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Abstract: Cyber-attacks continue to grow, both in terms of volume and sophistication. This is aided
by an increase in available computational power, expanding attack surfaces, and advancements in
the human understanding of how to make attacks undetectable. Unsurprisingly, machine learning is
utilised to defend against these attacks. In many applications, the choice of features is more important
than the choice of model. A range of studies have, with varying degrees of success, attempted to
discriminate between benign traffic and well-known cyber-attacks. The features used in these studies
are broadly similar and have demonstrated their effectiveness in situations where cyber-attacks
do not imitate benign behaviour. To overcome this barrier, in this manuscript, we introduce new
features based on a higher level of abstraction of network traffic. Specifically, we perform flow
aggregation by grouping flows with similarities. This additional level of feature abstraction benefits
from cumulative information, thus qualifying the models to classify cyber-attacks that mimic benign
traffic. The performance of the new features is evaluated using the benchmark CICIDS2017 dataset,
and the results demonstrate their validity and effectiveness. This novel proposal will improve the
detection accuracy of cyber-attacks and also build towards a new direction of feature extraction for
complex ones.

Keywords: NetFlow; network traffic; intrusion detection; machine learning; features; CICIDS2017;
cyber-attacks

1. Introduction

Internet traffic pattern analysis is an established and mature discipline. A key appli-
cation of this research domain is the detection of malicious network intrusions. Intrusion
Detection Systems (IDS) research started in the late 1980s. Statistical models were the
first to be introduced. Later, signature-based IDSs were proposed [1]. Their detection
depended on known patterns (signatures) that were used to distinguish between malicious
and benign traffic flows. More recently, the volume and sophistication of these attacks
has increased, and that has motivated the use of machine learning (ML) techniques to
counteract them [2].

In many machine learning applications, it is well known that the choice of features, i.e.,
the inputs fed into the model, is more important than the choice of the model [3]. Indeed,
Ghaffarian and Shahriari state that features play a vital role in the development of IDS [4].
When Internet traffic is analysed on a flow-by-flow basis, the choice of features is quite
self-evident: are particular flags set or reset in the internet packet headers, what is the
average size of a packet in a flow, what is the standard deviation of packet sizes, what is
the average time between packets in a flow, etc. In simple terms, values are extracted from
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packet headers, and various statistics are extracted from the packet lengths and inter-arrival
times [5]. These features have proved adequate for identifying previous generations of
cyber-attacks using a range of ML models; however, they have proven to be inadequate to
the latest, most sophisticated attacks.

To address this problem of detecting complex cyber-attacks, specifically the benign
imitating ones, we propose, in this paper, an additional level of feature abstraction, named
‘Flow Aggregation’. With this approach, we look at flows at a higher level of abstraction
by bundling similar flows and extracting features across them. This form of aggregation
permits a deeper representation of network traffic, and increases the performance of
classification models, particularly for the more sophisticated attacks that attempt to closely
resemble benign network traffic and hence evade detection. The proposed features are
evaluated using the benchmark CICIDS2017 [6] dataset with a particular focus on the
attacks that have proven most difficult to detect using well-adopted features.

The contributions of this paper are as follows:

• The introduction of a higher level of abstraction for network traffic analysis by propos-
ing novel features to describe bundles of flows.

• Performance improvements in binary classification of cyber-attacks when these novel
features are utilised, particularly for attacks that mimic benign network traffic.

• Performance improvements in multi-class classification of cyber-attacks when these
novel features are utilised.

• Performance improvements in zero-day attack detection when these novel features
are utilised.

The remainder of the paper is organised as follows; Section 2 outlines the related
work and the required background. The methodology is explained in Section 3. Section 4
discusses the proposed feature abstraction and the conduction of experiments alongside
the results. Finally, Section 5 concludes the paper.

2. Background and Related Work

As mentioned, the detection of cyber-attacks is an established research area that has
leveraged a range of technologies as it has evolved over the years [7] to cope with the
exponential growth of cyber-attacks [8]. A range of ML-based models have been applied to
the problem, including support vector machines, artificial neural networks, and k-means
clustering [9]. Despite the discriminative power of these models, many cyber-attacks still
remain undetected or have low rates of detection.

Older, more well-recognised attacks have been captured in KDD Cup’99 and the NSL-
KDD datasets. These can be used to train ML-based models, and in many cases achieve
good results. More contemporary cyber-attacks have been recorded in the CICIDS2017
dataset [10]. Much of the research involving this dataset has considered a subset of attacks
that are particularly distinctive from benign (i.e., DDoS, Port Scan, and Web attacks), and
good results have been achieved. However, some classes are either (a) left undetected, due
to their similar behaviour to normal traffic, thus difficult to detect, or (b) when used in
detection models, their low detection accuracy is concealed in the overall accuracy due to
the class imbalance problem of this dataset [11]. In this paper, we focus on those attacks
that have thus far proven elusive for researchers to identify reliably, viz. DoS Slowloris and
DoS SlowHTTPTest.

Many studies use performance metrics that do not take into consideration the im-
balance between relatively few examples of cyber-attacks and overwhelming examples
of benign traffic. For example, an ‘always zero’ classifier (that always predicts benign
traffic) would appear to be 99% accurate if the dataset it was tested on had 99 examples
of benign traffic to each example of cyber-attack traffic. Clearly, this has the potential to
provide grossly misleading results since it would never detect a single attack. To address
this shortcoming, in this paper, we will fully disclose the results for precision, recall, and
F1-score for each class independently.
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Tables 1 and 2 provide a comprehensive list of recent studies in which the CICIDS2017
dataset has been used. The tables present the published papers, the models/techniques
applied, the metrics utilised to assess performance, and the concomitant results. By
observing Table 1, two findings are highlighted. Firstly, some classes (SSH, DDoS, and Port
Scan, for example) have received significant attention from researchers, whilst others have
been largely ignored due to their poor results and their benign-like behaviour that makes
their classification difficult. Secondly, the overall accuracy is much higher than the accuracy
for individual classes. For example, in [12], when the authors use 1-layer Deep Neural
Network (DNN), the overall multi-class classification accuracy is 96% (Table 1) while the
individual classes detection accuracies are 55.9%, 95.9%, 85.4%, and 85.2% for normal, SSH,
DDoS, and port scan classes, respectively (Table 1). Similar behaviour was seen when the
authors used 5-layers DNN, as demonstrated in Table 1. This indicates the misleading
effect of reporting the overall accuracy when dealing with imbalanced datasets.

Table 1. CICIDS2017 recent papers performance summary (1).

Year Ref Approach Covered Attacks Accuracy Precision Recall F-Score

2020 [13] +

MLP
SSH

- 82% 98% 90%

LSTM - 97% 98% 97%

MLP
FTP

- 93% 77% 85%

LSTM - 98% 99% 99%

2019 [12] +

DNN (1 Layer)

Binary

96.3% 90.8% 97.3% 93.9%

DNN (5 Layers) 93.1% 82.7% 97.4% 89.4%

LR 83.9% 68.5% 85% 75.8%

NB 31.3% 30% 97.9% 45.9%

KNN 91.0% 78.1% 96.8% 86.5%

SVM (RBF) 79.9% 99.2% 32.8% 49.3%

DNN (1 Layer)

Multi-class

96% 96.9% 96% 96.2%

DNN (5 Layers) 95.6% 96.2% 95.6% 95.7%

LR 87% 88.9% 87% 86.8%

NB 25% 76.7% 25% 18.8%

KNN 90.9% 94.9% 90.9% 92.2%

SVM (RBF) 79.9% 75.7% 79.9% 72.3%

2019 [14] AdaBoost DDoS 81.83% 81.83% 100% 90.01%

2018 [15]
DL

PortScan
97.80% 99% 99% 99%

SVM 69.79% 80% 70% 65%

2018 [16]

C5.0

DDoS

85.92% 86.45% 99.70% -

RF 86.29% 86.80% 99.63% -

NB 90.06% 79.99% 86.03% -

SVM 92.44% 79.88% 84.36 -

+: Only snippets of the results are listed in the table. DDoS: Distributed Denial of Service; MLP: Multilayer Perceptron; DL: Deep Learning;
NB: Nav̈e Bayes; DNN: Deep Neural Network; RBF: Radial Basis Function; FTP: File Transfer Protocol; RF: Random Forest; KNN: k-Nearest
Neighbour; SSH: Secure Shell; LR: Logistic Regression; SVM: Support Vector Machine; LSTM: Long short-term memory.

Furthermore, Vinayakumar et al. [12] highlighted in their recent research that by
observing the saliency map for the CICIDS2017 dataset, it is shown that “the dataset
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requires few more additional features to classify the connection record correctly” [12]. The
authors’ observations highlighted this need for the Denial of Service (DoS) class specifically.
As later discussed in Section 4, this concurs with our findings regarding the attack classes
that require the additional abstraction level of features to be differentiated from benign
traffic and other attacks.

Table 2. CICIDS2017 recent papers performance summary (2).

Accuracy
Year Ref Approach

Normal SSH DDoS PortScan

2019 [12] +

DNN (1 Layer) 55.9% 95.9% 85.4% 85.2%

DNN (5 Layers) 56.8% 95.8% 85.5% 85.5%

LR 88.5% 98.4% 92.2% 92.6%

NB 32.2% 75.7% 98.5% 87.9%

KNN 90.9% 97% 99.5% 99.6%

SVM (RBF) 79.8% 98.8% 92.9% 99%
+: Only snippets of the results are listed in the table.

2.1. Feature Engineering

In the ML domain, features are used to represent a measurable value, a characteristic
or an observed phenomenon [17]. Features are informative: they are usually represented
numerically; however, some can be in categorical or string format. When categorical
features are used for ML, encoding is used to transform them into a numerical (ML-
friendly) format.

Obtaining features can be done by construction, extraction, or selection processes, or a
combination of them [18]. Feature construction creates new features by mining existing
ones by finding missing relations within features. While extraction works on raw data
and/or features and apply mapping functions to extract new ones. Selection works on
getting a significant subset of features. This helps reduce the feature space and reduce the
computational power. Feature selection can be done through three approaches, as shown
in Table 3: filter, wrapper, and embedded.

Table 3. Feature selection approaches.

Approach Description Advantages Disadvantages

Filter [19]
Selects the most

meaningful features
regardless of the model

Low Execution Time and
over-fitting

May choose redundant
variables

Wrapper [20] Combine related variables
to have subsets Consider interactions Over-fitting risk and High

execution time

Embedded [21]
Investigate interaction
more thoroughly than

Wrapper

Result in an optimal subset
of variables –

Law et al. [22] highlight the importance of feature selection for ML models. The
authors discuss its effect on boosting performance and reducing the effect of noisy features,
specifically when training using small datasets. Furthermore, non-uniform class distribu-
tions should be considered to avoid misleading results when applying a supervised feature
selection [23]. Alternatively, when the dataset labels are not available, an unsupervised fea-
ture selection is used. Mitra et al. [24] categorise unsupervised feature selection techniques
into (a) clustering performance maximisation and (b) feature dependencies and relevance.
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2.2. Artificial Neural Network

ANNs are inspired by the human biological brain. McCulloch and Pitts [25] proposed
the first ANN in 1943. Later in 1986, Rumelhart and McClelland [26] introduced the
back propagation concept. ANNs are used to estimate a complex function by learning to
generalise using the given input values and the corresponding output values.

An ANN is generally composed of an input layer, zero or more hidden layers, and
an output layer. Each layer is composed of one or more neurons. Neurons in layer i
are connected to the ones in layer j, j = i + 1. This connection is called weight and is
represented as wij. During the training process, the input values are propagated forward,
the error is calculated (based on the expected output), then the error is propagated, and the
weights are adjusted accordingly. The weight of a connection implies the significance of
the input.

Formally, the output of a single neuron is calculated as shown in Equation (1).

O = f ((
n

∑
i=0

xi.wi) + b) (1)

where n represents the number of inputs to this node, xi is the ith input value, wi is the
weight value, b is a bias value. Finally, f is the activation function, which squashes the
output. Activation function can be, but not limited to, Tanh, Sigmoid, and Rectified Linear
Unit (RELU).

The error E is calculated at the final layer using the difference between the expected
output and the predicted output (which is, as aforementioned, a result of propagating the
input signal). Finally, the weights are updated based on Equation (2)

wt+1 = wt − η
dE
dwt

(2)

where wt is the old weight and wt+1 is the new weight. η is the learning rate to control the
gradient decent steps.

The weight of a neuron is directly proportional to the significance of the node’s input.
This is because the output of any neuron is calculated by multiplying the weights by the
input values.

The next section will discuss the proposed features, then Section 4 outlines the experi-
ments where ANNs are used for the classification purpose.

3. Methodology

Given a raw capture of internet traffic in the form of a raw “pcap” file, two levels of
features are traditionally extracted. As illustrated in Figure 1, at the lower level, individual
packets are inspected and packet-based features are extracted. These features include flags,
packet size, payload data, source and destination address, protocol, etc. At the higher
level, flow features (unidirectional and bidirectional) are extracted that consider all the
individual packets in a particular communication.

In this paper, a novel additional (third) level of abstraction is proposed where bidi-
rectional flows are grouped into bundles and flow aggregation features are derived. Flow
aggregation features aim at representing information about the whole communication
between network hosts. These features provide additional traffic characteristics by group-
ing individual flows. In this setup, it is assumed that legitimate hosts establish secure
communication using any of the well-known authentication mechanisms [27,28]. After
these aggregated features are calculated, they are propagated back to each bidirectional
flow in the bundle/group. This is represented with the superscript + sign in Figure 1. The
two proposed flow aggregation features in this manuscript are (a) the number of flows and
(b) the source ports delta.

The first feature, ‘Number of flows’, represents the number of siblings in a flow bundle.
Given the communication between a host, A, and one or more hosts, all flows initiated by A
are counted. This feature represents the communication flow. The advantage of this feature
is that it is significant for attacks that intentionally spread their associated requests over
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time when targeting a single host. However, when grouped, the bundled flow will have
additional information about how many flows are in the same group that can resemble the
communication pattern. Moreover, it can represent patterns when an attacker targets many
hosts, but each with a few communications, when grouped, a pattern can be identified.

Raw	Packets

Packet-based	
Features

Unidirectional	Flow	
Features

Bidirectional	Flow	
Features

Aggregated	Bidirectional	
Flow	Features

Figure 1. Networking features abstraction levels.

Figure 2 visualises the bundling process of flows. Each letter (Figure 2 top) represents
a node/host in the network. Each double arrow represents a bidirectional flow with
the notation XYi, such that X is the source node, Y is the destination node, and i is the
communication counter. Finally, the colours in Figure 2 represent the grouping of flows
into bundles.

A B C D E

AB1

AB2

BC1

DC1

DE1

DE2
AC1

AD1

BC2

Nodes

Time

Figure 2. Flow aggregation of network traffic flows. Each colour represents an aggregated flow.

With reference to Figure 2, the first bundle (blue) has 4 flows, thus AB1, AB2, AC1,
and AD1 will have the ‘number of flows’ feature set to 4. Similarly, the second bundle
(green), BC1 and BC2 will have the value 2 and so on.

The second feature ‘source ports delta’ demonstrates the ports delta. This feature is
calculated using all the port numbers used in a bundle communication flow. Algorithm 1
illustrates the feature calculation. The advantage of this feature is to capture the level
and variation pattern of used ports in legitimate traffic. This feature adds this piece of
information to each flow, which then enhances the learning and classification as further
discussed in Section 4.
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Algorithm 1 Calculate Ports Delta Feature.
Input: List of bundle flow ports
Output: Ports Delta Feature

1: ports.sort()

2: for i ∈ length(ports)− 1 do

3: diff[i]← abs(ports[i+1] - ports[i])

4: end for

5: avg_diff← diff.mean()

6: return avg_diff

To validate the significance of the newly added features proposed in this manuscript,
a feature selection algorithm is used. Recursive Feature Elimination (RFE) [29] is used to
select the best k features to use for classification. Over the various experiments discussed in
Section 4, RFE demonstrates that the two features are important for identifying classes that
mimic benign behaviour. This emphasises the case in which the additional level of feature
abstraction is needed. When attackers attempt to mimic benign behaviour, the attacks are
in-distinctive using flow features solely. Therefore, new features are needed.

4. Experiments and Results

In this section, the conducted experiments are explained and the results are discussed.
For a dataset to be appropriate to evaluate the proposed features, it has to (a) include
both benign and cyber-attack traffic, (b) cover benign mimicking cyber-attacks, and (c) in-
volve multiple attackers to guarantee the aggregation logic. Based on these criteria, the
CICIDS2017 dataset [6] is selected. The dataset contains a wide range of insider and out-
sider attacks alongside benign activity. Sarker et al. [8] highlight in their survey that the
CICIDS2017 dataset is suitable for evaluating ML-based IDS including zero-day attacks [8].
As aforementioned, the focus of this manuscript is on attacks that mimic benign behaviour.

Therefore, the attacks of interest from the CICIDS2017 dataset are (1) DoS Slowloris
and (2) DoS SlowHTTPTest. These two attacks implement low-bandwidth DoS attacks in
the application layer. This is done by draining concurrent connections pool [30]. Since these
two attacks are performed slowly, they are typically hard to detect. Alongside the DoS
SlowHTTPTest and Slowloris, two other attacks are of interest for comparative purposes:
(3) PortScan and (4) DoS Hulk. These two attacks resemble the case where attacks are easy
to discriminate from benign traffic.

First, each of these four attacks and benign pcap files is processed. The output of this
process is bidirectional flow features and aggregation features. Second, RFE is used to
select the best k = 5 features. Third, the selected features are used as input to an ANN
that acts as the classifier. The ANN architecture is composed of 5 input neurons, 1 hidden
layer with 3 neurons, and an output layer. It is important to mention that since the focus is
on the evaluation of the additional level of features and not the classifier complexity, the
number of chosen features is small, and a straightforward ANN is used.

Three experiments are performed. The first experiment is a binary classification of
each of the attacks of interest (Section 4.2). The second experiment is a 3-class classification
(Section 4.3). This experiment evaluates the classification of benign, a benign-mimicking
attack, and a distinctive attack (i.e., do not mimic benign behaviour). Finally, the third
experiment is a 5-class classification including all classes of interest (Section 4.4). Each
experiment is performed twice, (a) with the bidirectional features only and (b) with the
bidirectional features and the aggregation features. The RFE is performed independently in
each experiment. It is important to highlight that the features selected by RFE confirm the
importance of the proposed flow aggregation ones as follows. The top two RFE features
for the 5-class classification are ‘Number of Flows’ and ‘Source ports delta’. For the three
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class classification of the Slowloris, the top two RFE features are ‘Source ports delta’ and
‘Number of Flows’. Similarly, the ‘Number of Flows’ feature is chosen by RFE for the 3-class
classification and the ‘Source ports delta’ for the binary classification. This confirms the
significance of the new features prior to analysing the classification results when using
the additional features. For the purpose of evaluation comparison, the RFE features are
selected without the flow aggregation ones in consideration.

4.1. Evaluation Metrics

In this section, the used evaluation metrics are discussed. The evaluation is performed
in a 10-fold cross-validation manner. Recall, precision, and F1-score are reported for each
experiment. Their formulas are shown in Equations (3)–(5), respectively. True Positive (TP)
represents attack instances correctly classified, False Negative (FN) represents attack in-
stances misclassified, and False Positive (FP) represents benign instances misclassified.

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1 =
2TP

2TP + FP + FN
(5)

4.2. Binary Classification Results

The first experiment is a binary classifier. Each of the attacks of interest is classified
against benign behaviour. Tables 4 and 5 show the precision, recall, and F1-score for
DoS Slowloris and DoS SlowHTTPTest, respectively. Moreover, the table lists the five
features picked by RFE. By observing the recall of the attack class with the flow aggregation
features included, it can be seen that the recall rose from 83.69% to 91.31% for the Slowloris
attack class and from 65.94% to 70.03% for the SlowHTTPTest attack class. Unlike benign
mimicking attacks, aggregation features did not provide benefit when classifying attacks
that do not mimic benign traffic such as PortScan and DoS Hulk, as shown in Table 6 and
Table 7. Precision and recall were high (99%) for both of these attacks without utilising the
aggregation flow features. This is coherent with the discussion in Section 2.

Finally, Figure 4 additionally visualises the effect flow aggregation features have on
the recall of attack classes. It is observed that the two attack classes that mimic benign
behaviour (DoS, SlowHTTPTest and Slowloris) had an increase in recall. However, for the
other classes (PortScan and DoS Hulk) the aggregation did not impact the classification
performance. This is due to the strength of bidirectional flow features to discriminate classes.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Benign Portscan Slowloris SlowHTTPTest Hulk

R
ec

al
l

Without Aggregation With Aggregation

Figure 3. Multi-class Classification|Impact of Aggregation on the Classes Recall.



Sensors 2021, 21, 1761 9 of 17

Table 4. Benign vs. Slowloris classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd Min Inter-arrival Time
- Bwd Min Inter-arrival Time
- Bwd mean time between the first packet and each
successive packet
- Fwd mean time between the first packet and each
successive packet
- Fwd STD Inter-arrival Time

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 99.04%± 0.08% 99.86%± 0.13% 99.45%± 0.05% 99.49%± 0.08% 99.99%± 0.01% 99.74%± 0.04%

Slowloris 97.35%± 2.35% 83.69%± 1.42% 89.97%± 0.81% 99.73%± 0.26% 91.31%± 1.35% 95.33%± 0.76%

Table 5. Benign vs. SlowHTTPTest classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd mean time between the first packet and each
successive packet
- Bwd mean time between the first packet and each
successive packet
- Fwd Min Inter-arrival Time
- Bwd Min Inter-arrival Time
- Fwd Max Inter-arrival Time

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 98.49%± 0.04% 99.94%± 0.02% 99.21%± 0.03% 98.68%± 0.40% 99.87%± 0.14% 99.27%± 0.17%

SlowHTTP
Test 98.13%± 0.56% 65.94%± 0.98% 78.87%± 0.82% 96.24%± 3.68% 70.03%± 9.27% 80.63%± 5.21%

Table 6. Benign vs. DoS Hulk classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Bwd Min Packet Length
- Fwd Num Reset Flags
- Bwd Num Push Flags
- Bwd Num Reset Flags
- Fwd Max Inter-arrival Time

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 99.83%± 0.04% 99.99%± 0.01% 99.91%± 0.02% 100.00%± 0.00% 100.00%± 0.00% 100.00%± 0.00%

Hulk 99.98%± 0.03% 99.51%± 0.10% 99.74%± 0.06% 99.99%± 0.02% 99.99%± 0.02% 99.99%± 0.02%

Table 7. Benign vs. PortScan classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd STD Packet Length
- Bwd Min Packet Length
- Fwd Max Packet Length
- Fwd Mean Packet Length
- Fwd Number of Push Flags

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 99.40%± 0.03% 99.36%± 0.93% 99.38%± 0.45% 99.51%± 0.03% 100.00%± 0.00% 99.75%± 0.01%

Portscan 99.36%± 0.92% 99.39%± 0.04% 99.37%± 0.45% 100.00%± 0.00% 99.50%± 0.03% 99.75%± 0.01%
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Figure 4. Binary classification|Impact of aggregation on attack class recall (benign vs. attack classifi-
cation).

4.3. Three-Classes Classification Results

In the second experiment, a three-class classification is performed. Benign and
PortScan classes (which act as the discriminative class) are used with each of the other
attack classes. Similarly, experimental results demonstrate the high recall of both benign
and PortScan with and without the use of flow aggregation features and the rise in the
other attack recall when flow aggregation features are used.

By observing Table 8, the recall of DoS Slowloris class increased from 78.25% to 99.09%
when flow aggregation was used. Similarly, the DoS SlowHTTPTest rose from 0% to 58.97%
in Table 9. Finally, DoS Hulk showed similar behaviour to the binary classification as
shown in Table 10.

Table 8. Benign vs. PortScan vs. Slowloris classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd STD Packet Length
- Bwd Min Packet Length
- Bwd mean time between the first packet and each
successive packet
- Fwd mean time between the first packet and each
successive packet
- Fwd Max Packet Length

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 98.31%± 0.16% 97.69%± 1.02% 98.00%± 0.49% 99.46%± 0.04% 99.99%± 0.01% 99.73%± 0.02%

Portscan 97.85%± 0.99% 99.60%± 0.12% 98.71%± 0.45% 100.00%± 0.01% 99.50%± 0.03% 99.74%± 0.01%

Slowloris 96.95%± 1.62% 78.25%± 1.68% 86.59%± 1.45% 99.75%± 0.15% 99.09%± 0.44% 99.42%± 0.21%
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Table 9. Benign vs. PortScan vs. SlowHTTPTest classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd Mean Packet Length
- Fwd STD Packet Length
- Fwd Max Packet Length
- Bwd mean time between the first packet and each
successive packet
- Fwd mean time between the first packet and each
successive packet

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 95.10%± 0.04% 96.40%± 0.12% 95.75%± 0.06% 97.67%± 1.25% 99.99%± 0.01% 98.81%± 0.64%

Portscan 96.45%± 0.11% 99.52%± 0.05% 97.96%± 0.06% 99.99%± 0.02% 99.42%± 0.15% 99.70%± 0.08%

SlowHTTP Test 0.00%± 0.00% 0.00%± 0.00% 0.00%± 0.00% 79.62%± 39.81% 58.97%± 29.88% 67.67%± 34.00%

Table 10. Benign vs. PortScan vs. DoS Hulk classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd Mean Packet Length
- Fwd Max Packet Length
- Fwd Number of RST Flags
- Fwd Number of Push Flags
- Bwd Number of RST Flags

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 98.10%± 0.05% 99.30%± 0.95% 98.69%± 0.49% 99.57%± 0.25% 99.94%± 0.04% 99.75%± 0.12%

Portscan 99.10%± 0.94% 99.39%± 0.04% 99.24%± 0.48% 99.95%± 0.03% 99.73%± 0.24% 99.84%± 0.11%

Hulk 99.94%± 0.03% 98.56%± 0.06% 99.25%± 0.03% 99.98%± 0.03% 99.50%± 0.06% 99.74%± 0.03%

Figure 5 visualises the effect flow aggregation features have on the recall of attack
classes in a three-class classification problem. The recall for DoS SlowHTTPTest without
using the flow aggregation was 0%.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

SlowHTTPTest Slowloris Hulk

R
ec
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l

Without Aggregation With Aggregation

Figure 5. Multi-class classification|Impact of aggregation on the second attack class recall (benign vs.
PortScan vs. attack classification).

4.4. Five-Classes Classification Results

The third experiment combines all the classes of interest in a five-class classification
problem. Similarly, the experiment is performed twice—with and without the use of flow
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aggregation features. Table 11 summarises the performance per class for this experiment.
A few observations are as follows; (a) the recall of DoS Slowloris rose from 1.40% to 67.81%.
(b) The recall of DoS SlowHTTPTest rose from 0% to 4.64% only. This is not because the new
features were not significant, but because the model classified DoS SlowHTTPTest as DoS
Slowloris. In this case, flow aggregation features serve to discriminate benign-mimicking
attacks from benign traffic but not to discriminate them from each other. Without the
aggregation features, 82.84% of DoS SlowHTTPTest attack instances were classified as
benign; however, this dropped to 58% when the flow aggregation features were used.

Table 11. Five classes classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

- Fwd Mean Packet Length
- Bwd Mean Inter-arrival time
- Fwd mean time between the first packet and each
successive packet
- bwd mean time between the first packet and each
successive packet
- Fwd Max packet length

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 90.97%± 2.99% 96.77%± 0.80% 93.74%± 1.33% 95.11%± 2.11% 97.11%± 3.30% 96.05%± 1.84%

Portscan 97.12%± 0.80% 98.90%± 1.05% 98.00%± 0.38% 99.92%± 0.13% 99.41%± 0.15% 99.67%± 0.08%

Slowloris 18.89%± 37.78% 1.40%± 2.80% 2.61%± 5.22% 66.88%± 8.94% 67.81%± 31.08% 63.14%± 25.95%

SlowHTTP
Test 0.00%± 0.00% 0.00%± 0.00% 0.00%± 0.00% 34.12%± 42.81% 4.64%± 6.51% 8.10%± 11.21%

Hulk 93.75%± 6.47% 98.61%± 0.73% 95.98%± 3.14% 93.00%± 8.58% 99.34%± 0.15% 95.85%± 4.87%

To overcome this low recall, extra features were chosen. Five features were added
and the hidden layer neurons were 8. The results of this classification experiment are
summarised in Table 12. The rise in the recall for the attack classes with and without flow
aggregation features was as follows; from 33.94% to 80.39% and 21.45% to 64.91% for DoS
Slowloris and DoS SlowHTTPTest, respectively.

This behaviour is recognised in Figure 3. It is important to mention that there was
a rise in the recall of all classes. This rise was more significant for the attack classes that
mimic benign behaviour than others.

Table 12. Five classes classification (5-fold cross validation).

Without Aggregation With Aggregation

RFE
Selected
Features

Five RFE features
+

- Fwd Max Inter-arrival time
- Fwd STD Inter-arrival time
- Fwd Number of Reset Flags
- Fwd Number of Bytes
- Bwd Max Inter-arrival time

- Without Aggregation Features
+

- Number of Flows
+

- Source Ports Delta

Precision Recall F1 Precision Recall F1

Benign 92.37%± 3.56% 96.34%± 0.11% 94.28%± 1.83% 97.35%± 0.53% 99.90%± 0.13% 98.61%± 0.31%

Portscan 96.48%± 0.07% 99.74%± 0.03% 98.08%± 0.04% 99.84%± 0.18% 99.59%± 0.20% 99.71%± 0.10%

Slowloris 38.91%± 47.65% 33.94%± 41.60% 36.25%± 44.41% 93.52%± 5.64% 80.39%± 2.66% 86.44%± 3.94%

SlowHTTP
Test 37.52%± 45.98% 21.45%± 26.27% 27.29%± 33.44% 96.80%± 2.72% 64.91%± 16.75% 76.61%± 12.25%

Hulk 99.92%± 0.14% 98.63%± 0.67% 99.27%± 0.29% 99.88%± 0.14% 99.69%± 0.21% 99.78%± 0.15%
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4.5. Zero-Day Attack Detection Revaluation

The authors’ previous work in [31] proposed an autoencoder model to detect zero-
day attacks. The model relies on the encoding–decoding capabilities of autoencoders to
flag unknown (zero-day) attacks. The model performance was evaluated using all the
CICIDS2017 dataset attack classes using three threshold values (0.15, 0.1, and 0.05). The
published results demonstrate the ability of the autoencoder to effectively detect zero-day
attacks; however, the attacks that mimic benign behaviour experienced very low detection
rates. In this section, the published model [31] was re-evaluated using the proposed higher
level of feature abstraction. The aim is to assess the impact of the new features on zero-day
attack detection, specifically benign mimicking ones, whose detection rate is low.

Table 13 lists the zero-day detection accuracies when flow aggregation features are
used alongside the bidirectional flow ones, which were used solely in the previously
published work. The results show a high detection rate of all attacks, including the attacks
that were detected with low accuracy without the flow aggregation features in [31].

Table 13. CICIDS2017 autoencoder zero-day detection results using flow aggregation features.

Class Accuracy

Threshold 0.15 0.1 0.05

Benign (Validation) 89.5% 85.62% 67.59%

FTP Brute-force 99.81% 99.92% 100%

SSH Brute-force 99.37% 100% 100%

DoS (Slowloris) 94.12% 95.77% 100%

DoS (GoldenEye) 100% 100% 100%

DoS (Hulk) 100% 100% 100%

DoS (SlowHTTPTest) 99.91% 100% 100%

DDoS 99.79% 100% 100%

Heartbleed 99.13% 100% 100%

Web BF 99.7% 99.94% 100%

Web XSS 100% 100% 100%

Web SQL 77.78% 77.78% 100%

Infiltration—Dropbox 1 100% 100% 100%

Infiltration—Dropbox 2 100% 100% 100%

Infiltration—Dropbox 3 46.76% 68.68% 99.82%

Infiltration—Cooldisk 98.08% 100% 100%

Botnet 89.83% 98.98% 100%

Portscan 99.81% 99.85% 100%

To visualise the impact of flow aggregation features on zero-day attack detection,
Figure 6 shows the effectiveness of flow aggregation features by contrasting the results
that are discussed in this section versus the ones in [31]. It is observed that all attacks
experienced a rise in detection accuracy when the flow aggregation features were used.

In summary, flow aggregation features prove their effectiveness in providing a deeper
representation of a network traffic, thus improving classification performance. This is
reflected in the evaluation of both zero-day attacks detection and multi-class attack classifier.
The proposed approach has the following three limitations. (a) The unavailability of traffic
flow data affects the flow aggregation features computation. (b) More features can be
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derived from the aggregated flows that can further improve the classification accuracy.
Lastly, (c) the proposed features are evaluated using the CICIDS2017, real-time evaluation
will provide additional insights.
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(b) Threshold = 0.1
Figure 6. CICIDS2017 autoencoder zero-day detection comparison using flow aggregation.

5. Conclusions

Traditional traffic features have proven powerful when combined with sufficient
training examples to train ML-based classifiers, and the trained models are capable of
classifying some cyber-attacks. However, some cyber-attacks are left undetected. To
resolve this limitation, there are two alternatives: (a) gather huge amounts of data to be
able to build even more complex models, which is difficult and impractical in some cases,
and (b) represent the data using more powerful features. In this paper we appoint the
second approach.

This paper presents an additional abstraction level of network flow features. The objec-
tive is to improve the cyber-attack classification performance for attacks that mimic benign
behaviour. Cyber-attacks are becoming more complex, and attackers utilise the available
knowledge to tailor attacks that can bypass detection tools by acting like benign traffic.

The idea is to aggregate bidirectional flows to bundles and compute bundle-specific
features. Once the features are computed, the values are populated back to the bidirectional



Sensors 2021, 21, 1761 15 of 17

flows. The advantage of these additional features is that the bidirectional flows have some
additional knowledge/information about their sibling flows.

The proposal is evaluated using the CICIDS2017 dataset. A group of attacks are
used to assess the significance of the new features as well as the performance gain. Four
cyber-attack classes are used beside benign class: DoS Slowloris, DoS SlowHTTPTest, DoS
Hulk, and PortScan. ANN is used as the classifier. Three experiments are conducted:
binary, three-class, and five-class classification. The experiments confirm the need for this
additional level of features. The results further demonstrate the significance of the added
features for classes that are hard to discriminate from benign, such as DoS Slowloris and
DoS SlowHTTPTest. The recall of the cyber-attack classes experiences a high rise when the
additional features are used. For example, it is observed that the recall of the DoS Slowloris
class rises from 83.97% with the bi-directional features to 91.31 in binary classification,
from 78.28% to 99.09% for 3-class classification and from 33.94% to 80.39% for 5-class
classification.

Furthermore, the additional features prove significant when reassessing the authors’
previously published work on detecting zero-day attacks. Benign-mimicking attacks
suffered low detection accuracy; however, with the use of flow aggregation features, zero-
day attack detection experience a high rise in accuracy.

Future work involves evaluating the significance of the flow aggregation against other
operations alongside extracting other high-level features based on needs.
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