
This version is available at https://strathprints.strath.ac.uk/7572/

Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained by either reentrant or nonreentrant electrical activity. Human atrial cellular refractory period is shortened in chronic AF, likely aiding reentry. The ionic and molecular mechanisms are not fully understood and may include increased inward rectifier K\(^+\) current and altered Ca\(^{2+}\) handling. Heart failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodeling, but the pattern is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially antiarrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment.

KEYWORDS Arrhythmias (mechanisms); Atrial fibrillation; Beta-blocker; Electrical remodeling; Heart failure; Ion current; Refractory period; Transmembrane action potential

(Heart Rhythm 2008;5:S1–S6) © 2008 Heart Rhythm Society. All rights reserved.

Electrophysiological mechanisms of human atrial fibrillation and their study in single atrial cells

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. It causes substantial morbidity and mortality. The majority of atrial premature beats that initiate AF originate from focal ectopic electrical activity in the pulmonary veins (PVs). AF is sustained by single- or multiple-circuit intra-atrial reentry and/or focal ectopy, and the latter may be reentrant or nonreentrant.\(^1\) Nonreentrant mechanisms include abnormal automaticity (AA) and triggered activity. AA is the premature firing of action potentials (APs) because of abnormal diastolic membrane depolarisation (Figure 1A) and is favored by, for example, \(\beta\)-adrenergic stimulation or decreased vagal activity. Triggered activity is premature firing due to after-depolarizations. These may be early (EADs), occurring during repolarization and favored by AP prolongation, or delayed (DADs), occurring after an AP and favored by intracellular Ca\(^{2+}\) overload (Figure 1A). Reentry is rapid circuitous activation caused by unidirectional conduction block and favored by premature impulses, heterogeneity and shortening of the effective refractory period (ERP), and slowing of conduction velocity, \(\theta\) (Figure 1B). Several electrophysiological parameters that may affect AF genesis and maintenance have been measured in human atrial isolated cells. The cellular ERP\(^2\) and AP maximum upstroke velocity, \(V_{\text{max}}\) (Figure 1C), contribute to myocardial ERP and \(\theta\), respectively, so their reduction could promote reentry by shortening its wavelength, \(\lambda\) (Figure 1B). Cellular arrhythmic depolarizations (CADs\(^3\); Figure 1D) may represent AA, EADs, or DADs, with potential involvement in nonreentrant mechanisms.

Atrial cellular electrical remodeling in AF

Atrial myocardial electrical and mechanical activity and structure adapt, or remodel, in response to a variety of diseases and other stimuli. For example, congestive heart failure (CHF) may involve electrical remodeling, atrial dilation, and interstitial fibrosis, each potentially predisposing to AF. Once AF occurs, the rapid atrial rate causes atrial electrical remodeling that promotes AF, so AF is autopropagating. In goats, induced AF progressively shortened the atrial ERP and AF interval over 24 hours, which reduced the reentry \(\lambda\) and increased AF vulnerability.\(^4\) Maximal ERP shortening may precede maximal AF duration, but the ERP shortening contributes to the AF substrate. In our laboratory, a similar ERP shortening was found in atrial cells isolated from patients with chronic AF (Figure 1C). This was associated with impaired ERP rate adaptation, shortening and triangulation of the AP and no change in \(V_{\text{max}}\).\(^2\) The shortened AP permitted full repolarization at the fast rates typically encountered in AF and thus prevented the depolarization of the maximum diastolic potential (MDP), that was observed in sinus rhythm (SR).\(^2\) This effect on MDP might limit Ca\(^{2+}\) overload in the remodeled atrium, but the ERP changes favor reentry. The ERP is largely determined by the AP duration (APD), which depends on a delicate balance of inward and outward ion currents flowing through...
The inward rectifier K\(^+\) which may contribute to the APD and ERP shortening may be small. Mid/late repolarization (AA).

Table 1

Furthermore, despite decreased outward I\(_{\text{K}_{\text{ATP}}}\), the AP plateau is maintained, although its inactivation voltage is consistent with V\(_{\text{m}}\)max. The AP fires EADs, although its inactivation voltage is consistently and markedly reduced in chronic AF (Table 1). The reported increases in I\(_{\text{K}_{\text{ATP}}}\) and CA I\(_{\text{K}_{\text{ATP}}}\) were most prominent (with enhanced inward current) at voltages more negative than the AP voltage range. However, enhanced outward I\(_{\text{K}_{\text{ATP}}}\) has also been reported, within the AP voltage range,\(^5\)\(^6\)\(^8\) which may contribute to the APD and ERP shortening in AF. Increased I\(_{\text{K}_{\text{ATP}}}\) should also hyperpolarize V\(_{\text{m}}\), while difficult to ascertain in human atrial isolated cells since the “chunk” isolation method may depolarize them, this has been reported in atrial trabeculae.\(^6\) The AP fires when depolarization sufficient to drive V\(_{\text{m}}\) to threshold activates inward Na\(^+\) current (I\(_{\text{Na}}\)), causing the regenerative and rapid AP upstroke; the larger I\(_{\text{Na}}\), the faster V\(_{\text{m}}\)max. A single study reported no change in I\(_{\text{Na}}\) density in AF, consistent with V\(_{\text{m}}\)max (Table 1), although its inactivation voltage dependency was altered. Partial, or early, repolarization follows the AP upstroke, via activation of a transient outward K\(^+\) current (I\(_{\text{K}_{\text{ur}}}\)) and the ultrarapid delayed rectifier K\(^+\) current (I\(_{\text{K}_{\text{ur}}}\)). AF consistently and markedly reduced I\(_{\text{K}_{\text{ur}}}\), but data for I\(_{\text{K}_{\text{ur}}}\) are equivocal (Table 1). The I\(_{\text{K}_{\text{ur}}}\) reduction may contribute to AP triangulation in AF, as shown by blocking I\(_{\text{K}_{\text{ur}}}\) with 4-aminopyridine (4-AP).\(^2\) However, its contribution to the APD\(_{90}\) and ERP is unclear since 4-AP also blocks I\(_{\text{K}_{\text{ur}}}\) although mathematical modeling suggested a negligible role.\(^3\)\(^4\) The AP plateau is maintained by inward, L-type Ca\(^{2+}\), current (I\(_{\text{Cal}}\)), which is consistently and markedly reduced in chronic AF (Table 1), despite increased single-channel open probability.\(^3\)\(^5\) Such I\(_{\text{Cal}}\) reduction depresses the AP plateau, consistent with acute effects of nifedipine\(^2\) or simulated I\(_{\text{Cal}}\) reduction,\(^3\)\(^4\) although its contribution alone to the shortening of the APD\(_{90}\)\(^3\)\(^4\) or ERP\(^2\) may be small. Mid/late repolarization results from activation of I\(_{\text{Kr}}\) as well as from the rapid (I\(_{\text{kr}}\)) and slow (I\(_{\text{KS}}\)) delayed rectifiers, which are balanced by inward Na\(^+\)-Ca\(^{2+}\) exchange current (I\(_{\text{Na/Ca}}\)) following the [Ca\(^{2+}\)\(_t\) transient. I\(_{\text{Na/Ca}}\) also underlies the transient inward current responsible for DADs. However, any role for these currents in human AF remodeling is presently unclear, since data are either equivocal or unavailable (Table 1). AA results from decreased outward and/or increased inward diastolic currents, including I\(_{\text{Na/Ca}}\) and the “funny” current (I\(_p\)). However, data on I\(_p\) are also lacking.

Human PV isolated cell electrophysiology has not yet been studied. Chronic atrial tachypacing (AT) in dogs produced APD shortening in PV cells that was qualitatively similar to that in atrial cells and also produced similar a variety of membrane protein channels, pumps, and exchangers. Therefore, an understanding of the mechanisms of human AF-induced atrial electrical remodeling requires knowledge about precise changes in each of these currents, and their contributions to the AP, in AF.

Potential ionic mechanisms of electrical remodeling in AF

Many human atrial ion currents have so far been studied in AF; they are shown in Table 1. The inward rectifier K\(^+\) current (I\(_{\text{K}_{1}}\)) is the main determinant of the resting potential (V\(_{\text{m}}\)). Other currents contribute, including acetylcholine-activated K\(^+\) current (I\(_{\text{K}_{\text{ACH}}}\)), Na\(^+\), K\(^+\) pump current (I\(_p\)), and possibly ATP-sensitive K\(^+\) current (I\(_{\text{K}_{\text{ATP}}}\)). I\(_{\text{K}_{1}}\) and I\(_{\text{K}_{\text{ACH}}}\) also contribute to terminal repolarization. There is consensus that chronic AF is associated with increased density of I\(_{\text{K}_{1}}\) (Table 1). Furthermore, despite decreased parasympathetic-regulated I\(_{\text{K}_{\text{ACH}}}\), a constitutively active (CA) I\(_{\text{K}_{\text{ACH}}}\), not requiring its endogenous agonist, is induced in AF (Figure 2). A single study on I\(_p\) from our laboratory, showed no change in AF, and changes in I\(_{\text{K}_{\text{ATP}}}\) are variable. The reported increases in I\(_{\text{K}_{1}}\) and CA I\(_{\text{K}_{\text{ACH}}}\) were most prominent (with enhanced inward current) at voltages more negative than the AP voltage range. However, enhanced outward I\(_{\text{K}_{\text{ACH}}}\) has also been reported, within the AP voltage range,\(^5\)\(^6\)\(^8\) which may contribute to the APD and ERP shortening in AF. Increased I\(_{\text{K}_{\text{ACH}}}\) should also hyperpolarize V\(_{\text{m}}\), while difficult to ascertain in human atrial isolated cells since the “chunk” isolation method may depolarize them, this has been reported in atrial trabeculae.\(^6\) The AP fires when depolarization sufficient to drive V\(_{\text{m}}\) to threshold activates inward Na\(^+\) current (I\(_{\text{Na}}\)), causing the regenerative and rapid AP upstroke; the larger I\(_{\text{Na}}\), the faster V\(_{\text{m}}\)max. A single study reported no change in I\(_{\text{Na}}\) density in AF, consistent with V\(_{\text{m}}\)max (Table 1), although its inactivation voltage dependency was altered. Partial, or early, repolarization follows the AP upstroke, via activation of a transient outward K\(^+\) current (I\(_{\text{K}_{\text{ur}}}\)) and the ultrarapid delayed rectifier K\(^+\) current (I\(_{\text{K}_{\text{ur}}}\)). AF consistently and markedly reduced I\(_{\text{K}_{\text{ur}}}\), but data for I\(_{\text{K}_{\text{ur}}}\) are equivocal (Table 1). The I\(_{\text{K}_{\text{ur}}}\) reduction may contribute to AP triangulation in AF, as shown by blocking I\(_{\text{K}_{\text{ur}}}\) with 4-aminopyridine (4-AP).\(^2\) However, its contribution to the APD\(_{90}\) and ERP is unclear since 4-AP also blocks I\(_{\text{K}_{\text{ur}}}\) although mathematical modeling suggested a negligible role.\(^3\)\(^4\) The AP plateau is maintained by inward, L-type Ca\(^{2+}\), current (I\(_{\text{Cal}}\)), which is consistently and marked reduced in chronic AF (Table 1), despite increased single-channel open probability.\(^3\)\(^5\) Such I\(_{\text{Cal}}\) reduction depresses the AP plateau, consistent with acute effects of nifedipine\(^2\) or simulated I\(_{\text{Cal}}\) reduction,\(^3\)\(^4\) although its contribution alone to the shortening of the APD\(_{90}\)\(^3\)\(^4\) or ERP\(^2\) may be small. Mid/late repolarization results from activation of I\(_{\text{K}_{\text{ur}}}\) as well as from the rapid (I\(_{\text{kr}}\)) and slow (I\(_{\text{KS}}\)) delayed rectifiers, which are balanced by inward Na\(^+\)-Ca\(^{2+}\) exchange current (I\(_{\text{Na/Ca}}\)) following the [Ca\(^{2+}\)\(_t\) transient. I\(_{\text{Na/Ca}}\) also underlies the transient inward current responsible for DADs. However, any role for these currents in human AF remodeling is presently unclear, since data are either equivocal or unavailable (Table 1). AA results from decreased outward and/or increased inward diastolic currents, including I\(_{\text{Na/Ca}}\) and the “funny” current (I\(_p\)). However, data on I\(_p\) are also lacking.

Human PV isolated cell electrophysiology has not yet been studied. Chronic atrial tachypacing (AT) in dogs produced APD shortening in PV cells that was qualitatively similar to that in atrial cells and also produced similar...
changes in I_{K1}, I_{TO}, and I_{Ca}. However, a current that may be analogous to human CA I_{KACH} was increased more strongly in PV cells than in atrial cells, perhaps favoring PV reentry. The relative importance of reentrant versus non-reentrant activity to PV arrhythmogenesis, either before or after AF remodeling, is unknown.

Atrial electrical activity is intricately linked with cellular and subcellular Ca^{2+} fluxes, particularly via I_{Na/Ca}. Intracellular Ca^{2+} handling is altered in AF, although human data are sparse. In canine atrial cells, acute AT, analogous to canine AT, increased I_{Ca,L} and Ca-release. Furthermore, neurohumoral activation in CHF, an important cause of AF, increases circulating levels of catecholamines, angiotensin, and endothelin (ET-1). Beta-adrenergic stimulation from catecholamines may promote DADs, by increasing I_{Ca} and Ca^{2+}-induced Ca^{2+} release. AF remodeling potentiated the relative increase in I_{Ca,L} and decreased Kv4.3 (I_{TO}). However, there are some intriguing and controversial exceptions. Protein levels of I_{Ca,L} α-subunits were decreased by 40%–55% in three studies, in line with I_{Ca,L} reduction, but were unchanged in four others. Also, despite increased CA I_{KACH} in AF (Table 1), the Kir 3.1 protein level was decreased. The apparent discrepancies between changes in ion current density and protein expression suggest post-translational modification or altered channel regulation. The magnitude of I_{Ca,L} is influenced by a balance between channel phosphorylation by kinases and dephosphorylation by phosphatases. Chronic AF upregulated phosphatase type-2A-C, reducing I_{Ca,L} without requiring reduced channel protein. Similarly, induction of CA I_{KACH} in human AF resulted from abnormal protein kinase- (PK-) C function.

Whether the combined ionic changes so far established in human AF can account for the associated AP changes is unclear and will require the aid of mathematical models. One such model suggested that the combined I_{K1}, I_{TO}, and I_{Ca} changes could explain the AP changes, although in the dog, concurrent [Ca^{2+}]_i changes were required. Another model suggested a major contribution from the I_{K1} increase to the stabilization of reentry.

Potential molecular mechanisms in AF:
Genetic and nongenetic

Many atrial ion current changes in human AF are accompanied by, and often considered to be caused by, altered tissue expression of the ion channel pore-forming α-subunits that carry them, for example, increased Kir2.1 (carries I_{K1}) and decreased Kv4.3 (I_{TO}). However, there are some intriguing and controversial exceptions. Protein levels of I_{Ca,L} α-subunits were decreased by 40%–55% in three studies, in line with I_{Ca,L} reduction, but were unchanged in four others. Also, despite increased CA I_{KACH} in AF (Table 1), the Kir 3.1 protein level was decreased. The apparent discrepancies between changes in ion current density and protein expression suggest post-translational modification or altered channel regulation. The magnitude of I_{Ca,L} is influenced by a balance between channel phosphorylation by kinases and dephosphorylation by phosphatases. Chronic AF upregulated phosphatase type-2A-C, reducing I_{Ca,L} without requiring reduced channel protein. Similarly, induction of CA I_{KACH} in human AF resulted from abnormal protein kinase- (PK-) C function.

AF may be a heritable disorder: positive family history was identified in 5% of patients with AF. Several genetic mutations have been associated with familial AF, mainly for K^{+} channels. Most are gain-of-function mutations, increasing I_{Ks}, I_{ Kr}, or I_{K1} and expected to shorten ERP and promote reentry, although an I_{Ks} loss-of-function mutation might prolong ERP. However, such mutations occur in other diseases, for example, dilated cardiomyopathy and long-QT, short-QT, and Brugada syndromes, some of which are comorbidities for AF. Nevertheless, it seems that genetic variants are involved in the pathogenesis of AF in a proportion of cases.

Neurohumoral involvement in AF

AF can result from a sympathetic/parasympathetic imbalance. Furthermore, neurohumoral activation in CHF, an important cause of AF, increases circulating levels of catecholamines, angiotensin, and endothelin (ET-1). Beta-adrenergic stimulation from catecholamines may promote DADs, by increasing I_{Ca} and Ca^{2+}-induced Ca^{2+} release. AF remodeling potentiated the relative increase in I_{Ca,L}.

Table 1: Human atrial cellular electrophysiological changes associated with AF, ventricular dysfunction, and drug therapy

<table>
<thead>
<tr>
<th>Human atrial cell electrophysiological measurement</th>
<th>Chronic AF</th>
<th>Post-CS AF</th>
<th>CHF, LVSD, and/or atrial dilation</th>
<th>Chronic β_{1}-blocker therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERPs</td>
<td>2</td>
<td>2, 2.5, 7</td>
<td>NDA</td>
<td>3, 22, 31</td>
</tr>
<tr>
<td>APD_{TO}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APD_{CA}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP V_{max}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{K1}</td>
<td>2.5, 6.8</td>
<td>9.22</td>
<td>NDA</td>
<td>4, 31</td>
</tr>
<tr>
<td>I_{KACH}</td>
<td>10, 12</td>
<td>9</td>
<td>NDA</td>
<td></td>
</tr>
<tr>
<td>CA I_{KACH}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{p}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{ATP}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{r}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{TO}</td>
<td>2, 5, 8, 16, 17</td>
<td>26, 7, 28</td>
<td>NDA</td>
<td>3, 31</td>
</tr>
<tr>
<td>I_{sus}</td>
<td>2, 5, 17</td>
<td>25, 26, 27</td>
<td>NDA</td>
<td></td>
</tr>
<tr>
<td>I_{Ca}</td>
<td>18, 21</td>
<td>29, 30</td>
<td>NDA</td>
<td></td>
</tr>
<tr>
<td>I_{Ca} % ⊤ by β stimulation</td>
<td>7</td>
<td>29, 30</td>
<td>NDA</td>
<td></td>
</tr>
<tr>
<td>I_{Ca} % ⊤ by 5-HT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{Na/Ca}</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td>I_{Na/Ca} (I_{max})</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td>I_{Na/Ca} (I_{K(ideal)})</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
<tr>
<td>I_{Ca}</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
<td>NDA</td>
</tr>
</tbody>
</table>

Arrows show direction of change relative to “controls.” *= atrial dilation only; NDA = no data available. See text for definitions.
produced by \(\beta \)-stimulation (Table 1). We demonstrated that ET-1 had no direct effect on \(I_{\text{Cal}} \), APD, or ERP in human atrial cells. However, it abolished isoproterenol-induced increases in \(I_{\text{Cal}} \), APD, and CADs (Figure 1D), with no effect on ERP.\(^3\) Thus, ET-1 might exert an antiarrhythmic antiarrhythmic influence in the atria of patients with CHF. Serotonin (5-HT) is released from platelets aggregating in static blood in fibrillating atria. We demonstrated that 5-HT may be arrhythmogenic in human atrium, by increasing \(I_{\text{Cal}} \), and producing CADs, without affecting ERP.\(^3\) Atrial remodeling by AF may protect from these effects, however, since they were attenuated in cells from patients with chronic AF\(^2\) (Table 1).

Postoperative AF: Is there a predisposing atrial cellular electrophysiological substrate?

AF is common in patients after cardiac surgery (CS). Post-CS AF is independently predicted by old age, pre-CS AF, and pre-CS P-wave changes. Therefore, pre-CS atrial cellular electrophysiology could influence the propensity for new-onset AF post-CS, which is an issue presently under debate. An early study showed an association between post-CS AF and an enhanced pre-CS \(I_{\text{Cal}} \)\(^1\) potentially arrhythmogenic post-CS, when catecholamines are elevated. However, we recently demonstrated, by contrast, that pre-CS \(I_{\text{Cal}} \), AP parameters, or ERP were not predictive of post-CS AF.\(^2\) Furthermore, no other ion current that was measured, nor the \(I_{\text{Cal}} \) response to \(\beta \)-stimulation, was different between patients with and without post-CS AF (Table 1). Some currents remain to be studied, but it appears that the electrically remodeled state caused by chronic AF (Table 1) is not present pre-CS in the atrial cells of patients who develop new-onset post-CS AF.

Heart failure–induced atrial remodeling

AF is common in patients with CHF, and left ventricular systolic dysfunction (LVSD) substantially increases the risk of AF. It is unclear whether atrial cellular electrical remodeling, in patients in SR, contributes to this predisposition to AF. The available human data are scarce and inconsistent (Table 1) and are compounded by inevitable variability in the patients’ disease states and drug treatments. Atrial cellular electrical remodeling has been demonstrated in canine models of chronic ventricular tachypacing (VTP)-induced CHF. AF was invariably promoted, but the remodeling pattern differed from AF: atrial ERP was unchanged or increased, \(I_{K1} \) was not increased, both \(I_{T0} \) and \(I_{KS} \) were decreased, \(I_{\text{Cal}} \), was only moderately decreased, and \(I_{\text{Na/Ca}} \) was increased.\(^4\) The increased \(I_{\text{Na/Ca}} \) might favor a triggered origin of AF in this model. CHF also caused atrial fibrosis, and while the ionic remodeling reversed after ceasing VTP, the fibrosis and AF persistence did not.\(^4\) Thus, atrial electrical remodeling may contribute to AF genesis but was not necessary for its maintenance in this model. Human CHF or LVSD were associated with variable changes in APD, and cellular ERP has not been studied (Table 1). Human atrial ionic changes in CHF or LVSD may be expected to differ from those in chronic AF, with decreased \(I_{K1} \), and increased \(I_{T0} \), decreased or unchanged \(I_{\text{Cal}} \), and a decreased \(I_{\text{Cal}} \) response to \(\beta \)-stimulation so far reported (Table 1). The pattern may depend on the degree of atrial dilation, which itself may cause ionic remodeling (Table 1). Moreover, CHF- and AF-induced atrial remodeling interact. In dogs, this interaction was complex, not cumulative: chronic AT, imposed on a CHF-remodeled atrium, caused moderate ERP shortening, \(I_{K1} \) increase, and \(I_{\text{Cal}} \) decrease but did not further remodel \(I_{T0}, I_{KS}, \) or \(I_{\text{Na/Ca}} \).\(^4\) No comparative human atrial data could be found.

Atrial remodeling by chronic drug therapy

Atrial electrophysiology remodels in response not only to diseases and aging but also to long-term drug treatments; so-called pharmacological remodeling.\(^3\) This was originally demonstrated in rabbits: treatment with the \(\beta_1 \)-blocker metoprolol caused an adaptational prolongation of the atrial...
APD, maximally after 6 days. Beta-blockers are increasingly used to treat AF and HF. We demonstrated that in patients in SR, β_1-blocker treatment for ≥7 days was independently associated with prolonged atrial cell APD$_{90}$ and ERP22,31 (Figure 3A, 3B), and not with I$_{\text{Cal}}$. The I$_{\text{TO}}$ was reduced (Figure 3C), and I$_{\text{SUS}}$ was unchanged (Table 1). Preliminary data from our group suggest that the I$_{\text{TO}}$ reduction does not involve altered voltage dependency or kinetics32 or altered ion channel expression49 and that I$_{\text{K1}}$ is also reduced.32 Recent subgroup analysis revealed a significant correlation between ERP and atenolol dose (Figure 3D), suggesting that the ERP prolongation is at least partly caused, directly or indirectly, by the atenolol treatment. Such ERP prolongation might contribute to the antiarrhythmic effects of beta-blockers, although a potentiation by chronic β-blockade of effects of 5-HT on I$_{\text{Cal}}$ (Table 1) and CADs33 could also oppose them.

How research on cellular bases for human AF is driving new therapeutic strategies

Traditional ERP-prolonging drugs, which are used to inhibit reentry, act by blocking I$_{\text{Kr}}$. This is problematic because I$_{\text{Kr}}$ exists in the ventricle as well as atrium, which risks ventricular EADs and fibrillation. I$_{\text{Kur}}$ and I$_{\text{KACH}}$ are considered to be atrium specific, so their block might prolong ERP in atrium only, depending on secondary ionic effects. However, targeting ion channel regulation may be preferable to ion channel block. Altering the PKC pathway that induces CA I$_{\text{KACH}}$ in chronic AF12 might avoid undesirable effects of inhibiting parasympathetic-regulated I$_{\text{KACH}}$ on sinoatrial node and bladder. Blocking the phosphatase-induced I$_{\text{Kur}}$ decrease caused by AF20 is another possibility. Moreover, “de-remodeling,” in theory, might be better than such “anti-remodeling” since blocking potentially protective adaptations may be risky. Pharmacological targeting of nonreentrant mechanisms of AF also may be considered.

AF is a highly complex, multifactorial, and dynamic disorder with differing characteristics and etiologies among individuals. As such, it presents an enormous challenge for the development of drugs for its effective and safe treatment. Current basic research is driving the search for new drugs. Several drugs, including I$_{\text{Kur}}$ and I$_{\text{KACH}}$ blockers, are entering clinical trials. It remains to be seen whether they will improve patient treatment.

References

44. Schotten U, Haase H, Frechen D, et al. The L-type Ca^{2+}-channel subunits $alpha_1C$ and $beta_2$ are not downregulated in atrial myocardium of patients with chronic atrial fibrillation. J Mol Cell Cardiol 2003;35:437–443.

