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Abstract: Trypanosomiasis and leishmaniasis are a group of neglected parasitic diseases caused by
several species of parasites belonging to the family Trypansomatida. The present study investigated the
antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium,
which grows in the wetlands of Iraq. The phytochemical evaluation of the plant yielded two chalcones,
2′,4′-dimethoxy-6′-hydroxychalcone and 2′,5′-dimethoxy-4′,6′-dihydroxychalcone, and two flavanones,
5,7-dimethoxyflavanone and 5,8-dimethoxy-7-hydroxyflavanone. The chalcones showed a good an-
titrypanosomal and antileishmanial activity while the flavanones were inactive. The EC50 values
for 2′,4′-dimethoxy-6′-hydroxychalcone against Trypanosoma brucei brucei (0.5 µg/mL), T. congolense
(2.5 µg/mL), and Leishmania mexicana (5.2 µg/mL) indicated it was the most active of the compounds.
None of the compounds displayed any toxicity against a human cell line, even at 100 µg/mL, or cross-
resistance with first line clinical trypanocides, such as diamidines and melaminophenyl arsenicals. Taken
together, our study provides significant data in relation to the activity of chalcones and flavanones from
P. salicifolium against both parasites in vitro. Further future research is suggested in order to investigate
the mode of action of the extracted chalcones against the parasites.

Keywords: Polygonum salicifolium; chalcone; flavanone; Leishmania mexicana; Trypanosoma brucei brucei;
Trypanosoma congolense

1. Introduction

The marshes of Iraq are considered to be the largest ecosystem in the Middle East and
Western Eurasia [1]. More than one hundred species of aquatic and amphibious plants
have been recorded in this area. Ancient Mesopotamians used some of the plants for a
range of medicinal and culinary purposes. In modern Mesopotamia, Marsh Arabs also use
plants from the marshes for medicinal and healing purposes [1]. Polygonum salicifolium
is a common species found in the wetlands, and it is an important source of food in
the localities [2]. There is little information on the phytochemical constituents and the
potential biological activities of this plant. Previous studies on P. salicifolium indicated
flavonoid glycosides [3] and flavonol glycosides [4] as predominant constituents in the
aerial parts of the plant. These classes of compounds are well known for their antioxidant
effects [4]. Midiwo et al. [5] described the wide use of Polygonaceae as ethnobotanical
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treatments for a variety of wounds and ailments, including as anthelminthics. Specifically,
four Polygonum spp. were mentioned, with applications against ectoparasites and syphilis
among other uses [5,6]. Polygonum acuminatum Kunth has also been reported to possess
antimalarial properties [7]. Very recently, other antiparasite properties of Polygonum species
have been reported, including anthelminthic [8,9] and antiprotozoal activities, the latter
against an important parasite of fresh water fish, Ichthyophthirius multifiliis [10]. However,
Polygonum-derived antiparasitics have yet to be isolated and positively identified.

This report focusses on the isolation of phytochemicals from the aerial parts of
P. salicifolium, and their antiparasitic activities. Specifically, we tested compounds against
Trypanosoma brucei brucei, T. congolense, and Leishmania mexicana. The T. brucei subspecies
T. b. gambiense and T. b. rhodesiense are the etiological agents of human African trypanoso-
miasis [11], commonly known as sleeping sickness, whereas T. congolense is the most
important pathogen causing the important livestock disease, nagana, in Sub-Saharan
Africa [12]. L. mexicana is one of the parasites causing cutaneous leishmaniasis, a condition
that is highly prevalent throughout the Middle East [13], whereas visceral leishmaniasis
is also increasing around the Mediterranean Sea [14] and in Black Sea countries [15,16].
Drugs for these conditions are old and inadequate [17–19], and the current report is part
of our investigations into whether new medicines can be developed from local medicinal
plants [20–23] or propolis [24–26] as a sustainable solution for developing countries [27],
and to validate ethnopharmacological practice [21].

2. Results
2.1. Isolation and Identification of Compounds

The compound 2′,4′-dimethoxy-6′-hydroxychalcone (1) (Figure 1) was obtained as a
yellow solid (50 mg) from the combined column fractions 9–11 of the hexane extract. It was
purified by preparative thin layer chromatography (PTLC), using 30% EtOAc in hexane
as the mobile phase. On TLC (Rf = 0.48), the compound appeared as a yellow spot, but
under short UV, it appeared as a dark spot. However, the compound appeared as a brown
spot after spraying with p-anisaldehyde-sulfuric acid and heating. Its mass ion [M+H]+

observed at m/z 285.0, suggested a molecular formula of C17H16O4 (Supplementary
Materials Figure S1). The proton spectrum indicated the presence of seven aromatic
protons, which needed to be from two phenyl rings (Supplementary Materials Figure S2).
Based on integration and 1H-1H couplings in the COSY spectrum, one of the rings was
tetra and the other mono substituted (Supplementary Materials Figure S3). Protons H-3,
H-4, and H-5 on the mono-substituted ring appeared as a multiplets between δH 7.37
and 7.43 ppm (3H, m), while protons H-2 and H-6 appeared as a doublet at 7.62 (2H,
dd, J = 7.6, 1.8). The signals at 3.86 (3H, s) and 3.95 (3H, s) were assigned to 4′- and
2′-OCH3, respectively, while the one at δH 14.30 ppm was attributed to the H-bonded
or chelated 6′-OH. The meta-coupled aromatic protons at 6.14 (1H, d, J = 2.4) and 5.99
(1H, d, J = 2.4) were assigned to H-5′ and H-3′, respectively. Two trans-coupled olefinic
protons were observed at δH 7.91 (1H, d, J = 15.6, α-H) and 7.83 (1H, d, J = 15.6, β-H). The
carbon spectrum indicated the presence of 12 aromatic and two olefinic carbon signals
(Supplementary Materials Figure S4). The signal at δC 192.5 was attributed to the carbonyl
carbon of the chalcone, while the signals at 127.4 and 142.2 ppm were assigned to the α-
and β-olefinic carbons, respectively. The rest of the signals were for the aromatic ring
carbons. These assignments were further supported by the HMBC and HSQC spectra for
the compound (Supplementary Materials Figure S5 and S6). The hydroxyl proton showed
long range correlations (3J) to C-5′ and C-1′, and (2J) to C-6′. Hence, it must be attached at
C-6′. The methoxy group protons at δH 3.95 and 3.86 showed long range correlations to the
carbons at δC 162.4 (C-2′) and 166.1 (C-4′), respectively; hence, they must also be attached
to these carbons. The full chemical shift assignments are given in Supplementary Table S1.
It has been previously reported from Kava Plant (Piper methysticum) [28].
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Figure 1. Structures of the test compounds isolated from Polygonum salicifolium.

Compound 2, identified as 2′,5′-dimethoxy-4′,6′-dihydroxychalcone (Figure 1), was
also obtained as a yellow solid (40 mg) from the combined column fractions 33–37 of the hex-
ane extract. It was also purified by PTLC using 40% EtOAc in hexane as the mobile phase.
Compound 2 also appeared as a yellow spot on TLC (Rf = 0.53). Under short UV, it appeared
as a dark spot, which turned into a brown spot after spraying with p-anisaldehyde-sulfuric
acid, followed by heating. The positive mode HRLC-MS spectrum showed a molecular
ion [M+H]+ at m/z 301.1100 (Calc 301.1076, C17H17O5), suggesting a molecular formula of
C17H16O5 (Supplementary Materials Figure S7). The proton spectrum was similar to that
of compound 1, except for the presence of six aromatic protons (Supplementary Materials
Figure S8). The difference was due to an extra substitution in the A ring, as the mono-
substituted ring protons were still identical. Based on the integration and 1H-1H couplings
in the COSY spectrum, this was confirmed by the disappearance of the meta-coupled
protons in compound 1, now replaced by a proton singlet in compound 2 (Supplementary
Materials Figure S9). The two methoxy group signals appeared at δH 3.83 ppm (3H, s) and
3.86 ppm (3H, s), while the chelated 6′-OH was at 14.28 ppm. The aromatic singlet at δ
5.99 ppm (s) was assigned to H-3′. The trans-olefinic protons were also observed at δH
7.82 ppm (1H, d, J = 15.6, α-H) and 7.72 (1H, d, J = 15.6, β-H). The 13C spectrum of this
compound showed 17 signals identical to compound 1, but with one aromatic CH less and
replaced by a quaternary carbon signal at 128.4 ppm (Supplementary material Figure S10).
Long range correlations in the HMBC (Supplementary Materials Figure S11), indicated
the hydroxyl proton at δH 14.20 ppm showed correlations with C1′, C-6′, and C-5′, while
the methoxy protons at 3.83 and 3.86 showed correlations to C-2′ (δC 158.8) and C-5′ (δC
128.4), respectively. Using these long-range correlations and the HSQC (Supplementary
Materials Figure S12) spectrum, the complete chemical shift assignments (Table S2) were
made. Compound 2 was previously isolated from the leaves of P. limbatum [29,30].

Compound 3, identified as 5,7-dimethoxyflavanone (Figure 1), was obtained as a
yellow solid (15 mg) from the combined column fractions 70–76 of the hexane extract.
It was similarly purified by PTLC using 70% EtOAc in hexane as the mobile phase. On
TLC (Rf = 0.37), it appeared as a dark spot when visualized under short UV and as a
light blue under long UV. The spot of the compound turned yellow after spraying with p-
anisaldehyde-sulfuric acid reagent followed by heating. Its mass ion [M+H]+ was observed
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at m/z 285.1, suggesting a molecular formula of C17H16O4 (Supplementary Materials
Spectrum S13). The proton spectrum showed the presence of seven aromatic protons (Sup-
plementary Materials Spectrum S14), which was suggested to be from a flavanone nucleus.
Based on the integration and 1H-1H couplings (Supplementary Materials Figure S15) in
the COSY spectrum, the proton signal at δH 5.44 ppm (1H, dd, J = 13.1, 2.8) showed an ABX
spin system with the axial proton at δH 3.05 ppm (1H, dd, J = 16.5, 13.2) and the equatorial
one at δH 2.83 ppm (1H- dd, J =16.5, 2.8). Protons H-2′, H-3′, H-4′, H-5′, and H-6′ on the
mono-substituted B ring appeared as a multiplet, between δH 7.37 and 7.45 ppm (5H, m).
The meta-coupled aromatic protons at δH 6.13 ppm (1H, d, J = 2.3) and 6.19 ppm (1H, d,
J = 2.3) were assigned to H-6 and H-8, respectively. The signals at δ 3.85 ppm (3H, s) and
3.98 ppm (3H, s) were assigned to C-7 and C-5-OCH3, respectively. The 13C spectrum of
this compound (Supplementary Materials Figure S16) showed the presence of 17 carbon
atoms, corresponding to carbon atoms of the flavanone moiety and two methoxy groups.
The methoxy group protons at δH 3.85 and 3.98 ppm showed long range correlations to
the carbons at δc at 166.0 (C-7) and 162.3 (C-5), respectively (Supplementary Materials
Figure S17 and S18); hence, they must also be attached to these carbons. These assign-
ments were further supported by the HMBC spectrum for the compound, and the full
chemical shift assignments are given in Table S3. Compound 3 was also isolated from Kava
(Piper methysticum) roots [31].

Compound 4, identified as 5,8-dimethoxy-7-hydroxyflavanone (Figure 1), was ob-
tained as a white solid (10.0 mg) from the PTLC purification of fractions 90-97 of the hexane
extract of P. salicifolium, using 10% (v/v) MeOH in EtOAc as the mobile phase. On the TLC
(Rf = 0.32 in EtOAc: hexane 7:3), it appeared as a dark spot under short UV and a white
spot under long UV, which turned yellow upon spraying with p-anisaldehyde-sulfuric
acid reagent followed by heating. Its mass ion [M+H]+ at m/z 301.2 supported a molecular
formula of C17H16O5 (Supplementary Materials Figure S19). The proton spectrum was
similar to that of compound 3, but showed six aromatic protons (Supplementary Materials
Figure S20). The difference was due to an extra substitution in the A ring, whereas the
mono-substituted ring protons were still identical. This was confirmed by the disappear-
ance of the meta-coupled protons in compound 3, now replaced by a proton singlet in
compound 4. The proton signal at δH 5.45 ppm (1H, dd, J = 12.9, 3.0) also showed an ABX
spin system with the axial proton at δH 3.0 ppm (1H, dd, J = 16.6, 13.0) and the equatorial
one at δH 2.83 ppm (1H, dd, J = 16.6, 3.1; Supplementary Materials Figure S21). The two
methoxy groups appeared at δH 3.86 and 3.85 ppm. The appearance of the proton at
δH 6.19 ppm as a singlet (1H, s), and the long-range coupling with a hydroxyl bearing
carbon (C-7) and with the carbon bearing a methoxy group (C-5) confirmed the penta
substitution of the A ring. The signals between δH 7.35 and 7.47 ppm (5H, m) were at-
tributed to the five protons of the unsubstituted B ring. The signals at δH 3.85 ppm (3H,
s) and 3.86 ppm (3H s,) were assigned to the C-5 and C-8-OCH3 groups, respectively.
The 13C spectrum of the compound (Supplementary Materials Spectrum S22) showed the
presence of 17 signals, corresponding to carbon atoms of the flavanone structure and two
methoxy groups. Using the HMBC and HSQC spectra for the compound (Supplementary
Materials Figures S23 and S24), complete chemical shift assignments (Table S4) were made.
Compound 4 was previously isolated from the aerial parts of Polygonum senegalensis [5].

2.2. Anti-Kinetoplastid and Cytotoxic Activity of the Isolated Compounds

The four compounds were tested for activity against the following three kinetoplastid
pathogens: Trypanosoma brucei brucei, Trypanosoma congolense, and Leishmania mexicana. For
the two Trypanosoma species, the compounds were tested in parallel against strains that
were resistant to the most common trypanocides. T. b. brucei B48 is highly resistant to the
entire classes of diamidines and melaminophenyl arsenicals [28], and T. congolense DA-Res
was rendered resistant to diminazene aceturate by means of in vitro exposure to the drug.
The highest activity was observed against T. b. brucei, followed by T. congolense, but only
a moderate activity was observed against L. mexicana (Table 1). For the drug-resistant
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trypanosome strains, highly significant resistance to diamidines was confirmed, but there
was no cross-resistance with the chalcones and flavanones. None of the four compounds
displayed measurable toxicity against the human foreskin fibroblast (HFF) cell line at
the highest concentration tested (100 µg/mL; Table 1). Compound 1 was the most active
against all kinetoplastid species and strains, displaying a promising EC50 of 0.58 µg/mL
(2.04 µM) against T. b. brucei in our standard resazurin-based assay. Chalcone 2 was the
second-most active, showing about 8-fold, 4-fold, and 5-fold less activity against T. b. brucei,
T. congolense, and L. mexicana, respectively (Table 1). While this dataset of two chalcones
is self-evidently insufficient for a structure–activity relationship (SAR) analysis, it is clear
that the position of the hydroxy and methoxy groups on ring A (Figure 1) influenced the
trypanocidal activity without increasing the toxicity.

Table 1. Anti-kinetoplastid effects of the tested chalcones and flavanones.

T. b. brucei EC50
(µM)

T. congolense EC50
(µM)

L. mexicana
EC50 (µM) HFF

Compound MW 427-WT B48 IL3000-WT DA-Res WT EC50 (µM) SI (Tbb)

1 284.3 2.04 ± 0.07 1.80 ± 011 8.8 ± 0.39 8.8 ± 0.28 18.2 ± 1.0 >350 >172

2 300.3 14.6 ± 0.80 13.9 ± 0.60 34.0 ± 1.2 28.6 ± 1.4 * 83.6 ± 0.7 >330 >22.8

3 284.3 30.1 ± 0.95 30.3 ± 1.1 137 ± 10 106 ± 15 271 ± 31 >350 >11.7

4 300.3 55.3 ± 1.6 51.9 ± 1.6 63.3 ± 7.9 48.0 ± 6.2 338 ± 9 >330 >6.0

Diminazene 0.15 ± 0.01 2.4 ± 0.36 ** 0.15 ± 0.01 1.43 ± 0.03 *** ND ND –

Pentamidine 0.0034 ± 0.0004 0.72 ± 0.03 *** 0.72 ± 0.07 ND 0.56 ± 0.07 ND –

PAO ND ND ND ND ND 1.31 ± 0.08 –

All of the data listed are the average and standard error of the mean (SEM) of at least three independent determinations. PAO—phenylarsine
oxide; ND—not done. Statistical significance was determined using an unpaired Student’s t-test; * p < 0.05; ** p < 0.01; ***, p < 0.001.
Selectivity index (SI) = EC50(HFF)/EC50(Tbb).

3. Discussion

Leishmaniasis and trypanosomiasis are a heterogeneous group of neglected parasitic
diseases of public health concern [29]. These diseases remain endemic in several countries
worldwide [29–31]. The search for novel drugs remains one of the major control strategies
for combating these diseases [32], as safe and effective treatment of the various forms of
leishmaniasis and trypanosomiasis remains a major challenge [19,32]. The present study
provides data related to the investigation into the effect of P. salicifolium chalcones and
flavanones against Trypanosoma species and Leishmania promastigotes. This work also
investigated the effect of compounds against a human cell line and cross-resistance with
first line clinical trypanocides such as diamidines and melaminophenyl arsenicals. The
phytochemical investigation of the hexane extract of P. salicifolium led to the isolation of
two chalcones—compound (1), and compound (2)—and two flavanones—compound (3)
and compound (4). This is an initial report of their isolation from Polygonum salicifolium.

The anti-kinetoplastid activities of the compounds isolated from P. salicifolium indicate
that flavanones 3 and 4 displayed a moderate activity against Trypanosoma species, and
their activity against Leishmania promastigotes was poor. However, chalcone 1 displayed
a promising activity against T. b. brucei at ~2 µM, as well as a moderate activity against
T. congolense and a reasonable activity against L. mexicana. No cross-resistance with the
current trypanocides was observed, which is very important, as resistance to the old
anti-kinetoplastid drugs is a key driver of the need for new treatments [11,12,18]. The
consistently lower anti-protozoal activity of chalcone 2 suggests that a systematic investi-
gation of the structure–activity relationship of chalcones, including substitutions on the
chalcone rings, could yield compounds with substantially improved efficacy against para-
sites. Importantly, neither of the chalcones showed toxicity against the human cell line HFF
at 100 µg/mL, and the in vitro selectivity index of 1 was >172. An important advantage of
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the chalcones over the flavanones is that their synthesis, and thus SAR, should be more
accessible than that of most natural compounds because of the lack of chiral centers [33].

4. Materials and Methods
4.1. General Experimental Procedures

The 1H and 13C NMR spectra were run on a Bruker AVANCE III 500 MHz spectropho-
tometer, operating at 500 MHz (1H) and 125 MHz (13C), respectively, using CDCl3 as
the solvent and TMS as the internal standard. The mass spectra were recorded using a
Thermo LTQ Orbitrap, while the exact masses were determined using a Thermo Exactive
Orbitrap mass spectrometer. Column chromatographic separations were performed in
glass columns using silica gel MN-60 (Macherey-Nagel GmbH, KG, Düren, Germany). TLC
and PTLC were carried out using pre-coated silica gel 60 Aluminium sheets (Merck Chemi-
cals, Bedfont Lakes Business Park Feltham, U.K.). The spots on the TLC were visualized
using an anisaldehyde-H2SO4 reagent. Solvents, hexane, ethyl acetate, and methanol were
purchased from Sigma-Aldrich, U.K.

4.2. Collection of Plant Material

The plant P. salicifolium Brouss ex Wild was collected from the banks of the River Tigris
in Southern Iraq in April 2015, and was identified and deposited at the College of Science,
University of Diyala by Assist. Prof. Dr Khazal Dh. Wadi Al-Jibouri.

4.3. Preparation of Extracts

The aerial parts of the plant were dried and finely powdered with an IKA grinder (IKA
Werke GmbH and Co. KG, Staufen im Breisgau, Germany). The ground material (50 g)
was extracted (500 mL, 72 h each) with hexane, ethyl acetate (EtOAc), and then methanol
(MeOH) using a Soxhlet apparatus. The extracts were then filtered and dried at 40 ◦C using
a rotary evaporator (Büchi, Flawil, Switzerland).

4.4. Isolation and Identification of Compounds

The hexane extract (1 g; 2% yield) was subjected to silica gel column chromatogra-
phy eluting gradient wise with hexane, followed by increasing amounts (10–90% v/v)
of EtOAc in hexane and then EtOAc (100%). A total of 150 fractions (5 mL each) were
collected and, based on TLC results, similar fractions were combined. Further purification
of the compounds was carried out using preparative thin layer chromatography (PTLC)
with 30–70% (v/v) EtOAc in hexane and 10% (v/v) MeOH in EtOAc. The characteriza-
tion of the compounds was carried out using NMR (1D and 2D) on a Bruker AVIII HD
500 spectrophotometer using 5–20 mg samples dissolved in chloroform-d. The ethyl acetate
and methanol extracts did not yield any significant results in the preliminary assays and
spectroscopic analysis, and were thus not purified any further.

4.5. Parasites and Cultures

T. b. brucei strain Lister 427 (427-WT) was used as the standard drug-sensitive (wild-
type; WT) laboratory strain [34]. This strain was previously adapted for multi-drug
resistance by deletion of the TbAT1/P2 drug transporter [35], subsequently followed by
in vitro exposure to increasing concentrations of pentamidine [28]. For T. congolense, the
culture-adapted Savannah strain IL3000 was used [22], as well as a clonal line, 6C3, adapted
from IL3000 in vitro to diminazene aceturate (Sigma), leading to a ~10-fold resistance. All
Trypanosoma strains were cultured and used as bloodstream forms; T. b. brucei in a full
HMI-9 medium supplemented with 10% Foetal Bovine Serum (FBS) [27] and T. congolense
in TC-BSF1 medium with 20% goat serum at 34 ◦C, as described by Coustou et al. [36].
The promastigotes of L. mexicana strain MNY/BZ/62/M379 were cultured at 25 ◦C in a
minimal essential medium, HO-MEMO-MEME, supplemented with 10% FBS and 1% of a
penicillin/streptomycin solution (Gibco), as described previously [37,38].
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4.6. Anti-Protozoal Drug Testing

The anti-trypanosomal activity of the compounds was tested using the Alamar Blue
(resazurin) assay in plastic 96-well plates, as described [39]. The assay was based on
the reduction of blue, non-fluorescent resazurin sodium salt (Sigma) by live, but not by
dead cells, to the red fluorescent metabolite resorufin [40]. Briefly, dilutions of the test
compounds and control drugs were distributed in the first wells of the respective plate
rows, and doubling dilution was carried out over two rows in the appropriate medium
for T. b. brucei or T. congolense, leaving the last rows as the drug-free negative control (i.e.,
23 doubling dilutions). Then, 105 trypanosomes were added to each well, followed by
incubation of the plates at 37 ◦C/5% CO2 (T. b. brucei) or 34.5 ◦C/5% CO2 (T. congolense)
for 48 h before the addition of the resazurin dye (20 µL of 125 mg/L), and a further
incubation under the same conditions for 24 h. The T. congolense IL3000 WT and the
diminazene resistant T. congolense IL3000 DA-Res (previously adapted to diminazene;
clone 6C3) were utilized. Fluorescence was measured using a FLUOstar Optima plate
reader at excitation and emission wavelengths of 544 nm and 590 nm, respectively, and the
EC50 of the compounds was then calculated using GraphPad Prism 5, using an equation
for a sigmoid curve with a variable slope. The assay for L. mexicana promastigotes was
performed as for T. b. brucei [41], except that incubation times of 72 h and 48 h were used
before and after the addition of resazurin, respectively, because of the slower metabolism
of the dye by Leishmania promastigotes [40].

4.7. Drug Toxicity Assay

Toxicity of drugs to mammalian cells was carried out in the human cell line HFF,
using a previously described method [41], with slight modifications. Briefly, HFF cells
were grown in a medium consisting of 500 mL Dulbecco’s Modified Eagle’s Medium
(DMEM; Sigma), 50 mL new-born calf serum (NBCS; Gibco, Cleveland, TN, USA), 5 mL
penicillin/streptomycin (Gibco), and 5 mL L-Glutamax (200 mM, Gibco), at 37 ◦C/5%
CO2 up to ~80% confluence in vented flasks. For the assay, 100 µL of the cell suspension
(3 × 105 cells/mL) was added to each well of a 96-well plate. The plate was incubated
at 37 ◦C/5% CO2 for 24 h to allow for cell adhesion, after which 100 µL of a serial drug
dilution was added (prepared in a separate sterile plate). Phenylarsine oxide (PAO; Sigma)
was used as the positive control. The cells were then incubated for a further 30 h before the
addition of 10 µL of 125 mg/L resazurin solution, and underwent a final incubation for
24 h. Fluorescence measurements and data analysis were performed, as described above.
The selectivity index was calculated as EC50 (HFF)/EC50(427-WT).

5. Conclusions

The present data showed that chalcones exhibited interesting activity against T. b. brucei;
T. congolense; and, to a lesser extent, L. mexicana, and provide further evidence for the poten-
tial uses of natural plant extracts for combating these global parasitic diseases. Future work
should concentrate on exploring the SAR of anti-protozoal chalcones and identifying their
cellular targets. In addition, future research should test for the potential activity of P. salici-
folium extracts against different protozoan species of medical and veterinary importance.
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