susceptibility change over the recent period (~ 100 years). 23 
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1 Introduction 25 

In the global warming context, finding new proxies for the estimation of paleo-temperatures and paleo-26 

precipitation are essential to assess the resilience of terrestrial ecosystems to abrupt changes. However, paleo-27 

precipitation reconstructions that contain long-term trends and extend prior to medieval times are difficult to 28 

find and interpret, and depend not only on the time resolution of natural archives but also on the pertinence and 29 

the sensibility of both the proxy used and the chosen archive (Seddon et al., 2014). Past precipitation 30 

reconstructions can, for example, be based on tree ring records (Büntgen et al., 2011), pedogenetic magnetic 31 

susceptibility variations (Maher and Thompson, 1995), cave records (Hu et al. 2008), pollen assemblages (Peyron 32 

et al., 1998), glacial dynamics (Holzhauser et al., 2005), lake-levels records (Magny et al., 2011) or flood events 33 

deposits (Wilhelm et al., 2012). Precipitation reconstruction is also often completed directly from lacustrine 34 

proxy analysis (such as 10Be and δ18O, goethite/hematite ratio, granulometry, 10Be, Sr, Pb, 137Cs, Ti), with short 35 

gauged precipitation records available for validation of empirical or numerical precipitation calculations (Cross, 36 

2001; Hyland et al., 2015; Rozanski et al., 1997; Zhou et al., 2014). This constrains the analysis to discussion of 37 

‘more’ or ‘less’ humid periods rather than quantifying the amount of past precipitation (Arnaud et al., 2012; 38 

Bjune et al., 2005; Magny et al., 2011; Peyron et al., 1998; Simonneau et al., 2013a). Because precipitation, in 39 

conjunction with vegetation cover, is a significant driver in erosion processes, soil erosion fluxes stored in 40 

lacustrine archives can potentially provide an insightful indication of past trends and overall precipitation 41 

(Simonneau, 2012). Past trends in catchment erosion susceptibility reflect both the land use and climatic changes 42 

influencing a specific catchment and the sensitivity of that catchment to precipitation driven erosion.  43 

Numerous organic or inorganic parameters can be measured within lacustrine sediments and interpreted as 44 

representative of erosion dynamics of the catchment (Arnaud et al., 2016). However, if these sedimentological 45 

erosion proxies provide an indication of terrestrial fluxes over time, they do not always assess the nuances of 46 

soil-to-sediment differentiation (Arata et al., 2016; Bajard et al., 2017; Charreau et al., 2011; Davies et al., 2015; 47 

Ritchie and McHenry, 1990).  48 

The red Amorphous Particles content in a lacustrine archive (rAP, (Chassiot et al., 2018; Foucher et al., 2014; Graz 49 

et al., 2010; Simonneau et al., 2014, 2013a)) is one organic sedimentological proxy indicating soil erosion from 50 

catchment surfaces to sinks, such as lakes. rAPs are indicators of allochthonous organic catchment soils, e.g. 51 
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Histosol or Leptosol in a high altitude context (Di-Giovanni et al., 1998; Graz et al., 2010). Lacustrine rAP records 52 

provide a quantitative representation of allochthonous soil deposition (Chassiot et al., 2018; Guillemot et al., 53 

2015; Simonneau et al., 2013c, 2013a, 2013b). These organic particles are approximately 100 µm in diameter 54 

and are the result of lingo-cellulosic fragment degradation in soil profiles (Di-Giovanni et al., 1998; Simonneau, 55 

2012).  56 

Minerogenic or inorganic soil representation can be considered through analysis of rubidium (Rb). Rb has 57 

classically been used as a tracer of soil erosion in lacustrine archive studies and adopted as a lithogenic soil tracer 58 

(Davies et al., 2015; Hosek et al., 2017; Jin et al., 2001; Sabatier et al., 2014; Schmidt et al., 2006; Simonneau et 59 

al., 2013a). Combining rAP and lithogenic soil traces can present a more complete and detailed overview of soil 60 

erosion dynamics and soil weathering over time (Chassiot et al., 2018; Oliva et al., 2004). The long-term organic 61 

and minerogenic fluxes may therefore be used to estimate the amount of precipitation relative to erosion 62 

processes.  63 

Modelling such fluxes over long timescales continues to be a challenge as the majority of soil erosion models 64 

only function at short timescales (event or pluriannual) and require significant data, such as soil infiltration, 65 

roughness or hydraulic conductivity, rainfall event intensity and soil composition. It is acknowledged that the 66 

erosive effect of precipitation is dependent on precipitation intensity (especially rainfall intensity) (Lana-Renault 67 

et al., 2007; Ziadat and Taimeh, 2013) and, within mountainous catchments, the delineation between snow and 68 

rainfall in the precipitation record. However, this level of detail is difficult to establish when using larger 69 

timesteps (e.g. 10 years) and lacustrine or paleo archive records. The De Ploey’s empirical model of erosion and 70 

precipitation is a purposefully simplified method to consider catchment soil erosion across extended time periods 71 

(long term) up to and in excess of 100 years (De Ploey et al., 1995). It was designed to approach erosion analysis 72 

at a regional or local scale and to consider sediment budgets within a chosen catchment. The De Ploey equation 73 

focuses on mean total precipitation as one, quantifiable, driving force behind catchment erosion, without 74 

consideration of intensity or snow/rain influence. The second key parameter is the catchment erosion 75 

susceptibility (Es), a value selected (but not specifically calculated) by catchment characteristics (location, climate 76 

and vegetation, catchment parameters such as slope length and gradient). This model is not well known or 77 

frequently used for actual erosion-precipitation modelling due to its lack of complexity regarding soil structure 78 

or soil humidity. However, its simplicity may provide a useful method to examine past long-term precipitation, 79 
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erosion and catchment erosion susceptibility at a decadal time step and over millennia. Es values have been 80 

published for of over 60 catchments located globally, using samples that presented time steps of 2 years for 81 

some locations (with high deposition rates) to samples with time steps of >500 years. The published range of Es 82 

values, relative to generalised catchment conditions for long term erosion susceptibility analysis, generally range 83 

from 10-3 – 10-6 s2/m2, (De Ploey et al. 1995 and  84 

Figure 1).  85 

 86 

Figure 1. Long-term erosion susceptibility values (ESL) from published De Ploey Es equation implementation 87 

(reconstruction of catchment characteristics from De Ploey et al. 1995 Figures 2-4, 6). 88 

To date, the calculation of Es in temporal datasets using multiple samples has not been tested (e.g. lacustrine 89 

record). Es could be utilised in one of two ways: firstly, as a coefficient (static value) selected for the catchment 90 

due to the general catchment characteristics (e.g. high altitude, temperate climate, general open vegetation); 91 

secondly, as a variable that changes over time due to one or a combination of changing meteorological and 92 

catchment characteristics and more particularly the vegetation cover.  93 

Identification of catchment soils, through use of quantitative palynofacies soil proxies (Chassiot et al., 2018; 94 

Foucher et al., 2014; Graz et al., 2010; Simonneau et al., 2013c, 2013b, 2013a), within lacustrine records provides 95 

a temporal erosion record for the study catchments. Using this quantified soil erosion record, this research aims 96 

to identify a method to calculate the Es value(s) and present a reconstruction of recent precipitation (~1960-97 

present). To undertake this assessment there are two key assumptions made. First, that the soil proxies used 98 

within the lacustrine archives are directly representative of the soil eroded from the contributing catchment and 99 

deposited in the lake. Second, that there is negligible loss of eroded material from the lake, that the lacustrine 100 

deposition presents a strong catchment soil erosion record (Ouahabi et al., 2016).  101 

2 Materials and Methods 102 

2.1 Spatial and temporal lacustrine dataset  103 

Lacustrine records provide dated archives of soil deposition within a lake catchment (Arnaud et al., 2016). For 104 

catchments located at the most upstream extent of a larger watershed or basin, these lakes can be the first or 105 
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primary deposition point for eroded soil. A spatial dataset was created to evaluate the functionality and 106 

variability of the De Ploey equation and Es variable across the French Pyrenees and in the French Alps. This 107 

dataset is comprised of lacustrine sediment cores from lakes located in the upstream extent of mountain 108 

watersheds of varying size, elevation, contributing catchment area, meteorological conditions and vegetation 109 

cover. These lacustrine records were used to identify the quantity of eroded soil deposited into the lake: (1) over 110 

the last few years (top-core samples, spatial dataset, Figure 2 and Table 1); and (2) over the last 100 years (looking 111 

at the highest resolved lacustrine archive, temporal dataset, Table 2). The spatial dataset was comprised of the 112 

most recent 10 mm of sediment deposition from each lacustrine core. The top-core samples present an archive 113 

spanning from 7 years in sediment and soil deposition record (e.g. Lake Arbu) to more than 50 years (e.g. Lakes 114 

Sigriou, Port Bielh and Gentau).  Lake Arbu, a small alpine catchment in the Mid-Pyrenees with a high lacustrine 115 

deposition rate, was adopted for the temporal analysis (analysis of the last 100 years using a 1.15m high-116 

resolution core; the recent 100yrs is represented by ~70mm).  117 

Figure 2.  Study lakes and catchments used in the temporal and spatial analysis of erosion susceptibility. The 118 

temporal site, Arbu, is noted on blue. 119 

Lake cores were collected generally from the central most section of the lake. Cores were recovered from 120 

beneath the lake floor using a UWITEC coring device operated from a floating platform or similar (Arnaud et al., 121 

2016; Doyen et al., 2016; Simonneau et al., 2013a).  122 

 One core was used from each lake, a common and accepted analytical method in paleorecord analysis (Baddouh 123 

et al., 2016; Mügler et al., 2010; Wischnewski et al., 2011), with two cores sampled from Lakes Majeur and 124 

Paladru as a methodology check. This spatial dataset encompasses catchments with a range of lake sizes (0.02 125 

km2-3.60km2), contributing catchment areas (0.37mm2-66.62km2), altitudes (1168-2658m a.s.l.), and indicative 126 

catchment slopes (0.01m/m to 1.1m/m). The vegetation composition, extent and land use also vary across these 127 

catchments, with areas such as Barroude, Gentau, Medecourbe and Sigriou dominated by bare rock, Arbu, 128 

Arratille, Picot dominated by scrubby alpine vegetation and urban development found in the catchment of Lake 129 

Paladru.   130 

Table 1. Dataset of study area lakes and the catchment characteristics 131 
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2.1.1 Study area meteorology and catchment characteristics data  132 

Meteorology and vegetation data for all catchments was gathered from the Météo France® precipitation gauging 133 

stations and the CORINE land cover dataset.  Météo France® provide both gauged precipitation records from 134 

field monitoring sites across France and a gridded network of precipitation records (SAFRAN). Wherever possible 135 

a local precipitation gauge was used to quantify the precipitation occurring for each study catchment relative to 136 

the sample period (e.g. precipitation for Lake Arbu using the Bernadouze meteorology monitoring station for the 137 

top sample (7 year time step) (Gascoin and Fanise, 2018; Meteo France, 2019), with confirmation and gap filling 138 

using the SAFRAN dataset (Birman et al., 2017; Quintana-Seguí et al., 2017; Vidal et al., 2010). The total 139 

precipitation for each year represented by the sample (e.g. for 2006-2013) was identified from these datasets 140 

and summed to provide the De Ploey variable P (P is the total precipitation (m per m2) for the corresponding 141 

period of erosion activity (De Ploey et al., 1995)). Precipitation is presented in Table 1 as an annual average 142 

representative of the sample duration (e.g. 2006-2013 for the top Lake Arbu sample) to allow a visual comparison 143 

and overview of relative precipitation of the study area catchments.  144 

 Land cover was identified using the European Union CORINE program database. CORINE is an EU open source 145 

database of environmental information. It includes a database of land cover (using 44 land classifications) at a 146 

cartographic scale of 1:100,000 (Bossard et al., 2000; De Roo et al., 2003; Feranec et al., 2007).  Using the gridded 147 

CORINE dataset and catchment areas, the composition of each catchment was defined (Table 1). Where possible, 148 

this land cover characterisation was confirmed using pollen reconstruction analysis (available for the temporal 149 

dataset for Lake Arbu and spatially for Lakes Paladru, Majeur and Sigriou (Doyen et al., 2016; Marquer et al., in 150 

press)).  151 

The temporal dataset was created using historically recorded precipitation for the Vicdessos catchment of Lake 152 

Arbu and the pollen reconstruction of this catchment’s vegetation over the past 100 years. Meteo France 153 

precipitation datasets from local monitoring sites (Bernadouze, Foix, Vicdessos, and St Girons) in conjunction 154 

with the SAFRAN database were used to define the total precipitation for each sample. Pollen reconstruction of 155 

past land cover and vegetation type was completed following the techniques presented in Marquer et al. (in 156 

press), and follow the Landscape Reconstruction Algorithm (Sugita, 2007) modelling approach using the full 157 

length of lacustrine core. This provided an age dated record of land cover and vegetation occurrence for this 158 
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catchment. The most recent period was also defined using the CORINE database and compared to the pollen 159 

reconstruction results to ensure compatibility between the datasets (pollen reconstruction provided equivalent 160 

but more detailed information compared to CORINE database details). 161 

2.1.2 Lacustrine age-dating and elemental analysis 162 

All cores were age-dated following the radiocarbon and 210Pb dating techniques described in (Doyen et al., 2016; 163 

Simonneau, 2012; Simonneau et al., 2013b). A minimum of three 14C dates were obtained for each core (bottom, 164 

mid and upper core samples) and 210Pb was analysed at ~10mm intervals along the core. Combining the 14C and 165 

210Pb results an age-date model (CLAM and/or CRS) (Blaauw, 2010; Pawełczyk et al., 2017; Sikorski, 2019) was 166 

created for each core from which top sample (for the spatial dataset) and total core samples (for the temporal 167 

dataset) ages and time steps were derived (Table 2). 168 

The element composition within each core was quantified using an ITRAX core scanner core scanner (XRF) (or 169 

equivalent) at ~1mm intervals. XRF core scanning is a non-destructive spectrometry method of elemental analysis 170 

(Arnaud et al., 2016; Boës et al., 2011; Melquiades and Appoloni, 2004) that can provide high resolution element 171 

concentration data for sediment samples. Due to the high sampling resolution along a lacustrine core, detailed 172 

trend and concentration analysis for the period of lacustrine archive can be achieved. For the study area cores, 173 

multi-elemental XRF analysis was undertaken, specifically to define the content of Titanium (Ti) and Rubidium 174 

(Rb) in each sample (results in parts per million (ppm) or % weight). Values were corrected relative to known soil 175 

content. Rb was specifically selected as a minerogenic soil proxy and Ti as a commonly used geochemical soil 176 

reference (Boës et al., 2011) to provide an indication of the minerogenic (Rb) and general (Ti) soil content in the 177 

lacustrine core. It is acknowledged that the conversion of XRF data into concentration is a crucial step and difficult 178 

to achieve with XRF data alone and the available data used in this study may therefore incorporate errors and 179 

uncertainties. 180 

Table 2. Sample age (top of sample) and time step durations, element content, deposition of eroded soil (Ve) 181 

and erosion susceptibility (EsC, Eqn.1) (calculated from the original De Ploey Es equation (De Ploey et al., 1995)). 182 

* indicates lakes located in the Alps. Indicative deposition volume (M) is calculated following the methods 183 

published in (Simonneau, 2012). 184 

 185 
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2.2 Organic and minerogenic soil proxies 186 

The rAP proxy was selected to represent an organosoil. It predominates the upper horizons of the catchment 187 

soil, is often larger in size and less dense compared to Rb, which is a constituent of predominantly clay-silt sized 188 

soil minerals (Wang et al., 2008). To quantify rAP, ~10mm slices of the lacustrine core were prepared and 189 

manually analysed using microscopy following published methods (Simonneau, 2012). rAP is highly sensitive to 190 

catchment vegetation composition and cover (decreasing as vegetation occurrence decreases), may move easily 191 

in minor precipitation events but may also be easily detained within the catchment due to its size and angular 192 

shape. This rAP analysis resulted in a count (quantity) of rAP per sample (% organic soil in the sediment; g/g). 193 

Rb was selected to represented lithogenic, mineral soils. Rb may conversely be less easily released (eroded) in 194 

minor precipitation events (being retained in the root zones of vegetated areas, potentially buried under or 195 

mixed within the organic soil horizons) but be more easily conveyed once entrained in the catchment runoff. 196 

There is also a potential, in major precipitation events, for the localised, easily erodible organic soil (rAP) source 197 

to be quickly depleted, resulting in major and prolonged precipitation periods presenting a comparably greater 198 

Rb representative soil deposition. Similarly, during major precipitation events the Rb content may also become 199 

limited as, especially in mountainous catchments where top soil layers such as that represented by Rb may not 200 

be infinite.  201 

The differences in composition and transport of these two soil proxies result in the study catchments presenting 202 

differing erosion susceptibility values specific to the soil types (organic (rAP) and lithogenic (Rb)). The two 203 

complementary proxies have therefore been used as representations of the organic and inorganic catchment 204 

soils eroded and transported into the lacustrine records and have been considered (in the De Ploey Es analysis) 205 

separately to provide a more detailed analysis of soil erosion in the study catchments.  206 

2.3 Application of the De Ploey model to lacustrine records 207 

2.3.1 Calculation of Es from the precipitation and erosion dataset (EsC) 208 

The long term De Ploey equation is defined as (De Ploey et al. (1995), equation (3)): 209 

𝐸௦ =  
௏೐

஺.௉.௚.௛
        Eqn. 1 210 
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Where Es is the contributing catchments erosion susceptibility (s2/m2), Ve is the total soil volume eroded from 211 

the contributing catchment (m3), A is the contributing catchment area (m2), P is the total precipitation (m per 212 

m2) for the corresponding period of erosion activity, h is the affected soil thickness (m, accepted as 0.001m for 213 

long term erosion analysis (De Ploey et al., 1995; Simonneau, 2012)) and g is acceleration due to gravity (~10 m.s-214 

2) (De Ploey et al., 1995; Summer and Walling, 2002).  215 

The De Ploey equation is effective for catchments where derivation of the erosivity measure is difficult (Renard 216 

and Freimund, 1994; Wang et al., 2002). It focuses on catchment erosion yield calculated from recorded total 217 

precipitation and contributing catchment area, in conjunction with an Es coefficient. The Es coefficient is 218 

described by De Ploey et al. (1995) as a ‘black box’ value due to the limited statistical derivation currently 219 

available. Es can simplistically be regarded as a function of the total quantity of eroded soil relative to the total 220 

quantity of precipitation on the catchment over a selected period of time.  221 

The De Ploey erosion susceptibility equation (Eqn 1) was employed across the spatial and temporal datasets in 222 

several steps (Figure 3). First, the erosion susceptibility parameter was calculated using the known precipitation 223 

record, soil deposition quantities and catchment area (P, Ve and A in Eqn. 1). These Es values were defined as 224 

the De Ploey calculated Es values, EsC. Using Eqn. 1 Esc specific to the study catchment and time period were 225 

derived. To calculate the volume of rAP and Rb soil represented in the lacustrine sample the De Ploey definition 226 

of soil volume was used, as described in (Simonneau, 2012) and presented in Equation 2:  227 

𝑉𝑒௧ = 𝑆௧  𝑥 (𝐴𝑐௧  𝑥 𝐿𝐴)       Eqn. 2 228 

Where t = the period represented by the sample (years), S = the percentage of eroded soil relative to the total 229 

amount of sediment deposited in the lake, Ac = the accumulation (depth) of total soil and sediment deposition 230 

in the lake (m) for respective period (t), and LA = the lake area equivalent to the lake deposition extent (m2) 231 

(Simonneau, 2012).  𝐴𝑐௧  𝑥 𝐿𝐴 result in the total autochthonous and allochthonous deposition volume in the lake, 232 

as published in (Simonneau, 2012) and is further represented as M (m3). 233 

Esc can be computed if the volume of eroded soil is known (rAP or Rb proxy for the calculations of Ve; Ve(rAP) or 234 

Ve(Rb)), the precipitation for the catchment over the period of analysis is known, the assumption of erosion 235 

depth (h) for long term erosion calculations is accepted as 0.001m and the catchment and lake sizes are defined.  236 
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2.3.2 Derivation and calibration of Es from lacustrine archive (EsD) 237 

The calculated EsC values were correlated to catchment characteristics within the temporal and spatial dataset. 238 

Correlation analysis was used to highlight which catchment parameters fluctuated in a similar pattern to the 239 

changing erosion susceptibility (and lacustrine erosion record). This analysis was used to identify key parameters 240 

that may be effective in calculating EsC. Strongly correlated, significant parameters were incorporated into linear 241 

regression to find a function that effectively described EsC and supported P estimation (Figure 3).  242 

Using regression analysis, the lacustrine archive datasets (presenting vegetation change, metal, mineral and total 243 

deposition over specific time periods) were used to derive a function to reproduce EsC. These regression EsC 244 

values, defined through archive data, were defined as derived Es values (EsD). Figure 3 presents a schematic 245 

methodology for the derivation of EsD. 246 

No single parameter effectively derived EsC values, necessitating the use of multiple regression analysis. A 247 

separate function was defined for EsD(rAP) and EsD(Rb) due to the differences in the soil typology and correlation 248 

results. The regression analysis was created using the catchment parameters that supported the most effective 249 

(strongest coefficient of determination and Nash-Sutcliffe efficiency (NSE)) results. 250 

The multiple linear regression modelling of EsD was completed using R studio standard functions (Im). Variable 251 

selection was made by correlation strength (variables with the strongest and most significant correlation values 252 

were selected). The selection of variables used to create the EsD model were not meteorological parameters, all 253 

variables were lacustrine proxy or XRF sampled metal values. This ensured the EsD model was created from a 254 

dataset distinct from the precipitation record, independent from all meteorological data, therefore allowing later 255 

validation using recorded precipitation. It was important to define a function with the fewest parameters to 256 

support statistical validity in regression function modelling. The number of variables used in the EsD regression 257 

models were kept to a minimum (4) to ensure the number of variables in the equation were less than the number 258 

of data points (e.g. recorded precipitation data points).  259 

A spatially diverse dataset was necessary to effectively derive the EsD linear regression function. The temporal 260 

analysis was undertaken on Lake Arbu’s lacustrine archive. The temporal and spatial datasets were used to help 261 

examine the temporal and spatial robustness of the Es function defined through the regression analysis. To test 262 
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the efficiency of the correlation, statistical model calculation of EsD was compared to the De Ploey back-263 

calculated EsC values.   264 

Figure 3. Schematic of Es and P calculations and analysis 265 

The linear regression function provides coefficient values (a weighting and scaling factor for each variable) for 266 

the model and an intersect value, if an intersect ≠ to zero is requested.  The selection of variables incorporated 267 

into the EsD regression model were varied until the regression analysis provided EsD values as close to EsC as 268 

possible.  269 

2.3.3 Validation of the method 270 

The effectiveness of the regression to calculate EsC has been considered using the coefficient of determination 271 

of the EsD function (r2), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE). Relative error, the 272 

difference between recorded and modelled precipitation (m, %) was used to assess the accuracy of the EsD 273 

regression function in replicating the recorded total precipitation dataset alongside RMSE and MAE. NSE is a 274 

method to quantitatively assess the efficiency and accuracy of a model (EsD), mean absolute error (MAE) and 275 

RMSE are comparisons on the modelled versus observed datasets to define the error in model results. MAE 276 

considers the individual differences (for each lacustrine sample), weighted equally. RMSE functions is a similar 277 

way but weights the individual errors relative to their size. RMSE results can therefore illustrate outlier or isolated 278 

extreme error result occurrence while MAE provides an average magnitude of error. 279 

The uncertainty in EsD calculation of P using lacustrine archive data was considered in a similar way. The dataset 280 

is comprised of physical sample results (lacustrine records) which hold uncertainty due to analytical 281 

quantification methodology (Liu and Gupta, 2007). The lacustrine dataset is dated using 14C and 210Pb and this 282 

sample analysis incorporates a temporal uncertainty. Consideration of both sampling (e.g. Ve quantification) and 283 

age dating uncertainty has been considered in the EsD calculation of P. 284 

3 Results  285 

3.1 Es variability and potential drivers  286 

Four EsC datasets have been created, temporal and spatial EsC from the rAP soil erosion records (resulting in 287 

EsC(rAP)) and temporal and spatial EsC from the Rb soil erosion records (resulting in EsC(Rb)), and these values 288 
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have been compared with literature reported EsL values (Figure 4). The EsC values calculated using recorded 289 

precipitation and lacustrine erosion records generally fall within the literature recommended range (EsL) (Figure 290 

4). The temporal EsC values illustrate a range almost as great as the spatial dataset, approximately an order of 291 

magnitude in range. The calculated EsC values for the temporal dataset are not static.  292 

Figure 4. EsL value range for long term erosion analysis published in literature (dark grey bar). EsC values were 293 

calculated using the De Ploey equation (Eqn 1), recorded precipitation and lacustrine erosion records (light grey 294 

and blue bars). Dark points within the EsC ranges illustrate the individual temporal and spatial calculated EsC 295 

values specific to catchment and sample period. 296 

EsD(rAP) illustrated a range between 2.5 x 10-7  – 7.5 x 10-5 (mean = 2.4 x 10-5) while EsD(Rb) values range between 297 

4.3 x 10-5 to 1.4 x 10-3 (mean = 3.2 x 10-4) (Figure 4).  There is an order of magnitude difference in the erosion 298 

susceptibility, with rAP illustrating a lower erosion potential than Rb, driven by the recorded lacustrine 299 

deposition.  300 

3.2 Correlation Analysis 301 

Correlation analysis of catchment characteristics was completed to define key EsC parameters. Table 3 lists the 302 

catchment characteristics considered, the respective correlation values with EsC and correlation significance. 303 

Spatial dataset EsC illustrated minor correlations with catchment area, elevation, slope, total deposition and Ti. 304 

Catchment parameters showing moderate correlation with EsC included average flow path length, soil type and 305 

vegetation coverage. 306 

The temporal EsC datasets show moderate and generally significant correlation to vegetation composition and 307 

coverage. Ti, the geochemical catchment characteristic included in this analysis, illustrated a moderate and 308 

significant correlation with and temporal EsC values. Rb was found to correlate to temporal EsC(rAP) suggesting 309 

a possible link or similar trend in rAP and Rb erosion and deposition in the Arbu catchment. 310 

Table 3. EsC correlation to geochemical and physical catchment characteristics 311 

The representation of vegetation cover, described in Table 3 (and Table 1) as ‘indicative small tree % vegetation 312 

cover’, is derived from the corrected pollen vegetation reconstruction in the temporal datasets. This catchment 313 

characteristic correlated with EsC values, suggesting that the erosion susceptibility in the temporal dataset may 314 
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follow similar trends and illustrating the known driving influence of vegetation cover and change on erosion (Noël 315 

et al., 2001; Rosenmeier et al., 2002).  316 

3.3 Es Regression Analysis 317 

The EsD(rAP) regression function is derived from the lacustrine erosion record (Ve(rAP)), the total sediment 318 

deposition volume (M, m3) for respective period, the corrected pollen reconstruction model of vegetation 319 

pattern (represented as a % of tree cover), and the Ti:Rb ratio (indicator of general erosion and precipitation). It 320 

is noted that the Rb:Ti ratio illustrated a stronger correlation to EsC(rAP) however when considered within the 321 

multiple regression analysis the inverse ratio (Ti:Rb) presents a model with a more effective coefficient of 322 

determination and smaller p-values. The Ti:Rb parameter was therefore included in the regression function. 323 

𝐸𝑠஽(𝑟𝐴𝑃) = 𝑎. 𝑉𝑒(𝑟𝐴𝑃) + 𝑏. 𝑀 + 𝑐. %𝑡𝑟𝑒𝑒 𝑐𝑜𝑣𝑒𝑟 + 𝑑. 𝑇𝑖: 𝑅𝑏                 Eqn. 3 324 

The EsD(Rb) regression is derived from the lacustrine erosion record (Ve(Rb)), the deposition volume (m3), pollen 325 

reconstruction of vegetation patterns (represented as a % of tree cover), and the Ti trend (indicator of general 326 

erosion and precipitation). 327 

𝐸𝑠஽(𝑅𝑏) = 𝑎. 𝑉𝑒(𝑅𝑏) + 𝑏. 𝑀 + 𝑐. %𝑡𝑟𝑒𝑒 𝑐𝑜𝑣𝑒𝑟 + 𝑒. 𝑇𝑖  Eqn. 4 328 

The regression coefficients for Equations 3 and 4 are presented in Table 4. The coefficients for the temporal, 329 

spatial and total (cumulative) datasets of rAP and Rb have been calculated. 330 

Table 4. Regression analysis coefficients. The r2 are relative to the dataset used in the model, not the total 331 

dataset.  332 

The functions presented in Equations 3 and 4 have been calculated for the spatial and temporal datasets 333 

separately. A ‘total dataset’ analysis was completed but while the coefficients defined using the total dataset are 334 

relatively effective in modelling EsC, it was noted that separating the temporal and spatial dataset presented 335 

greater accuracy in EsD calculations. For the purposes of this analysis, the spatial and temporal datasets were 336 

treated separately to try and define the most effective model possible for the reconstruction of total 337 

precipitation for the spatial and temporal datasets. The EsC values relative to the regression EsD values are 338 

presented in Figure 5. 339 
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Figure 5. Graphical representation of EsD values calculated using Equations 3 and 4 respectively. The spatial 340 

dataset EsD values are illustrated in black outlined points; temporal EsD values are presented as orange points. 341 

The error bars represent the uncertainty range around EsD calculations when Ve and P values are modified to 342 

represent the Ve quantification and sample date uncertainties. 343 

The EsD(rAP) values from the regression derivation have a coefficient of determination (r2) of 0.93 (RMSE of 344 

4.8x10-6) and NSE of 0.93 (Figure 5a). The EsD(Rb) values from the regression derivation have a coefficient of 345 

determination (r2) of 0.92 (RMSE of 8.3x10-5) and NSE of 0.91 (Figure 5b). The EsD regression equations (Eqn 3 346 

and 4) illustrate a strong coefficient of determination (r2> 0.8) and NSE (0.7<NSE> 1) suggesting model efficiency 347 

in synthesising EsC values from lacustrine data. 348 

3.4 Estimation of total P using lacustrine record 349 

The total precipitation calculated using EsD(rAP) and EsD(Rb) were compared to recorded precipitation based on 350 

a split sample method. Figure 6 illustrates the modelled P relative to recorded values, and the general trend in P 351 

when historic lacustrine data is considered back past recorded P. Both rAP and Rb results illustrate notable 352 

uncertainties and errors, however there is some capacity for these EsD equations to estimate P and provide 353 

information on the trends in recent and past P.  As a first step towards using a highly simplified, limited data 354 

availability model to consider mean annual P, this method could be useful.   355 

Figure 6. Calculation of P from regression EsD(rAP) (6a) and EsD(Rb) (6b) defined values. The black error bars 356 

show the uncertainty in P values due to Ve quantification uncertainty. The grey error bars illustrate the 357 

uncertainty in P due to the sample date uncertainty. Spatial P results are presented as black points, Lake Arbu 358 

catchments temporal dataset results are presented as orange points. Figure 6(c) shows the temporal estimated 359 

P using historic data extending past the recorded records for Lake Arbu.  360 

The RMSE for the recorded vs modelled P using the rAP dataset and EsD(rAP) equation was 0.29 (total dataset), 361 

with the spatial dataset presenting a RSME of 0.32 and temporal dataset RSME of 0.22. The mean absolute error 362 

(MSE) for the total dataset was 0.24, 0.22 for the temporal dataset and 0.25 for the spatial dataset. The RMSE 363 

and MAE for P estimated using the rAP dataset were <35% of the recorded average annual precipitation. The 364 

RSME is higher than MAE for the total dataset and spatial subset, suggesting some extreme results or outliers in 365 

the spatial modelled dataset.  366 
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The RMSE for the recorded vs modelled P using the Rb dataset and EsD(Rb) equation was 0.34 (total dataset), 367 

with the spatial dataset presenting a RSME of 0.40 and temporal dataset RSME of 0.14. The MSE for the total 368 

dataset was 0.25, 0.10 for the temporal dataset and 0.32 for the spatial dataset. As with the rAP dataset, the 369 

RMSE and MAE (total dataset) are <35% of the recorded average annual precipitation, suggesting no significant 370 

difference between the rAP and Rb modelled P results when the total dataset is considered. The RSME is slightly 371 

higher than MAE for all Rb estimated P results, suggesting outliers and extreme results across the dataset results. 372 

Both modelled P results illustrate a smaller RMSE and MAE for the temporal datasets compared to the spatial 373 

datasets, suggesting that using this method is slightly more effective for temporal analysis than when used for 374 

the spatial dataset. 375 

The uncertainty in precipitation estimation has been calculated with consideration of the uncertainty in 376 

quantifying rAP and Rb (and therefore Ve) in the lacustrine archive and the uncertainty in dating the samples. 377 

Uncertainty analysis has been completed considering these uncertainty elements individually and cumulatively. 378 

The individual (Ve and sample dating) uncertainties are presented in Figure 5, with the spatial and temporal 379 

breakdown of uncertainties is summarised in Table 5.  380 

Table 5. Summary of uncertainty influence on error 381 

It is noted that while EsD was effectively calculated using Equations 3 and 4, the calculation of P is highly sensitive 382 

to small inaccuracies in Es values, resulting in sizable relative errors in precipitation estimations. A 1% change in 383 

EsD values (without any further uncertainty considerations) results in a relative error in P of -43% to 59% (Rb) and 384 

-16% to 34% (rAP). A 1% error or uncertainty in Es values illustrates a similar precipitation calculation error to 385 

the EsD model relative error or uncertainty in Ve quantity.  386 

4 Discussion 387 

4.1 Variable erosion susceptibility (Es) 388 

Literature Es values (EsL) for long term erosion analysis fall between 1x10-3 – 1x10-6 s2/m2. EsL values have 389 

previously been considered and used as a constant, with little available information on the derivation of the long-390 

term erosion sustainability values.  For the first time, lacustrine records of erosion (rAP and Rb indicators of 391 

erosion in mountain catchments) have been coupled with catchment specific precipitation records to calculate 392 

EsD values. The simple Esc calculation illustrates a range of Esc values falling within the range of published (EsL) 393 
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values, but that the definition of Es is difficult unless precipitation and erosion are quantified for the study 394 

catchment and respective time period. This makes section of an Es value for use in the De Ploey erosion equation 395 

or as a description of a catchment’s erosion susceptibility challenging, with current selection guidance focused 396 

on catchment vegetation and soil typology. 397 

The Esc value is found to range (for the study catchments) from 1x10-3 – 1x10-6 s2/m2 spatially but also temporally. 398 

This illustrates that Esc is not a coefficient but that to achieve effective erosion, erosion susceptibility and 399 

precipitation representation using the De Ploey erosion equation over a time period (with multiple sub-samples) 400 

the Es value is a variable (as illustrated in Figure 4 and 5). This is logical, as erosion is driven by vegetation and 401 

precipitation, both naturally and anthropically influenced and changing over time. Therefore, given that 402 

vegetation and precipitation fluctuate over time, it is important that erosion susceptibility act as a variable which 403 

responds to precipitation and vegetation trends, a spatio-temporal variable. 404 

Esc is noted to correlate most strongly to meteorological conditions. However, if: (1) Es is to be calculated for 405 

catchments or time periods where meteorological records are scarce; or (2) the De Ploey equation is to be used 406 

to assess historic erosion and precipitation patterns, then Es must be described as a function of non-407 

meteorological parameters. The correlation and simple linear regressions present a description of erosion 408 

susceptibility (EsD) specific to the time period and individual catchment characteristics. This function (Eqn. 3 and 409 

4) provides a new method to estimate Es for a catchment beyond the use of generalised vegetation and soil 410 

descriptions (EsL).  This descriptive EsD function supports estimation of the temporal and spatial variability in Es 411 

based on catchment specific lacustrine erosion and geochemical indicators.  The functions are a step towards 412 

greater description and understanding of the driving forces and catchment (temporal and spatial) representation 413 

of erosion susceptibility.  414 

The difference in lacustrine quantities of rAP and Rb may be due to the relatively thin soil profile in the study 415 

(mountain) catchments, organic carbon content in Pyrenees mountain catchments of ~10% (Garcia-Pausas et al., 416 

2007) and correspondingly relatively small quantity of organic soil available for erosion. As a result, there is a 417 

smaller quantity of organic soil (rAP) available in the catchment and therefore a correspondingly smaller quantity 418 

of rAP in the lacustrine archive. The difference in EsC values suggests that the erosion susceptibility value may be 419 

specific to soil typology and catchment soil availability. 420 
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4.2 Lacustrine erosion indicators 421 

The two erosion indicators (rAP and Rb) considered in this study represent different soil types (organo-mineral 422 

and mineral soils). Both EsD functions show effective model capability (0.7<NSE>1) however the effectiveness in 423 

precipitation representation using these modelled Es values varies (Figure 5, Table 5). This is due to the driving 424 

influence of the Es parameter in the De Ploey erosion equation, and the resultant sensitivity in calculated 425 

precipitation to small changes in Es. It is also due to the coarse reconstruction of precipitation driven erosion 426 

possible using the De Ploey method given the lack of differentiation between rainfall and snow in the dataset 427 

and the significantly different erosion impact snow and rainfall have on a catchment or soil. 428 

There is limited diference in the representation of erosion susceptibility and precipitation from the two datasets, 429 

rAP and Rb. There is slightly greater error and uncertainty in the Rb dataset results compared to rAP. This may 430 

be due to the different physical transport properties of these two erosion indicators. rAP are particles that may 431 

be broken but do not dissolve or transform. Rb is a property of the underlying (granite) bedrock and soil. Rb 432 

absorbance is strongest to fine (silt-clay size) particles (De Vos et al., 2006; Salminen et al., 2015). The EsD(Rb) 433 

function may need an additional parameter (variable) that describes the changing catchment pH, individual 434 

precipitation events and soil composition properties (as indicators of the Rb transport mechanisms relative to 435 

the time period) to support more effective future EsD(Rb) modelling. 436 

There is uncertainty in both erosion quantification (sampling) and the age dating model. The rAP and Rb erosion 437 

datasets react similarly to these uncertainties. Both datasets illustrate a greater sensitivity to age depth model 438 

uncertainty than rAP or Rb sampling uncertainty (Table 5). Both rAP and Rb temporal results show lower 439 

sensitivity to sampling and age depth uncertainty than the spatial datasets. This suggests that the EsD may be 440 

more effective for site specific longitudinal (archive) analysis that spatial analysis.  441 

4.3 Snow/rain influence on erosion and De Ploey estimation of past precipitation 442 

A significant proportion of precipitation in mountainous catchments occurs as snow rather than rainfall. 443 

Snowmelt may or may not mimic erosion events occurring due to rainfall or be represented clearly in annual 444 

precipitation records. Within the lacustrine deposition it is difficult to differentiate erosion due to snow versus 445 

rain. Correspondingly, the generalised precipitation available and used in this De Ploey analysis provides no 446 

distinction between snow and rainfall precipitation but instead presents an overall precipitation value. As such, 447 
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the influence of snowfall on these catchments is not taken into account in either precipitation estimation or 448 

erosion calculations. This is expected to be a key influence in the error in De Ploey Es estimation of precipitation 449 

using lacustrine records, resulting in inexact estimation of past precipitation as illustrated in Figure 6. 450 

Furthermore, the influence of rainfall intensity is not taken into account in this De Ploey analysis (total or annual 451 

precipitation are the only parameters prescribed, De Ploey et al. 1995). Rainfall intensity is a significant driver of 452 

erosion, in conjunction with top soil composition. While the complexities of top soil composition and details of 453 

rainfall event intensity are key to erosion, the De Ploey Es model is designed for a gross estimation of 454 

precipitation and erosion without provision of intensity or catchment soil complexity. This is therefore a further 455 

source or error and uncertainty in the De Ploey estimation of past precipitation.   456 

5 Conclusions 457 

Lacustrine erosion records have been used within the De Ploey erosion equation to consider the erosion 458 

susceptibility and precipitation of 12 French mountain catchments. Using recorded precipitation and erosion, the 459 

EsC value for each time step and catchment has been calculated, illustrating EsC values for these catchments to 460 

fall within the published literature. EsC (and EsD) values are only representative of the sampled time period 461 

analysed and incorporate consideration of the continuously changing climate (precipitation) and vegetation (type 462 

and extent) in the specific study area under review. As climate and vegetation change over time, so EsC values 463 

can be expected to change. Results demonstrate that there is complexity in estimating EsC and that EsC is a 464 

variable when considered in a spatial and temporal context.  465 

Through analysis of the lacustrine archive, a description of the EsC variable has been created allowing EsD to be 466 

calculated using lacustrine archive data. This supports erosion susceptibility and precipitation estimation for 467 

catchments and time periods where either erosion susceptibility or precipitation records are unavailable. While 468 

EsD is effectively calculated, the simulation of P is indicative but inexact, and this analysis illustrates the need for 469 

further development of the Es model to accurately reconstruct P using lacustrine records. This research therefore 470 

presents a step towards an effective simplistic approach in precipitation reconstruction using lacustrine records 471 

and provides a method to define Es values using non-meteorological parameters commonly available for 472 

catchments. 473 
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Acronyms and Abbreviations 705 

rAP Red Amorphous Particles 
Rb Rubidium 
Ti Titanium 
Pb Lead 
A Catchment area (m2) 
P Precipitation (m) 
h Surface erosion depth (m) 
g Acceleration due to gravity (ms-2) 
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M Lacustrine total soil and sediment deposition (autochthonous and allochthonous sediment) 
(per sample) 

Ve soil volume eroded from the contributing catchment (m3) 
Ve(rAP) volume of rAP represented eroded soil (m3) 
Ve(Rb) volume of Rb represented eroded soil (m3) 
Es contributing catchments erosion susceptibility (s2/m2) 
EsL published literature erosion susceptibility values (s2/m2) 
EsC catchment calculated erosion susceptibility (s2/m2) using known erosion, precipitation and 

catchment area 
EsC (rAP) catchment calculated erosion susceptibility (s2/m2) for rAP represented soil erosion 
EsC (Rb) catchment calculated erosion susceptibility (s2/m2) for Rb represented soil erosion 
EsD catchment erosion susceptibility (s2/m2) derived from regression analysis 
EsD (rAP) catchment erosion susceptibility (s2/m2) derived from regression analysis for rAP 

represented soil erosion 
EsD (Rb) catchment erosion susceptibility (s2/m2) derived from regression analysis for Rb 

represented soil erosion 
S the quantity of eroded soil in the lake sediment deposition (mg/mg) 
Ac accumulation of total soil and sediment deposition in the lake (m) for respective period  
LA lake area equivalent to the lake deposition extent (m2) 
t the period represented by the sample (years) 
R2 Coefficient of determination 
RMSE Root mean square error 
NSE Nash-Sutcliffe efficiency 
MAE Mean absolute error 
10Be Beryllium isotope 10 
Sr Strontium 
137Cs Caesium isotope 137 
δ18O Oxygen isotope 18 
a.s.l. above sea level 
Sqrt Square Root 
log Logarithm base 10 
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