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SUMMARY 
 
To enable Condition-Based maintenance, sensors need to be installed, and thus Internet of Ships (IoS) needs to be 
implemented. IoS presents several challenges, an example of which is the imputation of missing values. A data 
assessment imputation framework that is utilised to assess the accuracy of any imputation model is presented. To 
complement this study, a real-time imputation tool is proposed based on an open-source stack. A case study on a total of 
4 machinery systems parameters obtained from sensors installed on a cargo vessel is presented to highlight the 
implementation of this framework. The multivariate imputation technique is performed by applying Kernel Ridge 
Regression (KRR). As the explanatory variables may also contain missing values, GA-ARIMA is utilised as the 
univariate imputation technique. The case study results demonstrate the applicability of the suggested framework in the 
case of marine machinery systems. 
 
Keywords – data imputation, machine learning, marine machinery systems, condition-based maintenance (CBM), data 
monitoring, imputation assessment. 
 
 
NOMENCLATURE 
 
AdaBoost Adaptive Boosting 
ARIMA Autoregressive Integrated Moving 

Average 
CBM  Condition-Based Maintenance 
DAIF Data Assessment Imputation 

Framework 
DTR Decision Tree Regression 
EWMA Exponentially Weighted Moving 

Average 
GA Genetic Algorithm 
k-NN k-Nearest Neighbors 
KRR Kernel Ridge Regression 
MAR Missing at Random 
MCAR Missing Completely at Random 
MedAE Median Absolute Error 
MICE Multiple Imputation by Chained 

Equations 
MNAR Missing Not at Random 
MSE Mean Squared Error 
MSLE Mean Squared Log Error 
NN Neural Network 
OEM Original Equipment Manufacturers 
PLS Partial Least Squares 
RBF Radial Basis Function 
RMSE Root Mean Square Error 
STL Seasonal and Trend decomposition 

using Loess 
SVR Support Vector Regression 
VAR Vector autoregression 
 
1. INTRODUCTION 
 
In 2019 alone a total of 2904 casualties and 49 fatalities 
occurred in relation to maritime transportation. Of all the 
causes of accidents to ships, 14% refers to damage to 
ship equipment [1]. Between 75% and 96% of marine 
accidents are the result of human error [2]. In 

consideration of climate change concerns, CO2 emissions 
are expected to increase between 50% and 250% by 2050 
if no measure is implemented [3]. Hence, there is no 
doubt whatsoever about the improvement threshold that 
can be implemented within the maritime industry. 
 
In relation to maintenance, the maritime industry is 
currently considering state-of-the-art maintenance and 
inspection processes, an example of which is Condition-
Based Maintenance (CBM). This is a strategy hinged on 
the condition monitoring of the asssets [4][5][6][7][8]. 
To enable this strategy, sensors need to be installed, and 
thus Internet of Ships (IoS) needs to be implemented. IoS 
presents several challenges, an example of which is the 
imputation of missing values [9][10][11]. 
 
Data imputation is a compelling pre-processing step, the 
aim of which is the estimation of identified missing 
values to avoid under-utilisation of data. Hence, if 
missing values are not tackled, the results obtained from 
applying data analysis may be unreliable and inaccurate, 
which could lead to bias in further steps due to the 
utilisation of poor models implemented in decision-
making processes [12]. 
 
Although there are more than 10,000 publications about 
data imputation in Scopus database, only two 
publications refer to the maritime industry. This indicates 
a lack of analysis and formalisation of data imputation in 
this industrial sector. For this reason, a Data Assessment 
Imputation Framework (DAIF) is developed to assess the 
accuracy of any imputation model. Thus, the selection of 
the imputation approach is not biased by human 
decisions and its selection is purely objective based on 
the characteristics and contexts of the data. 
 
In addition, a real-time imputation tool is presented based 
on an open-source stack, so that any organisation can 
implement this framework to monitor sensor data, and 



 

 

thus prevent sensor failure. The application of both the 
DAIF and the real-time imputation tool is highlighted 
through a case study, in which missing values from the 
main engine power parameter are imputed. 
 
The following paragraphs are structured as follows. 
Section 2 presents data imputation studies performed 
within the maritime industry. Section 3 describes the 
proposed methodology. Section 4 reflects on the result 
obtained after implementing the proposed methodology 
through a case study. Lastly, in Section 5 the conclusions 
are presented. 
 
2. LITERATURE REVIEW 
 
A total of two articles were identified from Clarivate 
Analytics Web of Science and Scopus. [14] presented a 
hybrid imputation method by combining k-Nearest 
Neighbors (k-NN) and Multiple Imputation by Chained 
Equations (MICE) models. A total of three metrics 
(Absolute Percentage Error (APE), Mean Absolute 
Percentage Error (MAPE), and the standard deviation of 
the error) were estimated to compare the proposed 
framework with k-NN and MICE algorithms. A case 
study based on the imputation of missing values from 
time-series data collected from a total of 8 sensors 
coupled to the turbocharger and to the main engine of a 
chemical tanker was implemented to demonstrate that the 
proposed methodology outperforms k-NN and MICE 
methods. 
 
[13] performed a comparative study that examined a total 
of 20 widely implemented machine learning and time 
series forecasting algorithms (mean imputation, Seasonal 
and Trend using Loess (STL) decomposition, exponential 
smoothing, Autoregressive Integrated Moving Average 
(ARIMA) models, linear regression models (Partial Least 
Squares (PLS) regression, Least Absolute Shrinkage and 
Selection Operator (LASSO) regression, Ridge 
regression, and ElasticNet regression, k-NN, Support 
Vector Regression (SVR) with linear and Radial Basis 
Function (RBF) kernels, Neural Networks (NNs) with 1, 
2, and 3 hidden layers, Vector autoregression (VAR), 
Decision Tree Regression (DTR), and ensemble methods 
(bagged trees with SVR, bagged trees with k-NN, 
random forests, and Adaptive Boosting (AdaBoost)). A 
case study was also implemented on a total of 7 
machinery parameters obtained from sensors installed on 
a cargo vessel to assess their performance. It was 
concluded that ARIMA outperformed the remaining 
models. 
 
Although both articles presented new methodologies to 
impute missing values from sensor data of marine 
machinery, there are yet several challenges to be tackled 
within the maritime industry. An example of which is the 
development of a generic framework to assess the 
performance of any imputation model, novelty that is 
introduced in this paper. A list of the novelties presented 

in this paper in relation to data imputation in the 
maritime industry is described hereunder. 
 

• The development of a data assessment 
imputation framework to evaluate the accuracy 
of any imputation model. 

• The implementation of Exponentially Weighted 
Moving Average (EWMA) as a denoising 
method in the pre-processing step to enhance 
the performance of the data imputation model. 

• The application of the Kernel Ridge Regression 
(KRR) as a multivariate data imputation model. 

• The employment of GA-ARIMA as a univariate 
data imputation model. 

• The proposal of a real-time imputation tool 
based on an open-source stack. 

 
3. METHODOLOGY 
 
Having explored the novelties presented in this 
conference paper, this section presents the proposed 
framework, which is graphically represented in Figure 1. 
 

 
 

Figure 1. Graphical representation of the proposed 
methodology. 

 
3.1 DATA PRE-PROCESSING 
 
Data pre-processing is essential to be implemented prior 
to model training due to the characteristics of the data, as 
the raw data may not only include steady operational 
states but also both manoeuvring and transient states of 
machinery, which need to be excluded from the analysis. 
To define proper steady operational states Original 
Equipment Manufacturers (OEMs) of the systems being 
analysed are consulted. 
 
Subsequently, standardisation is applied so that features 
can contribute equally when distance-based algorithms 
are implemented. Correlation analysis is also performed 
by the estimation of both the Pearson’s correlation 
coefficient and Spearman’s rank correlation coefficient 
to identify linear and non-linear relationships between 
features. Feature extraction has been performed prior to 
all these steps and only four parameters of the main 
engine system of a cargo vessel are included in this study 
(main engine power, main engine rotational speed, main 



engine fuel flow rate, and scavenging air pressure of the 
scavenge air receiver). It is assumed that all occurrences 
of the sample refer to normal operational conditions. 
 
In addition, as time series data are susceptible to 
containing high noise, Exponential Weighted Moving 
Average (EWMA) is implemented as a denoising 
technique. 
 
3.2 MODEL TRAINING 
 
The model implemented to impute missing values in this 
study is the Kernel Ridge Regression (KRR), which 
combines Ridge regression with the kernel tricks. Ridge 
regression is a biased model, as it adds a penalty to 
regularise the parameter estimates, and thus apply a 
trade-off between the bias and the variance to reduce the 
Mean Squared Error (MSE). Ridge regression considers 
the addition of a second-order penalty on the parameter 
estimates. Among all the kernel functions that encompass 
linear and non-linear functions of the predictors, the 
Radial Basis Function (RBF) is considered in this study. 
Hence, two main hyperparameters need to be selected 
optimally (regularisation strength, α, and gamma 
parameter for the RBF kernel, γ). To that end, a Genetic 
Algorithm (GA) is applied, which is a variety of 
evolutionary algorithms inspired by the process of 
natural selection. 
 
The selection of these two hyperparameters is essential 
as an inadequate selection of them may yield either 
under-fitting or over-fitting of the KRR model, and thus 
lead to inaccurate imputations. Therefore, time series 
cross-validation is implemented to select the 
hyperparameters that best conduct the learning process.  
 
3.3 DATA ASSESSMENT IMPUTATION 
FRAMEWORK (DAIF) 
 
In general, a total of three different missingness 
mechanisms have been identified to encompass 
underlying causes of missing data. 
 
The first mechanism, Missing Completely at Random 
(MCAR), involves those situations in which the 
missingness is independent of the data. An example of 
which is a random failure produced in the fuel flowmeter 
[14]. To simulate this situation, the following procedure 
is reproduced: 
 

• n samples with different missing ratios (r1, r2, 
..., rm) are generated. Each sample contain 
values missing completely at random. 

• Univariate imputation is performed to impute 
missing values from predictors’ instances. The 
method applied is GA-ARIMA. GA-ARIMA is 
a variation of Autoregressive Integrated Moving 
Average (ARIMA) models, in which GA is 
utilised to estimate the coefficients. 

• Multivariate imputation is performed as 
indicated in the preceding section to impute 
missing values from the response variable. 

 
The second mechanism is Missing at Random (RAM), in 
which the missingness hinges on another feature. For 
instance, if a component of a main engine fails, the 
operating condition of dependent components may be 
altered. This case is simulated by applying the strategy 
expressed hereunder. 
 

• n large gaps of m size are genereted at random. 
As a considerable amount of successive 
occurrences are missing for each feature, it is 
highly probable that instances contain more 
than one feature, the occurrences of which are 
missing. 

• Analogous to the MCAR mechanism, univariate 
imputation is implemented, and thus missing 
values from predictors’ instances are imputed. 
The technique applied to perform the univariate 
imputation is GA-ARIMA. 

• Multivariate imputation is performed as 
indicated in the preceding section to impute 
missing values from the response variable. 
 

The third and final mechanism is established as Missing 
Not at Random (MNAR) and refers to those scenarios in 
which the missingness is related to the feature itself. An 
example of which is the failure of a component, which is 
unable to record operating data as it is malfunctioning. 
However, as indicated in the preceding sections, some 
assumptions have been made to conduct this study, an 
example of which is the absence of fault data. Thus, this 
mechanism is out of the scope of this paper. 
 
To evaluate the accuracy of the imputations performed in 
this section of the methodology, a total of five metrics 
can be estimated (Root Mean Square Error (RMSE), 
MSE, max error, Median Absolute Error (MedAE), 
Mean Squared Log Error (MSLE)). Once the selected 
metric has been estimated for all the imputation 
scenarios, the results are pooled to obtain a unique value 
that summarises the imputation performance of the 
model being tested. 
 
4. RESULTS 
 
To highlight the implementation of the methodology 
described above, a case study is presented. To that end, 
data have been collected from a DMD-MAN B&W 
6S50MC-C main propulsion engine of a cargo vessel. 
Specifically, the main engine power, the main engine 
rotational speed, the main engine fuel flow rate, and the 
scavenging air pressure of the scavenge air receiver 
parameters have been considered for this case study. 
Time series plots of all four parameters can be observed 
in Figure 2. 
 



 

 

The samples contain a total of 1,200 records, which refer 
to the steady operational states of machinery. As 
observed in Figure 2, a total of four steady states are 
identified in the samples. For instance, if the main engine 
power is considered, there is a large steady state that 
initiates at the first instant and persists around 200 
minutes where the values are stabilised around 4,200 
kW. Subsequently, there is an adjustment where the main 
engine power decreases to approximately 3,800 kW. This 
state remains for roughly 700 minutes, and then suddenly 
an abrupt increase is perceived. This is when the 
maximum value of the time series is achieved, which 
presents a value greater than 4,500 kW. This state 
remains for 200 minutes. Finally, the last abrupt change 
occurs. This is when the minimum value of the time 
series is achieved, which presents a value lower than 
3,800 kW. Analogous patterns are observed in the 
remaining parameters being analysed. All the 
adjustments observed are applied due to the contractual 
agreements between the charterer and the shipowner in 
relation to the vessel speed and the fuel oil consumption 
per day. 
 
Summary statistics of each time series can also be 
consulted by analysing the descriptive statistics in Table 
1. Correlation analysis has also been performed and the 
resulting Pearson’s and Spearman’s correlation matrices 
can be consulted in Tables 2 and 3, respectively. As 
indicated, all the parameters are linearly correlated. 
 
To finalise the data pre-processing step, denoising has 
been applied by implementing EWMA to remove the 
high noise that time-series data contain. The results of 
which can also be perceived in Figure 2. 
 
The second step of the methodology is model training, in 
which KRR model is trained to be used as a multivariate 
imputation model. 5-fold time-series cross-validation 
technique is applied to prevent either under-fitting or 
over-fitting. As two main hyperparameters need to be 
estimated (α and γ), an optimisation algorithm needs to 
be implemented. For this study, GA is applied. The sets 
considered to perform GA are expressed hereunder. 
 
α ϵ [10-10, …, 1] 
γ ϵ [10-10, …, 10-3] 
 
Due to the extent limitations of the present conference 
paper, only the main engine power is considered for 
assessing the imputation of missing values, and thus the 
three remaining parameters (main engine rotational 
speed, main engine fuel flow rate, and scavenging air 
pressure of the scavenge air receiver) are only utilised as 
explanatory variables. However, the presented 
framework can be used to assess the imputation 
performance for any parameter. 
 

 

 

 

 
Figure 2. Time series plot of (a) the main engine power, 
(b) the main engine rotational speed, (c) the main engine 
fuel flow rate, and (d) the scavenging air pressure of the 

scavenge air receiver. 
 
 
 



To assess the imputation performance of KRR, the data 
assessment imputation framework is implemented. The 
ratios considered to generate the MCAR samples are 
0.05, 0.15, 0.20, 0.25, and 0.3. In relation to the MAR 
samples, a total of 5 large gaps, the size which is between 
50 and 150 occurrences, are generated at random for each 
analysed sample. These values are selected based on the 
characteristics of missingness and contexts perceived in 
the data collected, as well as suggestions made by other 
academics who have analysed marine machinery data. 
 
To compare the imputation performance of KRR, GA-
ARIMA is also implemented. The criteria utilised to 
select this model for the comparative study is due to its 
implementation as a univariate imputation technique to 
impute missing values from predictors’ instances. In 
addition, ARIMA models presented the best results in the 
case study performed in [13]. For each model two 
variations are considered: 1) denoising is implemented in 
the pre-processing step by the implementation of 
EWMA, and 2) no denoising is implemented. 
 
MCAR results for each fold can be observed in Table 4. 
Table 5 presents both large gaps and final results of each 
implemented model. 
 
As it can be perceived, and as deduced in [13], ARIMA 
models outperform multivariate imputation techniques 
when MCAR context is considered. For all MCAR 
scenarios, ARIMA achieved a RMSE no greater than 30 
kW, with the exception of the cases introduced in fold 5, 
in which the maximum error (406.08 kW, ratio 0.20) is 
achieved. This increment can be perceived for all four 
approaches, which indicates that these substantive 
alterations are related with the characteristics of the time 
series. As identified in Figure 2, there are a total of four 
steady states, the last one being the shortest one. This 
steady state is not considered in the training set of any of 
the models, and thus the predictions cannot be 
constructed adequately. This is an indicator of how 
important it is to prevent failures that lead to the 
collection of either incorrect or missing values, as this 
may yield to biased imputations if analogous preceding 
instances have not been perceived. 
 
Another consideration that can be distinguished is the 
enhancement of the imputation when denoising is 
applied. For instance, when this pre-processing step is 
implemented prior to the imputation of missing values by 
the utilisation of GA-ARIMA a percentage of 
improvement of approximately 50% can be observed. 
This indicates that denoising may need to be applied 
when a model sensitive to noise is being performed and 
the time-series data being analysed contain high noise. 
 
In relation to MAR results, KRR leads to better results 
than GA-ARIMA, as GA-ARIMA cannot predict 
unexpected events. Thus, GA-ARIMA is unable to detect 
when an adjustment is introduced due to either the 
contractual agreements between the charterer and the 

shipowner or weather conditions. For this reason, 
multivariate imputation techniques are recommended 
when the instances with missing values are perceived and 
when unexpected events occur. This also highlights the 
importance of preventing failures that lead to the 
collection of either incorrect or missing values, as biased 
imputations may be obtained if the unexpected events are 
not recorded. 
 
Therefore, as indicated in the preceding paragraphs, there 
is no unique model that outperforms the remaining 
imputation techniques for all characteristics and contexts. 
Hence, the implementation of comparative studies and 
assessment frameworks to determine the best model to 
impute missing values based on the scenario presented is 
of paramount importance, as under-utilisation of data can 
then be prevented. Furthermore, the frameworks applied 
can be part of a holistic predictive framework, in which 
diagnosis and prognosis can be performed to assess the 
current and future health of machinery to assist instant 
decision-making processes. Thus, maintenance and 
inspection tasks, crew management, and spare parts 
stocks can be optimised.  
 
To make profit of all this potential, the proposed 
frameworks are combined with data warehouse and data 
dashboard solutions. The implementation of data 
dashboards is considered one of the three critical aspects 
(data warehouse, data dashboard, and training 
development) that need to be implemented to advance a 
company towards data maturity. Data warehouse is the 
core component of business intelligence, utilised for data 
analysis and reporting. Data dashboard is an information 
management tool that supports a specific insight based 
on the extraction, analysis, measurement, and monitoring 
of data. As data is being democratised, there is also a 
necessity to adapt the culture of the company to orient 
decision-making strategies toward data-driven 
approaches. Thus, the development of new skills in the 
personnel is of paramount importance to guarantee the 
success of this transition. 
 
Accordingly, to finalise the results section, an example of 
a data dashboard developed based on the open-source 
stack is presented in Figure 4. As observed, instances of 
the four parameters analysed in this study are graphically 
represented by the implementation of Grafana software 
(https://grafana.com). These visualisations can be utilised 
by the personnel to identify missing values, and thus 
implement inspection activities if needed. Alarms can 
also be set so that a message is sent to the personnel 
when a certain amount of missing values is achieved per 
hour. Hence, sensor failure can be detected at an early 
stage or even prevented, guaranteeing the quality of data 
required to perform data-driven decision-making 
strategies. 
 
 

https://grafana.com/


 

 

Table 1. Descriptive statistics of the monitored features. 

  Power [kW] Speed [rpm] Fuel Flow Rate [tn/hr] Scav. Air Press. [bar] 
Count 1300 1300 1300 1300 
Mean 4415.28 104.19 0.87 1.09 
Std. 41.94 0.10 0.02 0.03 
Min. 4313.49 103.92 0.81 1.02 
25% 4387.015 104.12 0.86 1.07 
50% 4408.425 104.19 0.87 1.09 
75% 4433.1675 104.27 0.88 1.11 
Max. 4566.69 104.51 0.93 1.19 

 
Table 2. Pearson's correlation matrix. 
  Power [kW] Speed [rpm] Fuel Flow Rate [tn/hr] Scav. Air Press. [bar] 
Power [kW] - 0.99 0.90 0.99 
Speed [rpm] 0.99 - 0.90 0.99 
Fuel Flow Rate [tn/hr] 0.90 0.90 - 0.91 
Scav. Air Press. [bar] 0.99 0.99 0.91 - 
 
Table 3. Spearman's correlation matrix. 
  Power [kW] Speed [rpm] Fuel Flow Rate [tn/hr] Scav. Air Press. [bar] 
Power [kW] - 0.80 0.76 0.90 
Speed [rpm] 0.80 - 0.74 0.82 
Fuel Flow Rate [tn/hr] 0.76 0.74 - 0.78 
Scav. Air Press. [bar] 0.90 0.82 0.78 - 
 
Table 4. a) MCAR results fold 1. 
  0.05 0.15 0.20 0.25 0.30 
GA-ARIMA (EWMA) 21.17 13.69 16.55 20.01 20.19 
GA-ARIMA 38.29 41.15 41.18 38.35 42.34 
KRR (EWMA) 245.06 320.97 291.54 309.98 290.15 
KRR 272.49 343.85 339.18 320.08 326.70 
 
Table 4. b) MCAR results fold 2. 
  0.05 0.15 0.20 0.25 0.30 
GA-ARIMA (EWMA) 12.127 12.070 11.732 14.015 14.825 
GA-ARIMA 45.468 48.617 53.193 53.739 54.790 
KRR (EWMA) 365.439 372.451 368.937 373.311 373.738 
KRR 393.447 386.104 393.150 394.653 384.923 
 
Table 4. c) MCAR results fold 3. 
  0.05 0.15 0.20 0.25 0.30 
GA-ARIMA (EWMA) 21.17 16.97 16.85 26.43 23.91 
GA-ARIMA 47.63 45.04 55.38 45.90 46.48 
KRR (EWMA) 365.08 365.27 368.05 366.35 365.03 
KRR 340.91 326.56 342.13 321.13 324.75 
 
Table 4. d) MCAR results fold 4. 
  0.05 0.15 0.20 0.25 0.30 
GA-ARIMA (EWMA) 16.36 22.23 23.53 25.64 23.00 
GA-ARIMA 41.13 42.29 114.52 144.51 80.47 
KRR (EWMA) 332.94 329.03 329.55 328.72 325.09 
KRR 323.93 317.42 317.78 328.38 322.54 
 



Table 4. e) MCAR results fold 5. 
  0.05 0.15 0.20 0.25 0.30 
GA-ARIMA (EWMA) 347.88 370.19 406.08 402.20 389.98 
GA-ARIMA 575.34 608.99 568.87 567.17 603.60 
KRR (EWMA) 295.18 289.66 297.84 295.90 322.83 
KRR 391.58 409.42 422.26 399.49 427.91 

 
 

 
 

 
 

 
 

 
Figure 3. MCAR results plot of (a) fold 1, (b) fold 2, (c) 

fold 3, (d) fold 4, and (e) fold 5. 
 
 
Table 5. DAIF results. 

  MCAR MAR Final 
GA-ARIMA (EWMA) 91.67 257.99 174.83 
GA-ARIMA 161.634 279.41 220.52 
KRR (EWMA) 331.524 234.24 282.88 
KRR 354.83 201.26 278.05 
 
 

 



 

 

 
Figure 4. Data dashboard of four main engine parameters in Grafana. 

 
 
 
5. CONCLUSIONS 
 
The maritime industry is currently considering state-of-
the-art maintenance and inspection processes, an 
example of which is CBM. To enable this maintenance 
strategy, sensors need to be installed, and thus IoS needs 
to be implemented. IoS presents several challenges, 
including the imputation of missing values. 
 
As previously stated, while there are more than 10,000 
publications about data imputation in Scopus database, 
only two of these refer to the maritime industry. This 
indicates a lack of analysis and formalisation of data 
imputation in this industrial sector. To contribute to the 
development of a data imputation framework in the 
maritime industry, a total of five novelties were 
proposed: 1) the development of a data assessment 
imputation framework to evaluate the accuracy of any 
imputation model, 2) the implementation of EWMA as a 
denoising method in the pre-processing step to enhance 
the performance of the data imputation model, 3) the 
application of KRR as a multivariate imputation model, 
4) the employment of GA-ARIMA as a univariate data 
imputation model, and 5) the proposal of a real-time 
imputation tool based on an open-source stack. 
 
In relation to these novelties, the main conclusions are 
expressed hereunder. 
 

• There is not a unique model that outperforms 
the remaining imputation techniques for all 
possible characteristics and contexts described 
in the maritime industry. Hence, the 
implementation of comparative studies and 

assessment frameworks is of paramount 
importance. 

• KRR leads to better results when large gaps of 
missing values need to be imputed, as GA-
ARIMA cannot predict unexpected events. 

• GA-ARIMA outperforms KRR when MCAR 
context is considered. 

• The enhancement in the performance that can be 
produced when denoising is applied to time-
series data that contain high noise and when a 
model sensitive to noise is implemented. 

• The importance of preventing failures that lead 
to the collection of either incorrect or missing 
values, as this may yield to biased imputations if 
analogous preceding intances have not been 
perceived and unexpected events are not 
recorded. 

• The influence of an effective data dashboard on 
the prevention of sensor failure. 

 
Although some novelties are presented in this paper, 
further research needs to be addressed due to the 
importance of this pre-processing step. For this reason, 
the authors of this paper suggest the following work 
guidelines: 

• A comprehensive comparative methodology of 
deep learning models as imputation techniques. 

• The development of a software that provides 
data imputation tool to be included in a holistic 
predicteve framework to assist real-time data-
driven decision-making strategies. 

• The analysis of optimisation algorithms for 
tuning hyperparameters. 

• The study of denoising alogirithms. 
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