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Abstract

This paper considers the problem of retrospectively de-trending wind site data when

only statistical moments, in the form of 10-min means and standard deviations in

wind speed, are available. Low-frequency trends present in wind speed data are

known to bias fatigue damage estimates, and, hence, removal of their influence is

important for accurate fatigue life estimation. When raw data is available, this proce-

dure is straightforward; however, for many sites, significant quantities of data are

available, which contain only statistical moments. Additional value is therefore

unlocked if de-trending can also take place in this context. Existing methods, Models

1 and 2, are introduced, and their performance and viability appraised, respectively. A

Gaussian process (GP) regression implementation is also developed, which seeks to

incorporate characteristics of real trends extracted from raw data into the fitting pro-

cedure via an appropriately chosen lengthscale hyperparameter. Results indicate that

Model 2, the recommended method in previous work, suffers from fundamental

issues, with the implication that it should no longer be used. Model 1 and GP results

are shown to be very similar at the turbulence distribution level. This finding is inter-

preted as a validation of Model 1 and an indication that it may already be performing

as well as can be hoped for, given the information available in the current problem

formulation. Theoretical overheads associated with GPs, in addition to the perfor-

mance similarities mentioned above, lead to Model 1 being recommended as the best

approach to moment-based turbulence de-trending at this time.
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1 | INTRODUCTION

Statistical assessment of site wind resource has important implications for wind farm performance aside from just expected energy yield. In terms

of wind turbine structural fatigue, site turbulence intensity (TI) distributions play a key role in the prediction of fatigue life consumption. This in

Abbreviations: Gaussian process, GP; TI, turbulence intensity.
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turn has implications for design and lifetime-extension decisions for wind farms and, hence, is an economically important area for wind farm

owners and operators.1-3

When wind speed statistics are calculated for a wind farm site, typically as 10-min means and standard deviations (which in turn are used to

calculate TI values), an implicit assumption of stationarity is being applied. However, wind speed variations occur across a wide range of frequen-

cies, and so over a given capture window, the standard deviations calculated contain contributions from components slowly varying within the

chosen 10-min window. This is known to bias results and can lead to significant errors in fatigue-life estimation.1 Therefore, for fatigue consider-

ations, one should ideally separate wind speed variance into ‘macro-scale’ and ‘micro-scale’ contributions, with macro-scale contributions treated

as a trend over each capture window. Explicitly, the technical definition of trend adopted in the current work is the summation of all Fourier modes

present in a wind speed time series with period longer than the capture window. This definition coincides with that of Larsen and Hansen.1 For the

case where raw data are available at a site, there are various methods which exist with which different levels of de-trending can be obtained, the

most common being a straight line fit to the data. However, at many sites, years worth of resource or operational data are available for which only

10-min first- and second-order moments (i.e., means and standard deviations) are available. For such data, these available de-trending approaches

cannot be undertaken. Therefore, techniques which can effectively de-trend using only 10-min moments, and so retrospectively remove the influ-

ence of low frequency contributions to turbulence, have the potential to significantly improve the accuracy of fatigue life estimates and contrib-

ute to life-extension efforts. This moment-based de-trending problem forms the focus of this current study, with the seminal work of Larsen and

Hansen1 taken as a starting point. Their two approaches both facilitate the fitting of splines to moment data in order to recreate possible trend

contributions. Given that spline orders effectively codify a proportion of smoothing when fitting, it seems pertinent to ask what the correct

amount of smoothing might be in this context. This question is considered through the development of a Gaussian process (GP) machine learning

approach to moment-based de-trending. A lengthscale parameter within the GP's covariance structure defines the quantity of smoothing during

regression. An appropriate lengthscale is sought using available data, allowing comparisons to be made between existing methods and one seeking

to apply a level of smoothing which reflects trend component characteristics in real wind site data.

Section 2 describes relevant background material including notation, problem definition and performance requirements. Section 3 then intro-

duces existing approaches to moment-based de-trending and considers the performance and viability of these methods. In Section 4, a GP regression

approach to the problem is developed, with results and comparisons given in Section 5. Conclusions and recommendations then close the paper.

2 | BACKGROUND

In this section, the problem and notation will be presented in detail, along with relevant background material and a discussion of performance

requirements and performance measures.

2.1 | Notation and problem definition

Given the varied notations used across the sources and fields from which this study draws, the one outlined below has been chosen to enhance

clarity and avoid confusion with the later defined GP notation. Letting τ denote the time between subsequent measurements, and assuming

T=τ =N2N, let

iT = iT + nτf gNn=0, ð1Þ

for a given integer i ≥ 0. These sets, iT , therefore contain the time steps of the ith bin. Wind speeds at each time step, vt for a given t2 iT , are

assumed to have been measured; throughout the paper, these underlying measurements will be referred to as raw data. From this, the first two

statistical moments over each bin are calculated, these being the mean,*

MiT =
1
N

X
t02iT

vt0 , ð2Þ

and variance,

ViT =
1
N

X
t02iT

vt0 −MiT

� �2
, ð3Þ

*Similar to the use of dummy variables within integrals, summation variables here are denoted as either t0 or t∗. t itself will be used to denote specific, individual time steps.

2 HART ET AL.



referred to collectively as moment data throughout the paper and from whichTI is calculated as

TIiT =

ffiffiffiffiffiffiffi
ViT

p
MiT

: ð4Þ

It is assumed that wind speed measurements are composed of a low-frequency trend, gt, and higher frequency stochastics, st, such that

vt = gt + st, ð5Þ

with gt consisting of all Fourier modes of period greater than T as per the trend definition given in Section 1. Assuming independence of the two

components, their variances decompose additively,

ViT =V
g
iT +V

s
iT , ð6Þ

where

Mg
iT =

1
N

X
t02iT

gt0 , ð7Þ

Vg
iT =

1
N

X
t02iT

gt0 −Mg
iT

� �2
, ð8Þ

and similarly for s. In the context of TI de-trending, the current problem becomes as follows:

From measurements of MiT and ViT , is it possible to estimate the stochastic variance component, Vs
iT , such that the standard deviation,

ffiffiffiffiffiffiffi
Vs
iT

q
,

can be used to form de-trended values of TI which are unaffected by low-frequency trend contributions?

The methods considered in this work approach this by seeking to identify the low-frequency trend, gt, via curve fitting of one kind or another.

From there, Vg
iT can be computed directly, and it follows that the sought variance is obtained from measured ViT as

Vs
iT =ViT−Vg

iT : ð9Þ

2.2 | Linear and nonlinear de-trending

It is important to note the formal definition of a trend as presented in Section 1. From this, it follows that if one has access to the non-moment

data, i.e., the underlying measurements themselves, then trend identification involves a simple application of low-pass filtering with a cutoff fre-

quency corresponding to the width of capture bin (1/600 Hz for 10-min bins). As such, the trend identification problem when underlying data are

available is considered well understood, and such filter-identified trends are used in the current work as a baseline for performance comparisons

on moment data. A third-order Butterworth low-pass filter was implemented for this purpose; code for such filters is standard and readily avail-

able.4 An example filtered trend is shown against underlying data over six 10-min bins in Figure 1. Subtracting the identified trend from underlying

data allows the de-trended TI distribution to be calculated. Within the wind industry, when underlying data are available, it is still very common to

perform straight line fits within each window5 (rather than following a filtering approach) and to treat this line as the trend. The existing methods

for moment de-trending are therefore geared towards subtracting the linear trend portion of variance values. The differences from following a lin-

ear or filtering (i.e., nonlinear) approach to de-trending when underlying data is available are clear in Figure 1. In general, this same pattern holds,

and, overall, linear de-trending gives a conservative reduction in TI compared with the filtering approach—indicating there is an opportunity in

general to improve over linear fits for de-trending purposes. However, such considerations do not form the main focus of this paper and so are

not considered further. With respect to the moment de-trending problem, the relevance of considering both linear- and filter-based de-trending is

twofold: (1) to provide an overall baseline for the most variance one can hope to remove from a given TI distribution. (2) Whereas existing

methods are geared towards removing the linear trend portion, they are not limited to this; furthermore, the GP method only considers nonlinear

fits. It is therefore concluded that a principled comparison of such techniques requires for performance to be measured against both the linear-

and filter-based approaches to de-trending wind field data.
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2.3 | Wind site datasets

Summary information for wind site data used in this work is presented inTable 1.† Note that the Usable Data value given inTable 1 for each site is

that available after the removal of any 10-min bins in which over 20% of datapoints are missing. This criterion was applied to avoid instances of

significant missing data within individual bins artificially influencing results. Higher-frequency measurements were downsampled to 1 Hz to main-

tain reasonable computational times and memory efficiency for this comparative study.

2.4 | Performance measures

For any method, it is important to consider the context in which it is to be applied when determining how to assess performance. As outlined in

Section 1 and discussed in detail in Larsen and Hansen,1 the current problem of turbulence de-trending has the potential to influence both design

and life-extension decisions for entire wind farms, with both areas having significant cost impacts to wind projects. In this context, it should be

clear that conservatism must be favoured above over-optimism, with over de-trending (ODT; and so an under-estimation of site turbulence levels)

having potentially catastrophic implications for project economics. When assessing performance in this case, the best available method will there-

fore be that which provides the highest level of de-trending while avoiding any significant quantity of ODT (when comparing the distribution

obtained from moment data to baseline distributions generated from de-trending on underlying raw data). Explicitly, since a distribution shifted

too far left must be regarded differently from the same distribution shifted an identical distance right, best fits between computed and baseline

distributions must in this case be considered in an asymmetrical manner.

TABLE 1 Wind site datasets—Summary information

Site Terrain Measurement height (m) Usable data (hours)

Tobøl, DK Pastoral 64 607

Oak Creek, USA Complex 79 525

Hanford, USA Complex 40 276

Skipheia, NO Coastal 45 2,587

Sletringen, NO Coastal 45 3,691

Orkney, UK Coastal 64 6,076

Horns Rev, DK Offshore 50 525

Middelgrunden, DK Offshore 45 1,513

†This data was obtained from https://www.winddata.com/

F IGURE 1 Raw wind speed data over a 1-h duration, along with mean values and linear trend fits across each 10-min (600 s) bin. The low-
frequency trend obtained using low-pass filtering with a cutoff frequency of 1/600 Hz is also shown [Colour figure can be viewed at
wileyonlinelibrary.com]
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These aspects of performance are captured using the two performance metrics illustrated in Figure 2. The first is an ODT measure between

computed (co) and baseline (bl) distributions,

EODT pco,pblð Þ= ð

xMo

−∞

max pcoðxÞ−pblðxÞ,0ð Þdx, ð10Þ

where xMo is the value of x which corresponds to the mode (i.e., maximum) of the baseline distribution,p bl. EODT expresses the probability mass in

the computed distribution which lies to the left of the baseline, thus capturing the total quantity of over de-trending present. The second is the

Wasserstein or Earth-Movers Distance (EMD),6,7 which captures the probabilistic work done in transforming the original (or) distribution into the

de-trended (dt) distribution.

EEMD pdt,porð Þ= min
π2P pdt ,porð Þ ð

R×R

jx−x0jdπ, ð11Þ

for (x, x0)� π and where P pdt,porð Þ is the set of all joint probability distributions on R×R whose marginal distributions have densities pdt and por

in the first and second dimensions, respectively. EEMD is therefore a measure which describes the overall magnitude of de-trending taking place.

With respect to Figure 2B, the depicted infinitesimal area (Δweight) corresponds to dπ and the distance (d) to jx− x0j, with their product (ΔWork)

contributing to the overall integral of work done. Note that, throughout the paper, computed distributions are those generated by applying a given

moment de-trending method, baseline distributions are those obtained via linear or filtered de-trending on raw data and original refers to unaltered

TI distributions on raw data.

Together, the ODT and EMD measures allow for performance assessment of the type required in the current context, with successful de-

trending indicated by an EODT of acceptably low level, alongside a high value of EEMD. Importantly, any method resulting in EODT values above

what is deemed a reasonable level must necessarily be considered unsound, no matter how large its corresponding EEMD or how close this EMD

value is to that of the baseline distribution (de-trended using raw data) against which comparisons are being made. This latter consideration is

where the required asymmetry, regarding over and under de-trending, manifests.

3 | LARSEN AND HANSEN MOMENT DE-TRENDING MODELS

The moment de-trending methods developed in Larsen and Hansen1 will now be presented. These methods consist of two spline models, referred

to as Model 1 (M1) and Model 2 (M2), which look to fit fourth- and third-order polynomials, respectively, within each 10-min bin subject to a

range of continuity conditions. M1 fits to mean values alone, whereas M2 attempts to leverage variance information as well within the fitting pro-

cedure. In each case, the linear trend contribution to be subtracted in the ith bin takes the form

F IGURE 2 Graphical representations of performance measures used to capture (A) over-detrending and (B) probabilistic work done (Earth-
Movers distance) [Colour figure can be viewed at wileyonlinelibrary.com]
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T2

12
h2i , ð12Þ

where hi (different for each of M1 and M2) is the gradient of the straight line fit to the resulting polynomial in the ith bin—a linear function in fitted

polynomial coefficients. M2 makes direct use of hi terms when solving, and so is inherently tied to the linear de-trending case. M1 does not, and

so one has the choice as to whether to remove just the linear portion of trend, or the full variance of fitted polynomials.

Each model can theoretically be fitted simultaneously across an arbitrary number of bins, although it should be noted that M2 makes the

explicit assumption that the component of TI unrelated to the trend remains constant across the set of bins fitted to. In the original work,1 the

existence of a spectral energy gap,8 across time periods ranging from 10 min to over an hour, is invoked to select three bins (30 mins) as the num-

ber to perform fitting on simultaneously. For M2, where a common TI value is solved for and explicitly applied across all bins being fitted to, this

logic certainly holds. Indeed, testing on larger numbers of bins revealed a degradation in performance likely due to this consideration. For M1 and

the later developed GP approach however, such common parameters are not part of the fitting process, and hence, it was deemed possible to

increase the number of bins fitted up to six (1 h). This means that fitting is still performed across timescales associated with the spectral gap, but

in this case, more information is made available to the fitting procedure at one time. In practice, the application of M1 to three or six bins was

found to result in negligible differences. Results throughout the paper correspond to M1 (and GP) on six bins and M2 on three bins. The following

sections introduce M1 and M2 in detail, assuming the specified number of bins is fitted to in each case.

3.1 | Model 1

In M1, the trend component within each bin takes the form of a fourth-order polynomial,

piðtÞ= ait4 + bit3 + cit2 + dit+ ei , for t2 iT and i=0,…,5, ð13Þ

subject to the following conditions:

1
T ðt∗2iTpiðt∗Þdt∗ =MiT for i=0,…,5 ðfunction means must equal window meansÞ,

piðiTÞ−pi−1ðiTÞ = 0 for i=1,…,5 ðcontinuity at window intersectionsÞ,
p0iðiTÞ−p0i−1ðiTÞ = 0 for i=1,…,5 ðfirst derivative continuityÞ,
p00i ðiTÞ−p00i−1ðiTÞ = 0 for i=1,…,5 ðsecond derivative continuityÞ,
p000i ðiTÞ−p000i−1ðiTÞ = 0 for i=1,…,5 ðthird derivative continuityÞ,
p000ð0Þ = 0 ðboundary condition for system closureÞ,
p0000 ð0Þ = 0 },

p005ð6TÞ = 0 },

p0005 ð6TÞ = 0 }:

ð14Þ

Each of these can be resolved into a linear expression in the polynomial coefficients for each value of i. For example, the first conditions

become‡

1
5T

t5
� �ði+1ÞT

iT

	 

ai +

1
4T

t4
� �ði+1ÞT

iT

	 

bi +

1
3T

t3
� �ði+1ÞT

iT

	 

ci +

1
2T

t2
� �ði+1ÞT

iT

	 

di + ei =MiT , ð15Þ

for each i, and similarly, the fifth (third derivative) conditions become

24iTð Þai +6bi− 24iTð Þai−1−6bi−1 = 0, ð16Þ

for each i. Taken together, this constitutes a linear system of 30 equations and 30 unknowns—the polynomial coefficients across all bins being

fitted to. Hence, the system can be expressed in the form

Ac=b, ð17Þ

‡Note ½yðtÞ�t2t1 = yðt2Þ−yðt1Þ:
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with A populated by the coefficient multipliers in the system, c the polynomial coefficients for all values of i and b the system's right-hand side

values (bin means and zeros). The coefficients which solve this system are therefore

c=A−1b: ð18Þ

3.2 | Model 2

In M2, the trend component within each bin takes the form of a third-order polynomial,

piðtÞ= ait3 + bit2 + cit+ di, for t2 iT and i=0,1,2, ð19Þ

subject to the following conditions:

1
T ðt∗2iTpiðt∗Þdt∗ =MiT for i=0,1,2 ðfunction means must equal window meansÞ,

piðiTÞ−pi−1ðiTÞ =0 for i=1,2 ðcontinuity at window intersectionsÞ,
p0iðiTÞ−p0i−1ðiTÞ =0 for i=1,2 ðfirst derivative continuityÞ,
p00i ðiTÞ−p00i−1ðiTÞ =0 for i=1,2 ðsecond derivative continuityÞ,

ViT =Γ MiT

� �
+
T2

12
h2i for i =0,1,2 ðvariance components sum to measured varianceÞ,

p000ð0Þ =0 ðboundary conditionÞ,
p002ð3TÞ =0 }:

ð20Þ

Since the fifth condition contains an implicit (and nonlinear) term, iteration is required in order for solutions to be found. Based on consider-

ations of offshore and onshore conditions, the function Γ takes on a different form in each case. For onshore conditions, where surface roughness

is fixed,

Γ MiT

� �
=C2M2

iT , ð21Þ

with§

C =
0:99
3

X2
i=0

C−1ðai ,bi,ci ,diÞ+ 0:01
3

X2
i=0

C−2ðai,bi,ci,diÞ, ð22Þ

where subscripts −1 and −2 denote use of the most recent and second most recent estimates of the polynomial coefficients, respectively, across

the three bins from previous iterations and for ∗ = −1 or −2,

C∗ðai,bi,ci ,diÞ= 1
MiT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ViT−

T2

12
h2i ðai,bi,ci,diÞ

s
: ð23Þ

These values can be seen to be estimated from the fifth condition in Equation 20.

For offshore conditions, where surface roughness is related to wind speed,

Γ MiT

� �
= ð2:39Þ2 r +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 + r2

ph i1=3
+ r−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3 + r2

ph i1=3
+
4
3

	 
2

, ð24Þ

with

q= ln
kc
gz

	 
−1=3
 !

−
7
9
, ð25Þ

§This next expression averages the most recent C values across the windows while also performing a relaxation of the transition from previously estimated values.
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r = ln
kc
gz

	 
2=3
 !

+
κMiT

2
+
10
27

: ð26Þ

g is acceleration due to gravity, κ is the von Karman constant, z is the measuring altitude and kc is the Charnock constant. This last parameter

must be estimated, in a similar way to C in the onshore case, by again using previously estimated coefficients and relaxation within an iterative

scheme.

For both the onshore and offshore cases, given initial (or the most recent) estimated coefficient values, the implicit terms in the equation set

can be estimated, resulting again in a linear system of the form

Ac=b: ð27Þ

The number of coefficients versus equations this time results in an overdetermined system and so a ‘best-fit’ approximate solution for the

current iterate is found using the Moore-Penrose pseudo inverse, A+, giving

c=A+ b: ð28Þ

From here, the estimates of implicit terms can be updated, and the system again solved as above to determine an updated set of coefficient

solutions. This process is iterated in the hopes of converging to an overall solution. The recommended convergence criteria1 considers the magni-

tude of coefficient and parameter value changes between iterations and stops the process once this chosen metric falls below a critical value.

3.3 | Evaluating performance of the Larsen and Hansen models

M1 and M2 were used to de-trend wind site data, with results then compared to those obtained via raw data linear- and filter-based de-trending

approaches.

3.3.1 | Model 1 performance

M1 was found to behave very much as described in Larsen and Hansen.1 Figure 3 shows example results for Hanford and Sletringen, alongside

the original TI distributions and those resulting from the two types of raw data de-trending. Results for M1 from applying the linear de-trending

formula or removal of the full fitted trend variance show negligible differences in resulting distributions; Figure 3 shows linear de-trending formu-

lation results. Note that in this implementation, and those of the other methods in the current work, any de-trending which results in a negative

F IGURE 3 Moment de-trending using Model 1 for (A) Hanford and (B) Sletringen datasets. For comparison, the original distributions and
those obtained from linear- and filter-based de-trending using raw data are also shown [Colour figure can be viewed at wileyonlinelibrary.com]
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residual variance has its de-trended value instead set equal to zero (since variance cannot be negative). In such cases, the method has indicated it

believes all measured variance is due to the trend component. Negative values occur rarely and generally over portions of wind speed data in

which signal variance is exceedingly low, with negative values essentially indicating over-fitting (and hence over de-trending) on the part of the

method, although over-fitting can also occur without resulting in negative values. Increases in probability density at zero TI, seen in M1 and GP

results, are mostly driven by this handling of negative values since all such cases become concentrated at the origin.

M1 can be seen to manage some amount of de-trending while avoiding any significant tendency to over de-trend (the visible areas where this

occurs accounting for no more than 3% of the overall distribution). In Section 5, where comprehensive results are presented for both M1 and the

GP method together, it will be shown that these observations hold in general.

3.3.2 | The viability of M2

In Larsen and Hansen,1 the terms within the vector b of Equation 28 which implicitly rely on the coefficient values being solved for are shown to

be Γi and sign(hi) for i=0,1,2 . For the sake of clarity, the following analysis proceeds considering the onshore equations, although it can be

seen that the offshore case will follow along identical lines. Hence, in this setting, it is C, constant across the three bins, and sign(hi) for i=0,1,2

(collectively denoted by sign(h)) which together form the implicit terms in b. At this stage, it is important to note the complexity of the problem at

hand. With no exact solution available (due to having an over-determined system) and the presence of one continuous variable (C) and a set of

eight possible sign combinations (signðhiÞ= �1 for i=0,1,2), finding a best-fit solution corresponds to determining the global minimum of the

following error,

Ac−bðcÞj jj j2, ð29Þ

as a function of C and sign(h), since, c=A+ bðC, signðhÞÞ. Note the deliberate difference in the independent variables attributed to b in this latter

expression compared to Equation 29. This is due to the fact that once a possible vector of coefficients has been solved for using given values of

C and sign(h), the correct b vector against which to test error is necessarily the one formed from the newly generated coefficients.

In the original paper, the presented iterative method is used as a route to try and find a best-fit solution, with each subsequent estimate of

polynomial coefficients used to determine the C and sign(h) values of the next iterate, and with convergence assumed to indicate success in locat-

ing such a solution. However, viewing the problem as described above, it should be clear there is significant complexity in this cost function, with

a continuous range of possible C values coupled to eight possible sign(h) combinations. It therefore seems prudent to ask whether local, as well as

a global, minima might be present and whether the iterative scheme is adversely effected by this. This question was investigated by implementing

M2 in two different ways. Firstly, an iterative scheme identical to that presented in Larsen and Hansen1 was used to de-trend site data. Secondly,

for these same sites, a more computationally expensive global optimisation was performed whereby coefficients were solved for across 100 values

of C between 0 and the maximum TI (this being what C represents) over the three bins considered in each window, and with each of the eight

possible combinations of sign(h) values. The error was calculated for each resulting vector of coefficients, as per Equation 29, with the coefficient

vector corresponding to minimum overall error taken to be the global best-fit solution. Example TI distributions resulting from the iterative- and

optimisation-based approaches to M2 moment de-trending are shown in Figure 4, along with the original distributions and those obtained from

linear- and filter-based de-trending using raw data for comparison. It was found that the iterative approach behaved as described in the original

paper, with the resulting de-trended distributions generally providing a reasonable fit to distributions obtained from linear de-trending using raw

data. The optimisation approach on the other hand leads to very different results, with distributions clearly over de-trended when compared to

both linear- and filter-based de-trending using raw data. The characteristics of the cost function for which these methods are looking to identify a

minimum was therefore considered in more detail in order to understand this discrepancy. Figure 5 shows this cost function for two example win-

dows across the explored range in C, and for each possible combination of sign(h) values, the final value of C reached via iteration is also indicated.

Note that in the optimisation implementation, only physically meaningful solutions are considered as viable,¶ this being why some lines end pre-

maturely in the figure. These two examples are typical of what is seen throughout the application of these methods to wind site data. It can be

seen that these are indeed highly complex cost functions, with large numbers of local minima. Furthermore, the iterative method has in both cases

converged to a local rather than global minimum, with the convergence also being within a sub-optimal sign(h) combination in sub-figure (b). In

the vast majority of observed cases, the value of C corresponding to the global minimum is found to lie to the left of that reached via the iterative

implementation. Considering condition 5 of Equation 20, it follows that the value of C being smaller necessarily implies a larger variance contribu-

tion attributed to the trend, and so a greater magnitude of de-trending when this contribution is removed. This aligns with the TI distribution

results, with significantly more de-trending taking place under the optimisation approach. Figure 6 shows the ODT and EMD results

corresponding to the distributions in Figure 4 which further corroborate the observations made thus far. Whereas the over-detrending as

¶Some solutions can result in a trend contribution which contains more variance than the original measurement, which is clearly not physically possible.
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F IGURE 4 Moment de-trending using iterative- and optimisation-based approaches to Model 2 from Larsen and Hansen1 for (A) Hanford ,
(B) Sletringen, (C) Orkney, and (D) Toboel datasets. For comparison, the original distributions and those obtained from linear- and filter-based de-
trending using raw data are also shown [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 5 Cost function examples across the explored ranges in C, and for each possible combination of sign(h) values, the final value of C
reached via iteration is also indicated [Colour figure can be viewed at wileyonlinelibrary.com]
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measured for iterative M2 remains close to zero, reaching around 10% for only a single site, the true best-fit solutions (obtained via optimisation)

instead have ODT values ranging from 10% to 40%. With respect to EMD values, the true best-fit solutions to the M2 equation system obtained

from optimisation can be seen to result in a much greater amount of work done than for all other methods in general. Taken together, while bear-

ing in mind the performance requirements discussed in Section 2.4, the above analyses and presented results necessarily lead to the following

two conclusions:

1. The iterative approach cannot reliably locate the best fit solution to the equation system due to the presence of multiple local minima in the

underlying cost function.

2. The application of M2 such that global best fit solutions are located (via optimisation) leads to significant over de-trending of TI distributions

to a degree which implies this method should no longer be used for this purpose.

Put simply, the equation system for M2 results in over-fitting. One might be tempted to argue that the iterative approach to M2 can still be

used, despite its flaws, since it has been found to produce reasonable results in practice. However, such an approach is clearly contradictory since

it would rely on knowingly using sub-optimal solutions to the equation system. In addition, the cost function itself will vary between sites, and

hence, in some cases, the iterative method may converge consistently to the true global solution and so exhibit the same significant over

de-trending tendencies of the optimisation based solutions. Therefore, with respect to both principle and practice, neither implementation of M2

can be considered suitable for de-trending site data. As such, M2 will no longer be used in the current paper.

3.3.3 | Discussion

Having determined that M2 is no longer a viable method for moment based de-trending, M1 necessarily becomes the most attractive existing

approach. However, M1 has been shown to behave somewhat conservatively,1 leaving open the possibility that other methods might be

developed which better recreate the raw data de-trended distributions when fitting to moment values. In this context, there are two important

considerations which should be kept at the fore-front of such discussions:

1. Having taken raw data and processed it into its first two statistical moments only, almost all of the underlying information has been lost. As

such, it is not immediately clear how close one should expect to be able to come to recreating distributions generated using the full informa-

tion present in raw data. Indeed, M1 may already be maximising the potential for de-trending on the considered moment data.

2. Along these same lines, and as touched upon in Section 1, fitting methods have associated with them given levels of smoothing which, in the

case of splines, is related to the degree of constituent polynomials. The choice of degree is often linked to the need for a solvable system of

equations, rather than the characteristics of the function being recreated. Therefore, it is relevant to ask whether the degree chosen in M1 is

optimal for the given task and, for any newly developed method, what an appropriate level of smoothing is to best identify the available

information in moment data, limited though it may be.

F IGURE 6 Performance results in the form of over de-trending (ODT) and earth-movers distance (EMD) measures for Model 2 in subplots
(A) and (B), respectively. Results are shown for both iterative- and optimisation-based implementations [Colour figure can be viewed at
wileyonlinelibrary.com]
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The following GP implementation is developed with these points in mind, in particular, with a view to providing a principled approach to

determining the correct amount of smoothing to apply, and comparing results with those of M1.

4 | A GP REGRESSION APPROACH

GPs have been studied as a regression technique since the early 90s. Initially discovered as being a limiting case of some types of neural networks,

as the number of hidden layers becomes infinite,9 they have since been shown to be a flexible and robust regression technique and have been

applied to many different tasks,10 including in the wind energy context.11,12

GP regression is a probabilistic technique for fitting a function to measured data. The set of measured values is assumed to have been pro-

duced by a function drawn from a GP prior distribution, potentially with additive noise present. The measured data itself are generally used to

determine the parameters which define the prior, and noise variance, in a maximum likelihood procedure. This gives a multivariate Gaussian distri-

bution between noisy measurements and underlying function values over any set of input points. Conditioning on measured values results in a

posterior GP, from which the mean values at prediction points are interpreted as giving a best fit to the data, with standard deviations providing

confidence intervals about the best fit. The following section makes this procedure explicit.

4.1 | GP regression equations

Let measured data occurring at time, t, be denoted yt. It is assumed that the yt are composed of the true underlying function values, ft, corrupted

by zero mean additive and independent Gaussian noise, ωt. Therefore we have

yt = ft +ωt, ð30Þ

with ωt �Nð0,σ2ωÞ. The function values, ft, are assumed to have been drawn from a zero mean GP prior. Thus, in order to specify the prior covari-

ance of the ft, it is necessary to specify a covariance structure, k, such that

kðft1 , ft2 Þ=Eðft1 ft2 Þ: ð31Þ

It is standard practice to model the covariance of function outputs as being a function of their input values, kðft1 , ft2 Þ= kðt1,t2Þ . This makes

intuitive sense for continuous functions. The most common model for k is the squared-exponential covariance function,

kðt1,t2Þ= aexp −
1
2l
ðt1−t2Þ2

	 

, ð32Þ

where a and l are hyperparameters which determine the amplitude and lengthscale (smoothness) of the covariance function, respectively. It is

this covariance function on which the current work is based. As well as a and l, the noise variance σ2 is also represented by a hyperparameter,

ξ. Thus, while the general structure of the covariance model is specified, the parameters which populate it are generally learned from mea-

sured data.

Having specified a covariance function, covariance matrices can be formed for both measurement and prediction points. Covariance matrices

are defined as follows for any two specified vectors,

KZZ∗½ �ij = k ½Z�i, ½Z∗�j
� �

: ð33Þ

Note that all vectors are column vectors. Letting Z and Z∗ be vectors of function input values at measurement and prediction points, respec-

tively, the covariance matrices for prediction values and between measured and predicted values are then KZ∗Z∗, KZ∗Z and KZZ∗. The covariance

matrix for measured values, denoted Q, has an additional contribution from the independent Gaussian noise term,

Q=KZZ + ξΙ: ð34Þ

Determining the GP prior is normally achieved by performing a maximum likelihood optimisation with respect to the measured data, YZ, in

order to find the most likely values for hyperparameters a, l, and ξ given the observed data. In the current case however, it will be shown that

hyperparameter values can be dealt with without needing to implement numerical procedures.
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Having determined a GP prior, predictions in the posterior are obtained via the multivariate Gaussian conditional distribution. For a given

vector of input points, Z∗, the mean vector and covariance matrix of function outputs in the posterior are

μZ∗ =KZ∗ZQ
−1YZ ð35Þ

and
ΣZ∗ =KZ∗Z∗ −KZ∗ZQ

−1KZZ∗ , ð36Þ

respectively. As previously stated, μZ∗ values are interpreted as being the best fit to the data at each point. Standard deviations, σZ∗, can be

obtained as the square roots of the diagonal terms in ΣZ∗ . Ninety-five percent confidence intervals are then given by μZ∗ �2σZ∗. The above

assumes that both f and YZ are zero mean; in practice, this requirement is achieved by subtracting the arithmetic mean of measured values from

the data prior to regression, with the same value then added back on after predictions are made.

4.2 | GP moment de-trending

The current section considers the application of GP regression to wind site turbulence de-trending. Some work is required in order for GP

regression to be applicable to the current problem. The most crucial task being to link the GP approach with the rigorous definition of a trend as

given in Section 1.

It is proposed that GP theory, and its inherent flexibility, be leveraged to allow for the relationship between mean and raw data values to be

properly accommodated within the model. This will allow a curve to be fitted, but in such a way that the composition of mean values and their

relationship to individual function values is properly accounted for. The possibility for the approach developed here was inspired by previous work

in GP theory which allows for regression models based on data not directly measuring the function being fitted. For example, it has been shown

that function measurements can be used to developed a GP regression model for predicting the derivative of that function.13 The key to doing

this being to properly capture data-function relationships through a careful consideration of covariance structure. More generally, a proper con-

sideration of covariance structure is known to play a key role in the effective application of these techniques.14

The same definitions and assumptions of Section 2.1, in particular the independence of g and s, are applied again here for the situation where

Equation 30 takes the form yt = gt + st. First, the covariance properties of mean values, MiT , and individual trend function values, gt, are considered.

Since underlying function values in the GP are assumed to be zero mean, it follows that so are the MiT (dealing with this in practice will be

described below). In addition, the s contribution is assumed to take the form of noise. Observe that under these conditions,

Var MiT ,MjT

� �
=E MiTMjT

� � ð37Þ

=
1

N2

X
t02iT

X
t∗2jT

kgðt0,t∗Þ+ δij ξN : ð38Þ

The above expression suggests a form of covariance function between measured mean values. In this case, it has been found that the ‘noise’
contributions to covariance, ξ/N in the above expression, are in fact negligible. This follows from the fact that the left-hand expression in

Equation 38 has been found to take values between 0.7 and 1 and that ξ values tend to lie between 0.5 and 1 for wind speed data. Given that

wind speed measurements tend to be made at 1 or 2 Hz frequencies (or higher), N is commonly equal to 600 or 1200 (assuming 10-min capture

windows, as is standard) and can be larger. Hence, the term ξ/N will generally be equal to 0.0017 or less, 2 orders of magnitude smaller than the

dominant covariance term. This observation makes intuitive sense, since taking an average will result in the higher frequency, more noise like,

signal contributions tending to zero. This allows for the latter term in Equation 38 to be ignored, reducing the number of hyperparameters

required in this case. The following mean values covariance function can therefore be defined as

kMði, jÞ= 1

N2

X
t02iT

X
t∗2jT

kgðt0 ,t∗Þ: ð39Þ

Similarly, and again using independence of g and s, one can derive the following covariance function between mean, MiT , and individual

function values at a given point in time, gt,

kgMðt, iÞ= 1
N

X
t02iT

kgðt,t0Þ: ð40Þ
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The predictive formula of Equation 35 can now be applied in the current case, with covariance matrices defined by the relevant covariance

functions to transfer information from measured mean values to function predictions at individual timesteps. Explicitly, let

M=

M1T

..

.

MmT

2
664

3
775, ð41Þ

then for a given time window, iT, the GP regression prediction for the vector of values taken by g in iT is

μg
iT =KgMK

−1
M M, ð42Þ

where the matrix KgM has entries given by kgM(t, i) for t2 iT and i2 {1, 2,… ,m} and KM has entries given by kM(i, j) for i, j 2 {1, 2,… ,m}. While the

noise hyperparameter has been removed, the amplitude and lengthscale hyperparameters are still present in the above expression. The removal

of the noise term, in fact, also allows for cancellation of the amplitude hyperparameter, since

KgM = aK̂gM, ð43Þ

KM = aK̂M, ð44Þ

with the K̂ matrices obtained by setting the amplitude equal to 1 in their constituent covariance terms. Re-examining Equation 42, it can be seen

that the amplitude values cancel, removing any dependency on a in the current case. Note that this is only possible here due to the averaging pro-

cess having removed the noise contribution normally present during GP regression. The GP predictions in this case are therefore obtained using

the following expression:

μg
iT = K̂gMK̂

−1

M M: ð45Þ

This formulation again assumes a zero mean GP, and so, as before, in practice, the arithmetic mean of the data (the values in M for the

current case) is first subtracted from M before the regression equation is applied—with this same value then added on again afterwards. Given

the removal of a and ξ hyperparameters, only the lengthscale l remains to be determined. It is shown in the following section how this can

be done.

4.2.1 | Determining the lengthscale hyperparameter

The squared-exponential covariance function, Equation 32, has the lengthscale hyperparameter, l, which determines how fast covariances decay

between output values as the input values move away from each other. Intuitively, one can see that large values of l correspond to functions

which vary slowly across the domain, and small values to those which vary quickly. The value of l therefore dictates the amount of smoothing pre-

sent when fitting predictions to measured data. For trend fitting, it is therefore necessary to set l such that it corresponds to a level of smoothing

appropriate to capture the Fourier modes present in the signal with period greater than or equal to the size of the capture window, T; this being

the definition of a trend in the current work.

The key to linking lengthscales and the trend definition turns out to be the more rigorous definition of lengthscale given by Adler,10,15

E½Nu�= 1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−k00ð0Þ
kð0Þ

s
exp −

u2

2kð0Þ
	 


: ð46Þ

Nu is the number of upcrossings of a level u on the unit interval, and k is the covariance function of the considered (zero mean) GP. l can be

isolated by inserting Equation 32 into Equation 46, setting u=0 and rearranging to obtain

l=
1

2πE½N0�
	 
2

: ð47Þ

14 HART ET AL.



In practice ,1-h duration filtered trends formed the basis for counting numbers of up-crossings, this being the longest duration over which

some level of stationarity in the wind field might be assumed to hold (see Section 3). For each 1-hr window, the mean value was subtracted and

up-crossings of zero counted. This was continued throughout a given time series and the mean number over an hour, E½Nð0,1hrÞ�, computed. From

this value, the lengthscale is determined as

l=
3600

2πE½Nð0,1hrÞ�
	 
2

, ð48Þ

which can be seen to be consistent with Equation 47 when one takes the unit interval stipulation of the definition into account. Note that the

numerator in Equation 48 is expressed in seconds to be consistent with the units of GP input variables (Equation 32). Hence, lengthscale values

can be systematically calculated across each of the sites for which raw data are available. This was therefore undertaken, with resulting values of

l lying between 3.8 × 104 and 9.7 × 104, with an average value of 7.7 × 104. From experience, lengthscale hyperparameters generally need to see

variations by an order of magnitude or more before any significant changes are discernible during regression. This was found to hold here also, as

shown in Figure 7 where GP predictions are plotted when using the moment de-trending methodology with min, max and mean lengthscale

values. Differences between predicted trends are minimal, with this same result found to hold in general, and hence, it can be concluded that the

GP fits are not highly sensitive to lengthscale values. The implication being that the mean value of 7.7 × 104 can be taken as a suitable lengthscale

value to encode the smoothness properties of real trend components (from where this value was derived), while also being applicable across the

range of sites. This generality is important since it implies the GP moment methodology can be applied at sites for which raw data are not

available by using this mean l value learned from existing raw data.

Thus, the prediction equation in the moment case (Equation 45) has been reduced to a deterministic linear transformation of measured mean

values, with no requirement for optimisation-based parameter setting and, crucially, with a quantity of smoothing known to be consistent with

wind site data trend components.

5 | RESULTS AND COMPARISONS

The GP and M1 moment de-trending methodologies were both run across all available sites listed inTable 1; six bins were fitted to simultaneously

in each case. Figure 8 shows a typical example of trends predicted by these two methods. It can be seen that the GP and M1 methods result in

almost identical fits across the majority of bins, with significant differences only apparent in a single bin. This was found to hold in general and

appears to be caused by the different ways these methods behave at endpoints. With respect to de-trending, these differences turn out to only

have a minor effect, as shown in the exampleTI distribution for Hanford and Sletringen shown in Figure 9.#

#In this case, the M1 distributions are those resulting from removing the full trend variance from measured values, rather than just the linear component. However, the differences between the

linear and full variance approaches to M1 are almost indistinguishable in the resulting distributions. This is clear when comparing the M1 results in Figures 3 and 9.

F IGURE 7 GP trend predictions from moment regression on mean values using the min, max and mean lengthscale hyperparameter values
learned from wind site data. Underlying raw data are also shown for comparison [Colour figure can be viewed at wileyonlinelibrary.com]
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It can be seen that the GP and M1 de-trended distributions are very similar, with M1 managing some small amount of de-trending above that

managed by the GP. However, M1 in these examples also displays an increased tendency to over de-trend as compared to the GP. The same pat-

tern is seen in general when considering the ODT and EMD measures across all sites, as shown in Figure 10. In all cases, the ODT measure for

M1 is larger than that of the GP but never increases much beyond 3% and hence does not represent a significant issue for the viability of either

method. With respect to EMD, it can be seen explicitly that the difference between linear or full variance de-trending with M1 is almost negligi-

ble. The observation that M1 carries out some small amount of de-trending beyond that of the GP is also clear, but, again, the differences are

slight. Both the GP and M1 approaches can be seen to have an EMD less than that of linear de-trending on raw data, which is in turn less than

that of filtered de-trending on raw data. Hence, both methods have been found to be conservative de-trending approaches overall which result in

very similar predicted distributions.

In both cases, the over de-trending present can be seen to occur towards the lowest values of TI. This issue can therefore be dealt with by

acknowledging this and simply applying a cutoff for post moment de-trended TI values within which the adjusted TIs are returned to their pre de-

trending values. Based on the ODT results here, it is recommended that all de-trended TI values falling within the first 5% (conservatively) of

probability mass for the original TI distribution are returned to their un-detrended values in order to minimise cases of over de-trending for both

M1 and GP implementations.

Assuming these over de-trending cases are handled as described above, there is little difference remaining between the M1 and GP moment

de-trending methods. Returning to the points raised in Section 3.3.3, the current results indicate that M1 is in fact behaving almost identically to

F IGURE 8 Time series regression examples for both M1 and GP moment de-trending across 1 h of mean data values. Underlying raw data
are also shown for comparison [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 9 Moment de-trending using the GP method and Model 1 for (A) Hanford and (B) Sletringen datasets. For comparison, the original
distributions and those obtained from linear- and filter-based de-trending using raw data are also shown [Colour figure can be viewed at
wileyonlinelibrary.com]
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a method which specifically takes account of information relating to the appropriate level of smoothing to apply when fitting to moment data in

order to identify trend components in wind site data. This can be interpreted as a validation of M1 overall and, in particular, of the order of

polynomials fitted within each bin. Additionally, it indicates that M1 may in fact be doing as well as is possible given the information being fitted

to in the current formulation of this problem, with the further implication that improved de-trending performance in the future may require

leveraging of additional information, as opposed to simply creating refined techniques which use this same information. The GP moment de-

trending methodology developed here has served the important function of allowing for characteristics of trend contributions in wind site data to

be taken into account when predicting variance contributions and, in doing so, has allowed for the possible levels of de-trending obtainable from

moment data, within the current problem formulation, to be considered. However, given this method has significant theoretical overheads as

compared to M1, coupled to the fact that its performance in terms of de-trending is almost the same as M1, leads to the conclusion that M1

should be recommended as the best method for practical de-trending of wind site data at this time, having been validated by the GP approach.

6 | CONCLUSIONS

This paper has considered the problem of retrospective de-trending of wind siteTI distributions using moment data only. Existing approaches, M1

and M2,1 were applied and analysed in detail. This analysis showed that M1 behaves as described in the literature but that M2 has fundamental

issues associated with it that make it necessary for this method to be abandoned as an approach to wind site turbulence de-trending. A GP regres-

sion approach to moment de-trending was then developed, which captures the smoothness associated with trend components in wind data via a

lengthscale hyperparameter within the covariance structure. From testing and comparisons across a range of sites, it was shown that the M1 and

GP methods result in very similar de-trended distributions, with only small instances of over de-trending towards low TI values. It was argued that

these cases can be avoided by returning all TIs within a given range of probability mass to their un-detrended values. Overall, the similarity in

performance between these two methods was interpreted as a validation of M1 and the quantity of smoothing it applies when fitting. Given the

theoretical overheads of the GP implementation, it is concluded that M1 should be recommended as the method of choice for moment-based

turbulence de-trending at this time.
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