
January 25, 2021 16:35 IJBC_CYDCL

International Journal of Bifurcation and Chaos
c⃝ World Scientific Publishing Company

Cryptanalysis of some self-synchronous chaotic stream ciphers and
their improved schemes

Baoju Chen∗, Simin Yu†
School of Automation, Guangdong University of Technology,

Guangzhou 510006, P. R. China
∗bogychan@foxmail.com
†siminyu@163.com

David Day-Uei Li‡
Faculty of Science, University of Strathclyde,

Glasgow G4 0RE, U. K.
‡David.Li@strath.ac.uk

Jinhu Lü§
School of Automation Science and Electrical Engineering, Beihang University,

Beijing 100191, P. R. China
§jhlu@iss.ac.cn

Received (to be inserted by publisher)

In this paper, a cryptanalysis method that combines a chosen-ciphertext attack with a
divide-and-conquer attack by traversing multiple non-zero component initial conditions (DCA-
TMNCIC) is proposed. The method is used for security analysis of n-D (n=3,4,5,6,7,8) self-
synchronous chaotic stream ciphers that employ a product of two chaotic variables and three
chaotic variables (n-D SCSC-2 and n-D SCSC-3), taking 3-D SCSC-2 as a typical example for
cryptanalysis. For resisting the combinational effect of the chosen-ciphertext attack and DCA-
TMNCIC, several improved chaotic cipher schemes are designed, including 3-D SCSC based on
a nonlinear nominal system (3-D SCSC-NNS) and n-D SCSC based on sinusoidal modulation
(n-D SCSC-SM (n=3,4,5,6,7,8)). Theoretical security analysis validates the improved schemes.

Keywords: chosen-ciphertext attack; DCA-TMNCIC; chaotic stream cipher; n-D SCSC-2; 3-D
SCSC-NNS; n-D SCSC-SM.

1. Introduction
From a theoretical perspective, there are many similarities between chaos theory and modern cryptogra-
phy. Consequently, chaotic maps have been adopted to construct chaotic ciphers for information encryption.
Since the logistic map was used in cryptography [Matthews, 1989], research on chaotic cryptosystems has
been continuously and rapidly developed.

The working modes of chaotic cryptosystems can be roughly classified as non-feedback mode (NFM),
plaintext association mode (PAM), and ciphertext feedback mode (CFM). For NFM, as plaintexts and
ciphertexts are independent of the keystreams, the cryptanalyst can directly obtain equivalent keys using

1

January 25, 2021 16:35 IJBC_CYDCL

2 B. Chen et al.

Table 1. The deciphered NFM using basic cryptographic analysis methods

Analysis algorithm Algorithm structure Analysis method

Image encryption cryptosystem
based on binary bit planes extraction and

multiple chaotic maps [Shafique & Shahid, 2018]
Permutation-Diffusion Chosen-plaintext attack [Wen & Yu, 2019]

Image encryption algorithm based on DNA
encoding and spatiotemporal chaos [Song & Qiao, 2015] Permutation-Diffusion Chosen-plaintext attack and

chosen-ciphertext attack [Wen et al., 2019]

Image cipher based on 3D bit
matrix and Latin cubes [Xu & Tian, 2019] Permutation-Diffusion-Permutation Chosen-plaintext attack and

differential attack [Zhang & Yu, 2019]

Image encryption based on three-dimensional
bit matrix permutation [Zhang et al., 2016] Permutation-Diffusion Chosen-plaintext attack [Wu et al., 2018]

Image encryption scheme using lookup
table-based confusion and diffusion [Chen et al., 2015] Permutation-Diffusion Chosen-plaintext attack and

chosen-ciphertext attack [Hu et al., 2017]

basic cryptanalysis methods (such as known-plaintext attack, chosen-plaintext attack, and chosen-ciphertext
attack). Some examples are listed in Table 1. In addition, compressive sensing based methods have also
been applied to the image encryption[Ye et al., 2020b]. For encryption algorithms with compressive sensing,
how to use the basic cryptanalysis methods to carry out the security analysis needs further research.

The main feature of PAM is that the keystream or the encryption process is related to plaintexts. It
can be further classified into two subcategories: one is that the keystream depends on the original keys and
the plaintext images [Ye & Huang, 2015; Zhao et al., 2015; Mollaeefar et al., 2017; Wu et al., 2017; Diab,
2018]; another is that the encryption process is controlled by some specific characteristics of the plaintext
images [Parvin et al., 2016; Huang et al., 2018; Niyat et al., 2017; Zhou et al., 2020]. Notably, many the
cryptanalyst found that the equivalent keys in some PAM encryption algorithms can also be obtained using
basic cryptographic methods. One example is the image encryption algorithm proposed in [Ye & Huang,
2015] based on autoblocking and electrocardiography, which was found [Li et al., 2018a] to be weak be-
cause by the known-plaintext attack one can obtain the equivalent keys using only one pair of a known
plain-image and its corresponding cipher-image. In [Li et al., 2018b], the cryptanalysis of an encryption
algorithm designed in [Niyat et al., 2017] based on hybrid hyper-chaos and cellular automata proposed
revealed three security drawbacks of the algorithm for which the equivalent keys can be obtained by using
the chosen-plaintext attack. In PAM, the secret keys or features required for decryption are determined by
plaintexts; however, the communication channels usually only transmit ciphertexts but not plaintexts. This
makes it unsuitable for real-time transmission of multimedia data.

In CFM, ciphertexts are fed back into the encryption process or the underlying chaotic system, and
the chaotic sequences generated by the chaotic system are related to the ciphertexts [Zhang et al., 2019;
Shahzadi et al., 2019; Lin et al., 2015; Chen et al., 2018, 2020]. Therefore, unlike NFM and PAM, the
cryptanalyst cannot directly obtain the equivalent keys but need to decipher the original keys. This is a
clear advantage relative to the other two modes.

Note that the chaotic cryptosystems described above are all symmetric cipher. Besides, the asymmet-
ric cipher is a hotspot in the research field of chaotic cryptosystems. For example, an asymmetric image
encryption algorithm based on a fractional-order chaotic system and the RSA public-key cryptosystem was
proposed in [Ye et al., 2020a]. In this encryption algorithm, the public key is used for encryption and the
private key for decryption, which can effectively address the issue of symmetric encryption key distribution
and ensure the security of the encryption algorithm.

In [Lin et al., 2015; Chen et al., 2018, 2020], several self-synchronous chaotic stream ciphers in CFM,
based on chaos anti-control principles, were designed and applied to multimedia chaotic secure communi-
cations. The ciphertext formats are shown in Table 2, where m(k) denotes the plaintext, p(k) denotes the
ciphertext, and xi(k)(i = 1, 2, 3, · · ·) denotes the chaotic variable. According to Table 2, the n-D SCSC
with the ciphertext p(k) = mod

(
⌊xi(k)⌋ , 28

)
⊕m(k) is called n-D SCSC-1; the n-D SCSC with the cipher-

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 3

text p(k) = mod
(⌊
xi(k)xj(k)/2

N1
⌋
, 28

)
⊕m(k) is called n-D SCSC-2; the n-D SCSC with the ciphertext

p(k) = mod
(⌊
xi(k)xj(k)xl(k)/2

N2
⌋
, 28

)
⊕ m(k) is called n-D SCSC-3, and so on, where n = 3, 4, 5, · · · ,

i, j, l = 1, 2, 3, · · · , i ̸= j ̸= l, N1 and N2 are the positive integers.
For n-D SCSC (n=3,7,8) listed in Table 2, any given initial conditions at the receiver can achieve

Table 2. The ciphertext forms of n-D SCSC

Encryption algorithm Ciphertext form

8-D SCSC-1 [Lin et al., 2015] Use p(k) = mod
(
⌊xi(k)⌋ , 28

)
⊕m(k)(i = 1, 2, 3)

to encrypt the RGB three primary colors.

3-D SCSC-2 [Chen et al., 2018] Use p(k) = mod
(⌊

x1(k)x2(k)/2
27
⌋
, 28

)
⊕m(k)

to encrypt the RGB three primary colors.

7-D SCSC-3 [Chen et al., 2020] Use p(k) = mod
(⌊

xi(k)xj(k)xl(k)/2
24
⌋
, 28

)
⊕m(k)

(i = 1, 2, 3; j = 3, 4, 5; l = 5, 6, 7) to encrypt the RGB three primary colors.

asymptotic synchronization, so the cryptanalyst can succeed security analysis by arbitrarily selecting dif-
ferent initial conditions. When the plaintext is encrypted by the lower 8 bits derived from a signal state
variable with a round-down operation and a modulo operation, the divide-and-conquer attack by traversing
single non-zero component initial conditions (DCA-TSNCIC) can be used for the security analysis of n-D
SCSC. For example, Lin et al. [Lin et al., 2015] proposed an 8-D SCSC-1 to encrypt the RGB three primary
colors, but Lin et al. [Lin et al., 2018] proposed a method that combines known-plaintext attack, chosen-
ciphertext attack, and DCA-TSNCIC to decipher the original keys. Notably, 8-D SCSC-1 was deciphered
in [Lin et al., 2018] using DCA-TSNCIC with eight single non-zero component initial conditions, where
ci(i = 1, 2, · · · , 8) was set as 27+8i(i = 0, 1, · · · , 7), respectively. The cryptanalysis method used in [Lin
et al., 2018] has the following two main features:

(1) The encryption algorithm proposed in [Lin et al., 2015] is relatively simple in that only 8-
D SCSC-1 with p(k) = mod

(
⌊xi(k)⌋ , 28

)
⊕ m(k) (i = 1, 2, 3) was used. Eight initial conditions

{(c1, 0, · · · , 0), · · · , (0, 0, · · · , c8)} were substituted into the iterative equation for the first iteration and
for the first divide-and-conquer attack, respectively. Then, the secret keys aij(1 ≤ i ≤ 3, 1 ≤ j ≤ 8) were
deciphered directly, providing essential prerequisites to decipher the subsequent secret keys aij(4 ≤ i ≤
8, 4 ≤ j ≤ 8).

(2) The deciphered secret keys aij(1 ≤ i ≤ 3, 1 ≤ j ≤ 8) were taken as the known conditions in a
global substitution method, and the nonlinear equations obtained in each subsequent iteration were further
simplified to be linear equations. Then, the unknown secret keys aij(4 ≤ i ≤ 8, 4 ≤ j ≤ 8) were deciphered
when the rank of the linear equations is equal to the number of aij(4 ≤ i ≤ 8, 4 ≤ j ≤ 8).

However, the DCA-TSNCIC used in [Lin et al., 2018] can only decipher the less-complicated n-D SCSC-
1. For the more-sophisticated n-D SCSC-2 and n-D SCSC-3 (n = 3, 4, 5, 6, 7, 8), only 3-D SCSC-2 and 3-D
SCSC-3 can be deciphered after five iterations, and the others cannot be deciphered. To address this issue, a
cryptanalysis method with a stronger attack intensity, the DCA-TMNCIC is presented in this paper, where
all possible choices for multiple non-zero component initial conditions are traversed through the exhaustive
method.

The main contributions of this paper are summarized as follows:
(1) A general method using DCA-TMNCIC is developed for security analyses of n-D SCSC-2 and n-D

SCSC-3 (n=3,4,5,6,7,8).
(2) 3-D SCSC-2 proposed in [Chen et al., 2018] is taken as a typical example for cryptanalysis by

combining chosen-ciphertext attack and DCA -TMNCIC.
(3) Several new chaotic cipher schemes are designed, including 3-D SCSC-NNS and n-D SCSC-SM

(n=3,4,5,6,7,8). Security analysis is performed, demonstrating that the improved schemes are secure against
combined effect of chosen-ciphertext attack and divide-and-conquer attack.

January 25, 2021 16:35 IJBC_CYDCL

4 B. Chen et al.

The rest of the paper is organized as follows: Section 2 introduces the description and security analysis
for n-D SCSC (n=3,4,5,6,7,8). Section 3 performs security analysis of 3-D SCSC-2 by combining chosen-
ciphertext attack and DCA-TMNCIC. Section 4 gives the comparisons and discussions of DCA-TSNCIC
and DCA-TMNCIC. Section 5 and Section 6 present several new improved chaotic cipher schemes, including
3-D SCSC-NNS and n-D SCSC-SM (n=3,4,5,6,7,8), along with their security analyses, respectively. Section
7 concludes the investigation.

2. Description and security analysis for n-D SCSC

2.1. Description of n-D SCSC
According to [Lin et al., 2015; Chen et al., 2018, 2020], n-D SCSC (n = 3, 4, 5, 6, 7, 8) is a class of self-
synchronous chaotic stream ciphers based on chaos anti-control principles, the main features of n-D SCSC
(n = 3, 4, 5, 6, 7, 8) are as follows:

(1) The ciphertexts containing the plaintext information are fed back into the underlying chaotic system
to realize self-synchronization.

(2) With a round down operation and a modulo operation, only the lower 8 bits of a single chaotic
variable or a product of multiple chaotic variables used for encryption-decryption, resulting in decreasing
leakage of chaotic information.

(3) With the different dimension, n-D SCSC (n = 3, 4, 5, 6, 7, 8) can be divided into single-channel
encryption scheme and multi-channel encryption scheme. With the difference of ciphertext forms, n-D SCSC
(n = 3, 4, 5, 6, 7, 8)can be classified as n-D SCSC-1, n-D SCSC-2 and n-D SCSC-3, the typical examples are
listed in Table 2.

The general form of n-D SCSC (n = 3, 4, 5, 6, 7, 8) can be derived, as

x(k + 1) = f(aij , x(k), p(k)) + g(σlp(k), εl), (1)

where k = 0, 1, 2, 3, · · · , p(k) denotes the ciphertext, f(aij , x(k), p(k)) denotes a nominal system
with ciphertext feedback, g(σlp(k), εl) denotes the uniformly bounded controller with ciphertext feed-
back. aij , σl, εl (i, j, l = 1, 2, · · · , 8) denote secret keys, x(k + 1) = (x1(k + 1), x2(k + 1), · · · , xn(k + 1))T ,
x(k) = (x1(k), x2(k), · · · , xn(k))T (n = 3, 4, 5, 6, 7, 8) denote chaotic variables.

In n-D SCSC-1, p(k) is derived as

p(k) = mod
(
⌊xi(k)⌋ , 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(
⌊xi(k)⌋ , 28

)
. (2)

In n-D SCSC-2, p(k) is derived as

p(k) = mod
(⌊
xi(k)xj(k)/2

N1
⌋
, 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(⌊
xi(k)xj(k)/2

N1
⌋
, 28

)
. (3)

In n-D SCSC-3, p(k) is derived as

p(k) = mod
(⌊
xi(k)xj(k)xl(k)/2

N2
⌋
, 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(⌊
xi(k)xj(k)xl(k)/2

N2
⌋
, 28

)
, (4)

where i, j, l = 1, 2, · · · , 8, i ̸= j ̸= l, N1 and N2 are the positive integers.

2.2. Loopholes of n-D SCSC
According to the description in Section 2.1, the main problems existing in n-D SCSC (n = 3, 4, 5, 6, 7, 8)
are as follows:

(1) In actual channel communications, such as LAN and WAN, any given initial conditions at the
receiver can achieve asymptotic synchronization. It can be seen that the initial conditions of the chaotic
system are weak secret keys. Therefore, in the process of security analysis, the cryptanalyst can select any
initial conditions favorable for cryptanalysis.

(2) In n-D SCSC (n = 3, 4, 5, 6, 7, 8), ciphertexts are fed back into the underlying chaotic system, and
the chaotic sequences generated by the chaotic system are related to the ciphertexts. However, with the

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 5

chosen-ciphertext attack, the chaotic iterative equation at the receiver will degenerate into a linear iterative
equation, simplifying the calculation complexity of the chaotic iterative equation and facilitating the security
analysis. For example, in Eq. (1), by setting p(k) = 0, Eq. (1) will degenerate into x(k+ 1) = f(aij , x(k)).
Compared with Eq. (1), the complexity of iterative operation of x(k+1) = f(aij , x(k)) is greatly reduced.

(3) According to Eq. (2)-(4), the plaintext is encrypted by the lower 8 bits derived from chaotic variables
with a round-down operation and a modulo operation. Thus, the cryptanalyst can only obtain the lower 8
bits of chaotic variables, but not all the information. However, DCA-TSNCIC proposed in [Lin et al., 2018]
can be used for the security analysis of n-D SCSC-1 (n = 3, 4, 5, 6, 7, 8). DCA-TMNCIC proposed in this
paper can be used for the security analyses of n-D SCSC-2 and n-D SCSC-3 (n = 3, 4, 5, 6, 7, 8).

To sum up, for n-D SCSC (n = 3, 4, 5, 6, 7, 8), with the chosen-ciphertext attack, by setting p(k) = 0,
Eq. (1) will degenerate into a linear iterative equation, one has

x(k + 1) = f(aij , x(k)). (5)

Then Eq. (2)-(4) can also be simplified as

m(k) = mod
(⌊

F (k)(c, aij)
⌋
, 28

)
, (6)

where k = 0, 1, 2, 3, · · · , F (k)(c, aij) denotes the relational expression between initial conditions and secret
keys, aij denotes secret keys, c denotes the value of initial condition.

According to Eq. (6), the cryptanalyst can set the appropriate value of c and use the divide-and-conquer
attack to obtain the relationship between secret keys and plaintexts. Then, the linear or nonlinear equations
can be obtained for solving the secret keys.

2.3. General methods for security analyses of n-D SCSC-2 and n-D SCSC-3
A general method that combines a theoretical analysis with Matlab R2017a and Maple 2018 software is
proposed for the security analyses of n-D SCSC-2, n-D SCSC-3, and other n-D SCSC (n = 3, 4, 5, 6, 7, 8).
Note that n-D SCSC (n = 3, 4, 5, 6, 7, 8) is one of the ciphers of CFM, and the ciphertexts are fed back
into the underlying chaotic system. Hence, the cryptanalyst needs to decipher the original keys but not
the equivalent keys. The cryptanalysis method for obtaining the original keys is different from that for
obtaining the equivalent keys. The general method proposed in this paper is the cryptanalysis method for
n-D SCSC (n = 3, 4, 5, 6, 7, 8), which is not suitable for other CFM, NFM and PAM. The flowchart of the
general method for security analysis is shown in Fig. 1.

Specifically, in Fig. 1, valid initial conditions are the initial conditions such that the secret keys appear
in p(k) = mod

(⌊
xi(k)xj(k)/2

N1
⌋
, 28

)
⊕m(k) or p(k) = mod

(⌊
xi(k)xj(k)xk(k)/2

N2
⌋
, 28

)
⊕m(k). In con-

trast, invalid initial conditions are the initial conditions such that the secret keys cannot appear therein.
Fig. 1 shows the flowchart using Matlab software to perform the divide-and-conquer attack and us-

ing Maple software to solve the nonlinear equations. When the solve(equations, variables) function in the
Maple software is used to solve the nonlinear equations, Maple software can find a numerical solution in a
limited time, so the secret keys can be successfully deciphered. If the cryptanalysis equation is iterated for
multiple times but the software is failed to converge, then one can confirm whether the secret keys have
been deciphered.

When solving nonlinear equations by Maple 2018 software, the higher dimension of n-D SCSC (n =
3,4,5,6,7,8), the longer time is needed to solve nonlinear equations. For n-D SCSC-2 and n-D SCSC-3 (n =
3,4), the numerical solution can be solved in a few seconds. For n-D SCSC-2 (n = 5,6,7,8), the numerical
solution can be solved in a few minutes. For n-D SCSC-3 (n = 5,6,7,8), it takes several hours.

As shown by Fig.1, the general method for security analyses of n-D SCSC-2 and n-D SCSC-3
(n=3,4,5,6,7,8) is as follows:

(1) Obtain all valid initial conditions, and substitute them into the iterative equation for performing
the first iteration and divide-and-conquer attack. Then, the first nonlinear equation system about the secret
keys is obtained and solved. If there is a solution, the secret keys are deciphered; otherwise, the iteration
will continue to the second one.

(2) Substitute the first iteration result into the iterative equation for performing the second iteration

January 25, 2021 16:35 IJBC_CYDCL

6 B. Chen et al.

and divide-and-conquer attack. Then, the second nonlinear equation system about the secret keys is ob-
tained. From the previous two iterations and divide-and-conquer attacks, two nonlinear equation systems
are obtained for solving the secret keys. If there is a solution, the secret keys are deciphered; otherwise, the
next iteration will continue.

(3) Obtain several (three or more) nonlinear equation systems about the secret keys by multiple (three
or more) iterations and divide-and-conquer attacks. From the previous multiple iterations and divide-and-
conquer attacks, several nonlinear equation systems are obtained for solving the secret keys. If there is a
solution, the secret keys are deciphered; otherwise, the secret keys are considered unable to be deciphered.

Solve the secret keys by two nonlinear equation systems obtained from the previous two iterations and divide-and-conquer attacks

Substitute the valid initial conditions into the iterative equation for the first iteration

Obtain the first nonlinear equation system about the secret keys

Is there a solution?
Yes

No
Substitute the results of the first iteration into the iterative equation for the second iteration

Solve the secret keys by the first nonlinear equation system

Obtain the second nonlinear equation system about the secret keys

Is there a solution?
Yes

No

Perform the first divide-and-conquer attack

Perform the second divide-and-conquer attack

Substitute the results of the second iteration into the iterative equation for the third iteration

Obtain the third nonlinear equation system about the secret keys

Is there a solution?
Yes

No

Perform multiple iterations and divide-and-conquer attacks

Is there a solution?
Yes

No
Fail to decipher the secret keys

Obtain several nonlinear equation systems about the secret keys

Solve the secret keys by three nonlinear equation systems obtained from the previous three iterations and divide-and-conquer attacks

Solve the secret keys by several nonlinear equation systems obtained from the previous multiple iterations and divide-and-conquer attacks

Perform the third divide-and-conquer attack

Are the basic conditions for divide-and-conquer attack met?

Yes

No

Fail to decipher the secret keys

Decipher the secret keys

Obtain valid initial conditions

Obtain the linear iterative equations

Use the decryption machine and valid initial conditions to obtain enough plaintext-ciphertext pairs

Let () 0 for chosen-ciphertext attackp k =

Fig. 1. Flowchart of the general method for security analyses of n-D SCSC-2 and n-D SCSC-3

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 7

3. 3-D SCSC-2 and its security analysis

3.1. Description of 3-D SCSC-2
According to [Chen et al., 2018], the iterative equation of 3-D SCSC-2 is given byx1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k)

x2(k + 1) = a21p(k) + a22x2(k) + a23x3(k)
x3(k + 1) = a31p(k) + a32x2(k) + a33x3(k) + ε sin(σp(k))

. (7)

The ciphertext p(k) in Eq. (7) is given by

p(k) = mod

(⌊
x1(k)x2(k)

227

⌋
, 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(⌊
x1(k)x2(k)

227

⌋
, 28

)
, (8)

where k = 0, 1, 2, 3, 4 · · · , m(k) denotes the corresponding plaintext, xi(k)(i = 1, 2, 3) denotes the chaotic
variable, and a11 = 0.09, a12 = −0.37, a13 = 0.1, a21 = −0.1, a22 = −0.18, a23 = 0.37, a31 = 0.27,
a32 = −0.27, a33 = 0.19, ε = 3.3× 108, σ = 2.5× 105 denote the secret keys, 227 denotes a constant.

3.2. Security analysis flowchart of 3-D SCSC-2
In 3-D SCSC-2, the lower 8 bits derived from the product of two chaotic variables are used to encrypt the
plaintext. When the method of combining the chosen-ciphertext attack and DCA-TMNCIC is adopted, all
the other secret keys can be deciphered except the secret keys multiplied by ciphertexts and depending on
nonlinear functions. The security analysis flowchart of 3-D SCSC-2 is shown in Fig. 2.

Fail to decipher the secret key

Substitute the results of the first iteration into the
iterative equation for the second iteration

Solve the secret keys by two nonlinear equation systems obtained from
the previous two iterations and divide-and-conquer attacks

Perform the second divide-and-conquer attack

11 12 13 22 23 32 33ˆ ˆ ˆ ˆ ˆ ˆ ˆObtain two solutions of , , , , , ,a a a a a a a

11 12 13 22 23 32 33ˆ ˆ ˆ ˆ ˆ ˆ ˆDetermine the unique solution of , , , , , ,
 by synchronization method

a a a a a a a

Substitute the valid initial conditions into the
iterative equation for the first iteration

Solve the secret keys by the nonlinear equation system

Perform the first divide-and-conquer attack

11 12 13 22 23

Obtain the first nonlinear equation system
ˆ ˆ ˆ ˆ ˆabout the secret keys , , , ,a a a a a

Obtain valid initial conditions

Obtain linear iterative equations

Let () 0 for chosen-ciphertext attackp k =

Use the decryption machine and valid initial conditions
to obtain enough plaintext-ciphertext pairs

11 12 13 22 23 32 33

Obtain the second nonlinear equation system
ˆ ˆ ˆ ˆ ˆ ˆ ˆabout the secret keys , , , , , ,a a a a a a a

Fig. 2. Security analysis flowchart of 3-D SCSC-2

3.3. Chosen-ciphertext attack
According to Fig. 2, with the chosen-ciphertext attack, the cryptanalyst can select ciphertexts favorable for
deciphering the secret keys of 3-D SCSC-2 so as to obtain the corresponding plaintexts. According to Eq.

January 25, 2021 16:35 IJBC_CYDCL

8 B. Chen et al.

(7), by setting p(k) = 0, a linear iterative equation is derived asx1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k)
x2(k + 1) = a22x2(k) + a23x3(k)
x3(k + 1) = a32x2(k) + a33x3(k)

, (9)

where k = 0, 1, 2, 3, 4, · · · . Then, p(k) = 0 is substituted into Eq. (8), which yields

m(k) = mod

(⌊
x1(k)x2(k)

227

⌋
, 28

)
. (10)

Since a multiplication, a round-down operation, and a modulo operation are involved in Eq. (10), the
cryptanalyst can only reveal the information of the lower 8 bits of x1(k)x2(k), but cannot obtain all the
information of x1(k)x2(k). However, combined with the chosen-ciphertext attack, DCA-TMNCIC can be
used to decipher the secret keys.

Under DCA-TMNCIC, there are seven options to select initial conditions. The set of all options is
derived as

(x1(0), x2(0), x3(0)) ∈
{
(c1, 0, 0), (0, c2, 0), (0, 0, c3),

(c1, c2, 0), (c1, 0, c3), (0, c2, c3), (c1, c2, c3)

}
, (11)

where xi(0)(i = 1, 2, 3) denotes the initinal condition, ci ̸= 0 (i = 1, 2, 3). Then, according Eq. (9)-(10), one
gets

m(1) = mod

(⌊
x1(1)x2(1)

227

⌋
, 28

)
= mod

(⌊
(a11x1(0) + a12x2(0) + a13x3(0))× (a22x2(0) + a23x3(0))

227

⌋
, 28

). (12)

Seven initial conditions in Eq. (11) are substituted into Eq. (12) one by one. If m(1) ̸= 0 is satisfied, it
is called a valid initial condition; if m(1) = 0 is satisfied, it is called an invalid initial condition. Note that
the attack intensity grows with the number of valid initial conditions.

3.4. DCA-TMNCIC
For 3-D SCSC-2 in Eqs. (7)-(8), any given initial conditions at the receiver can achieve asymptotic syn-
chronization, so the cryptanalyst can select any initial conditions favorable for deciphering 3-D SCSC-2.
According to Eq. (11), by setting appropriate values of ci (i = 1, 2, 3) with p(k) = 0, a prerequisite is
provided to decipher 3-D SCSC-2 by using DCA-TMNCIC. The procedure of DCA-TMNCIC is discussed
below.

3.4.1. Divide 64-bit binary numbers
The divide-and-conquer attack is a cryptanalysis method that divides the secret key into several independent
sub-blocks and then solves them block by block, reducing computational loads, to achieve cryptographic
deciphering. Thus, in 3-D SCSC-2, firstly the secret keys aij (i = 1, 2, 3; j = 1, 2, 3) are represented by the
64-bit binary numbers (aij)2 (i = 1, 2, 3; j = 1, 2, 3), where the 1st bit denotes the sign, and the remaining
63 bits denote the data. Then, (aij)2 (i = 1, 2, 3; j = 1, 2, 3) are divided into 8 sub-blocks, respectively. Each
sub-block is of 8 bits, denoted by (a

(k)
ij)2 (i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, · · · , 8). Finally, the relationship

between (aij)2 (i = 1, 2, 3; j = 1, 2, 3) and the secret key sub-block (a
(k)
ij)2 (i = 1, 2, 3; j = 1, 2, 3; k =

1, 2, · · · , 8) is derived, as

(aij)2 = (a
(1)
ij)2(a

(2)
ij)2(a

(3)
ij)2(a

(4)
ij)2(a

(5)
ij)2(a

(6)
ij)2(a

(7)
ij)2(a

(8)
ij)2 (i = 1, 2, 3; j = 1, 2, 3). (13)

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 9

Similarly, the estimated value sub-block (â
(k)
ij)2 (i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, · · · , 8) of (aij(k))2 (i =

1, 2, 3; j = 1, 2, 3; k = 1, 2, · · · , 8) can be obtained, and the estimated value (âij)2 of (aij)2 (i = 1, 2, 3; j =
1, 2, 3) can be derived, as

(âij)2 = (â
(1)
ij)2(â

(2)
ij)2(â

(3)
ij)2(â

(4)
ij)2(â

(5)
ij)2(â

(6)
ij)2(â

(7)
ij)2(â

(8)
ij)2 (i = 1, 2, 3; j = 1, 2, 3). (14)

For more complicated secret key expressions, they can also be represented by 64-bit binary numbers. For
example, when the secret key expression is aijaij (i = 1, 2, 3; j = 1, 2, 3), according to the above-described
method, the relationship between (aijaij)2 (i = 1, 2, 3; j = 1, 2, 3) and the secret key expression sub-block
((aijaij)

(k))2 (i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, · · · , 8) can be derived, as

((aijaij))2 = ((aijaij)
(1))2((aijaij)

(2))2 · · · ((aijaij)(7))2((aijaij)(8))2 (i = 1, 2, 3; j = 1, 2, 3). (15)

Similarly, the estimated values ((âij âij))2 (i = 1, 2, 3; j = 1, 2, 3) of (aijaij)2 (i = 1, 2, 3; j = 1, 2, 3) can
be derived, as

((âij âij))2 = ((âij âij)
(1))2((âij âij)

(2))2 · · · ((âij âij)(7))2((âij âij)(8))2 (i = 1, 2, 3; j = 1, 2, 3). (16)

3.4.2. Divide 64-bit binary numbers â11, â12, â13, â22, â23 through the first iteration
Firstly, by substituting k = 0 into Eq. (9), the first iteration result is derived as

x1(1) = a11x1(0) + a12x2(0) + a13x3(0)

x2(1) = a22x2(0) + a23x3(0)

x3(1) = a32x2(0) + a33x3(0)

. (17)

Then, by substituting x1(0) = c1, x2(0) = c2, x3(0) = c3 into Eq. (17), one has
x1(1) = a11c1 + a12c2 + a13c3

x2(1) = a22c2 + a23c3

x3(1) = a32c3 + a33c3

. (18)

According to the seven initial conditions given in Eq. (11), with the chosen-ciphertext attack, the
corresponding plaintext mi(1) (i = 1, 2, · · · , 7) can be obtained by substituting pi(1) = 0 (i = 1, 2, · · · , 7)
into Eq. (10). Note that both pi(1) = 0 (i = 1, 2, · · · , 7) and mi(1) (i = 1, 2, · · · , 7) are known, mi(1) (i =
1, 2, · · · , 7) are changed with different ci (i = 1, 2, 3), although pi(1) = 0 (i = 1, 2, · · · , 7) remains the same.
According to Eq. (18), consider the first iteration as follows:

(1) By substituting the first initial condition (c1, 0, 0) into Eq. (18), one obtains x1(1) = a11c1 ̸= 0,
x2(1) = x3(1) = 0, satisfying x1(1)x2(1) = 0. According to Eq. (10), one can see that (c1, 0, 0) is an invalid
initial condition.

(2) By substituting the second initial condition (0, c2, 0) into Eq. (18), one obtains x1(1) = a12c2 ̸= 0,
x2(1) = a22c2 ̸= 0, x3(1) = a32c2 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According to Eq. (10), one can see that
(0, c2, 0) is a valid initial condition.

(3) By substituting the third initial condition (0, 0, c3) into Eq. (18), one obtains x1(1) = a13c3 ̸= 0,
x2(1) = a23c3 ̸= 0, x3(1) = a33c3 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According to Eq. (10), one can see that
(0, 0, c3) is a valid initial condition.

(4) By substituting the fourth initial condition (c1, c2, 0) into Eq. (18), one obtains x1(1) = a11c1 +
a12c2 ̸= 0, x2(1) = a22c2 ̸= 0, x3(1) = a32c2 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According to Eq. (10), one can
see that (c1, c2, 0) is a valid initial condition.

(5) By substituting the fifth initial condition (c1, 0, c3) into Eq. (18), one obtains x1(1) = a11c1+a13c3 ̸=
0, x2(1) = a23c3 ̸= 0, x3(1) = a33c3 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According to Eq. (10), one can see that
(c1, 0, c3) is a valid initial condition.

(6) By substituting the sixth initial condition (0, c2, c3) into Eq. (18), one obtains x1(1) = a12c2+a13c3 ̸=
0, x2(1) = a22c2 + a23c3 ̸= 0, x3(1) = a32c2 + a33c3 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According to Eq. (10),
one can see that (0, c2, c3) is a valid initial condition.

January 25, 2021 16:35 IJBC_CYDCL

10 B. Chen et al.

(7) By substituting the seventh initial condition (c1, c2, c3) into Eq. (18), one obtains x1(1) = a11c1 +
a12c2+a13c3 ̸= 0, x2(1) = a22c2+a23c3 ̸= 0, x3(1) = a32c2+a33c3 ̸= 0, satisfying x1(1)x2(1) ̸= 0. According
to Eq. (10), one can see that (c1, c2, c3) is a valid initial condition.

In summary, since only the valid initial conditions are considered, by substituting the calculation results
of x1(1)x2(1) into Eq. (10), and setting ci = c (i = 1, 2, 3), one obtains mi(1) (i = 2, 3, · · · , 7) as follows:

m2(1) =

(
mod

(⌊
a12a22c

2
2

227

⌋
, 28

))
=

(
mod

(⌊
a12a22c

2

227

⌋
, 28

))
m3(1) =

(
mod

(⌊
a13a23c

2
3

227

⌋
, 28

))
=

(
mod

(⌊
a13a23c

2

227

⌋
, 28

))
m4(1) =

(
mod

(⌊
a22c2(a11c1 + a12c2)

227

⌋
, 28

))
=

(
mod

(⌊
(a11a22 + a12a22)c

2

227

⌋
, 28

))
m5(1) =

(
mod

(⌊
a23c3(a11c1 + a13c3)

227

⌋
, 28

))
=

(
mod

(⌊
(a11a23 + a13a23)c

2

227

⌋
, 28

))
m6(1) =

(
mod

(⌊
(a12c2 + a13c3)× (a22c2 + a23c3)

227

⌋
, 28

))
=

(
mod

(⌊
(a12 + a13)× (a22 + a23)c

2

227

⌋
, 28

))
m7(1) =

(
mod

(⌊
(a22c2 + a23c3)× (a11c1 + a12c2 + a13c3)

227

⌋
, 28

))
=

(
mod

(⌊
(a22 + a23)× (a11 + a12 + a13)c

2

227

⌋
, 28

))

. (19)

Refer F (·) in ⌊F (·)⌋ to as a secret key expression. Note that in Eq. (19), when c1 ̸= c2 ̸= c3, mi(1) (i =
2, 3, · · · , 7) cannot be further simplified, so the estimated values of secret key expressions cannot be obtained
by the divide-and-conquer attack. However, when c1 = c2 = c3 = c, the common factor c2 in mod (·) can be
extracted, so an appropriate value of c can be set to obtain the estimated values of secret key expressions
by the divide-and-conquer attack.

The following is an example of m4(1) in Eq. (19) to illustrate this situation. Similarly to Eqs. (15)-(16),
the relationship between (a11a22 + a12a22)2 and the sub-block ((a11a22 + a12a22)

(k))2 (k = 1, 2, · · · , 8) is
derived as

(a11a22 + a12a22)2 = ((a11a22 + a12a22)
(1))2((a11a22 + a12a22)

(2))2 · · · ((a11a22 + a12a22)
(8))2.

A similar way, the relationship between (â11â22 + â12â22)2 and ((â11â22 + â12â22)
(k))2 (k = 1, 2, · · · , 8)

is derived as

(â11â22 + â12â22)2 = ((â11â22 + â12â22)
(1))2((â11â22 + â12â22)

(2))2 · · · ((â11â22 + â12â22)
(8))2.

From the above description, the value of (â11â22 + â12â22) can be obtained by the divide-and-conquer
attack. The corresponding flowchart is shown in Fig. 3.

According to Fig. 3, one has the divide-and-conquer attack algorithm for obtaining (â11â22 + â12â22),
as summarized in Algorithm 1.

In Algorithm 1, nthroot(·, 2) performs a square-root operation on a decimal number, dec2bin(mod(·
,28),8) converts a decimal integer to an 8-bit binary number, bin2dec(· ,64) converts a 64-bit binary number
to a decimal.

According to Fig. 3 and Algorithm 1, one can obtain the estimated value of the secret key expres-
sion (â11â22 + â12â22). In the same way, one can further obtain the nonlinear equation system about
â11, â12, â13, â22, â23. Detailed steps are as follows:

Step 1. Obtain the first 8-bit of (a11a22 + a12a22)2.
(1) Set c(1) =

√
27+27.

According to m4(1) in Eq. (19), for eliminating 227 in mod
(⌊

(a11a22 + a12a22)× (c(1))
2/227

⌋
, 28

)
,

c(1) =
√
27+27 is set. Then, the corresponding plaintext pixel value m

(1)
4 (1) can be obtained (by using the

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 11

()(1) (1) 2 27 8
11 22 12 22 2 11 22 12 22ˆ ˆ ˆ ˆGet the first 8-bit estimated value (()) by using mod ()() / 2 , 2 :a a a a a a a a c + + 

1 2 3 4 5 6 7 8 (1) (1)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(2) 7 8 27Set 2 , which means that the decimal point right shift of 15 bits.c + +=

1 2 8 9 15 16 17 64

()() 2 27 8 ()
11 22 12 22 4by mod ()() / 2 , 2 (1) (1, 2, ,8).i ia a a a c m i + = =  

1 2 3 4 5 6 7 8 9 64

Sign bit Data bit Decimal point

11 22 12 22 2()a a a a+

(1) 7 27Set = 2 , which means that the decimal point right shift of 7 bits.c +

1 2 3 4 5 6 7 8 9 64

(1) (2) (8)
11 22 12 22 2 11 22 12 22 2 11 22 12 22 2 11 22 12 22 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆCalculate (()) (()) (()) of ()a a a a a a a a a a a a a a a a+ + + +

11 22 12 22 11 22 12 22 2

11 22 12 22 2

() ()Let
()
 the binary form of the decimal secret key expression be

 is a 64-bit binary number including the symbol bit. Its general form is
a a a a a a a a

a a a a
+ +

+

()(2) (2) 2 27 8
11 22 12 22 2 11 22 12 22ˆ ˆ ˆ ˆGet the second 8-bit estimated value (()) by using mod ()() / 2 , 2 :a a a a a a a a c + + 

9 10 11 12 13 14 15 16 (2) (2)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(1) (2) (7) (8)
11 22 12 22 2 11 22 12 22 2 11 22 12 22 2 11 22 12 22 2 11 22 12 22 2

Get the estimated value of the
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ() (()

secret key express
) (()) (()) (.

i n
())

o
a a a a a a a a a a a a a a a a a a a a+ = + + + +

() () 7 16 27 7 24 27 7 32 27 7 40 27 7 48 27 7 56 27
11 22 12 22 2ˆ ˆ ˆ ˆGet (()) (3 8) by setting = 2 2 2 2 2 2 respectively:i ia a a a i c + + + + + + + + + + + ++ ≤ ≤ ， ， ， ， ，

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

11 22 12 22 2 11 22 12 22ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆConvert () into decimal format, then obtain).(a a a a a a a a+ +

(3) (3)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(4) (4)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(5) (5)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(6) (6)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(7) (7)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

(8) (8)
11 22 12 22 2 4 2ˆ ˆ ˆ ˆ(()) ((1))a a a a m+ =

Fig. 3. Flowchart of the divide-and-conquer attack for obtaining (â11â22 + â12â22)

decrypting machine).
(2) Obtain the relational expression between m

(1)
4 (1) and c(1) =

√
27+27.

By substituting c(1) =
√
27+27 into m4(1) in Eq. (19), the relational expression between them is derived

as

m
(1)
4 (1) = mod

(⌊
(a11a22 + a12a22)× (c(1))

2
/227

⌋
, 28

)
= mod

(⌊
(a11a22 + a12a22)× 27

⌋
, 28

)
.

(20)

January 25, 2021 16:35 IJBC_CYDCL

12 B. Chen et al.

Algorithm 1 The divide-and-conquer attack algorithm for obtaining (â11â22 + â12â22)

Input: x1(0), x2(0), x3(0)
Output: (â11â22 + â12â22)
for round← 0 to 7 do

x1(0)← nthroot((27)× (227)× (28)round, 2);
x2(0)← nthroot((27)× (227)× (28)round, 2);
x3(0)← 0;
for k ← 0 do

x1(k + 1)← a11x1(k) + a12x2(k) + a13x3(k);
x2(k + 1)← a22x2(k) + a23x3(k);
x3(k + 1)← a32x2(k) + a33x3(k);

end for
(â11â22 + â12â22)2 ← [(â11â22 + â12â22)2,dec2bin(mod(floor(x1(1)× x2(1)/227),28),8)];
round ← round+ 1;

end for
(â11â22 + â12â22)← bin2dec((â11â22 + â12â22)2,64);
return (â11â22 + â12â22)

(3) Obtain the first 8-bit of (a11a22 + a12a22)2.
According to Eq. (20), the first 8-bit of (â11â22 + â12â22)2 is derived as

((â11â22 + â12â22)
(1))2 =

(
mod

(
⌊(a11a22 + a12a22)⌋ × 27, 28

))
2
= (m

(1)
4 (1))2, (21)

where ((â11â22 + â12â22)
(1))2 denotes the first 8-bit of (â11â22 + â12â22)2, including a sign bit

and seven data bits. Here,
(
mod

(⌊
(a11a22 + a12a22)× 27

⌋
, 28

))
2

denotes the binary form of mod(⌊
(a11a22 + a12a22)× 27

⌋
, 28

)
and (m

(1)
4 (1))2 denotes the binary form of m(1)

4 (1).

Step 2. Obtain the second 8-bit of (a11a22 + a12a22)2.
(1) Set c(2) =

√
27+8+27.

According to m4(1) in Eq. (19), for eliminating 227 in mod
(⌊

(a11a22 + a12a22)× (c(2))
2/227

⌋
, 28

)
,

c(2) =
√
27+8+27 is set. Then, the corresponding plaintext pixel value m

(2)
4 (1) can be obtained (by using the

decrypting machine).
(2) Obtain the relational expression between m

(2)
4 (1) and c(2) =

√
27+8+27.

By substituting c(2) =
√
27+8+27 into m4(1) in Eq. (19), the relational expression between them is

derived as

m
(2)
4 (1) = mod

(⌊
(a11a22 + a12a22)× (c(2))

2
/227

⌋
, 28

)
= mod

(⌊
(a11a22 + a12a22)× 27+8

⌋
, 28

)
.

(22)

(3) Obtain the second 8-bit of (a11a22 + a12a22)2.
According to Eq. (22), the second 8-bit of (â11â22 + â12â22)2 is derived as

((â11â22 + â12â22)
(2))2 =

(
mod

(
⌊(a11a22 + a12a22)⌋ × 27+8, 28

))
2
= (m

(2)
4 (1))2. (23)

Step 3. Obtain the third to eighth 8-bit of (a11a22 + a12a22)2.
Similarly, according to m4(1) in Eq. (19), c(3) =

√
27+16+27, c(4) =

√
27+24+27, c(5) =

√
27+32+27,

c(6) =
√
27+40+27, c(7) =

√
27+48+27, c(8) =

√
27+56+27 are set. Then, the corresponding plaintext pixel values

(m
(3)
4 (1))2, (m

(4)
4 (1))2, (m

(5)
4 (1))2, (m

(6)
4 (1))2, (m

(7)
4 (1))2, (m

(8)
4 (1))2 can be obtained (by using the decrypting

machine). On this basis, the third to eight 8-bits can be further derived as

((â11â22 + â12â22)
(3))2, ((â11â22 + â12â22)

(4))2, · · · , ((â11â22 + â12â22)
(7))2, ((â11â22 + â12â22)

(8))2. (24)

Step 4. Obtain (â11â22 + â12â22) by (â11â22 + â12â22)2.
(1) Use ((â11â22 + â12â22)

(i))2(i = 1, 2, · · · , 8) to splice a 64-bit binary number (â11â22 + â12â22)2.

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 13

Splice ((â11â22 + â12â22)
(i))2(i = 1, 2, · · · , 8) from small to large according to the label i. Then, the

binary form of (â11â22 + â12â22)2 is derived as

(â11â22 + â12â22)2=((â11â22 + â12â22)
(1))2((â11â22 + â12â22)

(2))2 · · · ((â11â22 + â12â22)
(8))2. (25)

(2) Convert (â11â22 + â12â22)2 into a decimal format and then obtain (â11â22 + â12â22).
Convert the binary number (â11â22 + â12â22)2 to the decimal number (â11â22 + â12â22). The con-

version method is shown in Algorithm 2, where (â11â22 + â12â22)2(i) denotes the ith of binary number
(â11â22 + â12â22)2.

Algorithm 2 The conversion algorithm for obtaining (â11â22 + â12â22)

Input: (â11â22 + â12â22)2
Output: (â11â22 + â12â22)
(â11â22 + â12â22)← 0;
for i← 2 to 64 do

if (â11â22 + â12â22)2(i) == 1 then
(â11â22 + â12â22)← (â11â22 + â12â22) + 2−(i−1);

end if
end for
if (â11â22 + â12â22)2(1) == 1 then

(â11â22 + â12â22)← (â11â22 + â12â22)− 1;
end if
return (â11â22 + â12â22)

Similarly, calculate mi(1) (i = 2, 3, 5, 6, 7) in Eq. (19) by using similar methods of the divide-
and-conquer attack presented in Step 1 to Step 4. Then, the corresponding estimated values
â12â22, â13â23, â11â23 + â13â23, (â12 + â13)× (â22 + â23) and (â22 + â23)× (â11 + â12 + â13) of the secret key
expressions a12a22, a13a23, a11a23 + a13a23, (a12 + a13)× (a22 + a23) and (a22 + a23)× (a11 + a12 + a13) can
be obtained.

Finally, the nonlinear equation system about â11, â12, â13, â22, â23 is derived as

â12â22 = 0.0666

â13â23 = 0.037

â11â22 + â12â22 = 0.0504

â11â23 + â13â23 = 0.0703

(â12 + â13)× (â22 + â23) = −0.0513

(â22 + â23)× (â11 + â12 + â13) = −0.0342

. (26)

3.4.3. Establish a nonlinear equation system about â11, â12, â13, â22, â23, â32, â33 through the
second iteration

Firstly, by substituting k = 1 into Eq. (9), the second iteration result is derived asx1(2) = a11x1(1) + a12x2(1) + a13x3(1)
x2(2) = a22x2(1) + a23x3(1)
x3(2) = a32x2(1) + a33x3(1)

. (27)

Then, by substituting Eq. (18) into Eq. (27), one has
x1(2) = a11(a11c1 + a12c2 + a13c3)

+ a12(a22c2 + a23c3) + a13(a22c2 + a23c3)
x2(2) = a22(a22c2 + a23c3) + a23(a22c2 + a23c3)
x3(2) = a32(a22c2 + a23c3) + a33(a22c2 + a23c3)

. (28)

If the initial condition is determined to be valid in the first iteration, it is still valid after several
iterations. Similarly, if the initial condition is determined to be invalid in the first iteration, it is still invalid

January 25, 2021 16:35 IJBC_CYDCL

14 B. Chen et al.

after several iterations. Only the valid initial conditions are considered. By substituting the calculation
results of x1(2)x2(2) into Eq. (10), and setting ci = c (i = 1, 2, 3), the expression of mi(2) (i = 2, 3, · · · , 7)
is obtained as

m2(2) =

(
mod

(⌊
(a2

22 + a23a32c2) × (a11a12c2 + a12a22c2 + a13a32c2)

227

⌋
, 2

8

))

=

(
mod

(⌊
(a2

22 + a23a32) × (a11a12 + a12a22 + a13a32)c
2

227

⌋
, 2

8

))

m3(2) =

(
mod

(⌊
(a22a23c3 + a23a33c3) × (a11a13c3 + a12a23c3 + a13a33c3)

227

⌋
, 2

8

))

=

(
mod

(⌊
(a22a23 + a23a33) × (a11a13 + a12a23 + a13a33)c

2

227

⌋
, 2

8

))

m4(2) =

(
mod

(⌊
(a2

22 + a23a32c2) × (a2
11c1 + a11a12c2 + a12a22c2 + a13a32c2)

227

⌋
, 2

8

))

=

(
mod

(⌊
(a2

22 + a23a32) × (a2
11 + a11a12 + a12a22 + a13a32)c

2

227

⌋
, 2

8

))

m5(2) =

(
mod

(⌊
(a22a23c3 + a23a33c3) × (a2

11c1 + a11a13c3 + a12a23c3 + a13a33c3)

227

⌋
, 2

8

))

=

(
mod

(⌊
(a22a23 + a23a33) × (a2

11 + a11a13 + a12a23 + a13a33)c
2

227

⌋
, 2

8

))

m6(2) =

(
mod

(⌊
(a2

22c2 + a22a23c3 + a23a32c2 + a23a33c3) × (a11a12c2 + a11a13c3 + a12a22c2 + a12a23c3 + a13a32c2 + a13a33c3)

227

⌋
, 2

8

))

=

(
mod

(⌊
(a2

22 + a22a23 + a23a32 + a23a33) × (a11a12 + a11a13 + a12a22 + a12a23 + a13a32 + a13a33)c
2

227

⌋
, 2

8

))

m7(2) =

(
mod

(⌊
(a2

22c2+a22a23c3+a23a32c2+a23a33c3)×(a12a22c2+a12a23c3+a13a32c2+a13a33c3+a2
11c1+a11a12c2+a11a13c3)

227

⌋
, 2

8

))
=

(
mod

(⌊
(a2

22+a22a23+a23a32+a23a33)×(a12a22+a12a23+a13a32+a13a33+a2
11+a11a12+a11a13)c2

227

⌋
, 2

8

))

.

(29)

Note that, in Eq. (29), when c1 ̸= c2 ̸= c3, the expression of mi(2)(i = 2, 3, · · · , 7) cannot be further
simplified, so the estimated values of secret key expressions cannot be obtained by the divide-and-conquer
attack. However, when c1 = c2 = c3 = c the common factor c2 in mod (·) can be extracted, so an appropriate
value of c can be set to obtain the estimated values of secret key expressions by the divide-and-conquer
attack.

Similarly, calculate mi(2)(i = 2, 3, 5, 6, 7) in Eq. (29) by using similar methods of divide-and-conquer
attack proposed in Section 3.4.2. Then, the corresponding estimated values of the secret key expressions
can be obtained.

Finally, the nonlinear equation system about â11, â12, â13, â22, â23, â32, â33 is derived as

(â222 + â23â32)× (â11â12 + â12â22 + â13â32) = −0.00042525
(â22â23 + â23â33)× (â11â13 + â12â23 + â13â33) = −0.00040293
(â222 + â23â32)× (â211 + â11â12 + â12â22 + â13â32) = −0.00097200
(â22â23 + â23â33)× (â211 + â11â13 + â12â23 + â13â33) = −0.00037296
(â222 + â22â23 + â23â32 + â23â33)× (â11â12 + â11â13 + â12â22 + â12â23 + â13â32 + â13â33) = 0.00654588

(â222 + â22â23 + â23a32 + â23â33)× (â12â22 + â12â23 + â13â32 + â13â33 + â211 + â11â12 + â11â13) = 0.00602910

. (30)

3.4.4. Solve the estimated values of secret keys â11, â12, â13, â22, â23, â32, â33

Firstly, take the nonlinear equation system established by the first iteration as the known condition, and
observe the internal relation between the known condition and the nonlinear equation system established by
the second iteration. Then, the nonlinear equation system established by the second iteration is simplified
by using the global substitution method. Finally, the solution of several sets of estimated secret keys is
solved.

According to Eq. (26), considering the expression of multiplying two secret keys together, one has{
â12â22 = 0.0666, â13â23 = 0.037, â11â22 = −0.0162,
â11â23 = 0.0333, â12â23 + â13â22 = −0.1549

. (31)

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 15

Expand the first to the fourth equations of Eq. (30), and recombine the expressions of secret key multipli-
cations, one gets

â11â22â12â22+â12â22â22â22 + â13â22â22â32+â11â23â12â32
+â12â22â23â32+â13â23â32â32=− 0.00042525
â11â22â13â23+â12â22â23â23+â13â23â22â33 + â11â23â13â33
+â12â23â23â33+â13â23â33â33=− 0.00040293
â11â22â11â22+â11â22â12â22+â12â22â22â22+â13â22â22â32
+â11â23â11â32+â11â23â12â32+â12â22â23â32+â13â23â32â32=− 0.00097200
â11â22â11â23+â11â22â13â23+â12â22â23â23+â11â23â11â33
+â11â23â13â33+(â13â22+â12â23)â23â33+â13â23â33â33=− 0.00037296

. (32)

By substituting Eq. (31) into Eq. (32), one gets
0.0666â222 + 0.0333â12â32 + 0.0666â23â32 + 0.037â232 + â13â

2
22â32 = 0.00065367

0.0666â223 + 0.037â22â33 + 0.0333â13â33 + 0.037â233 + â12â
2
23â33 = 0.00019647

0.0666â222 + 0.0333â11â32 + 0.0333â12â32 + 0.0666â23â32 + 0.037â232 + â13â
2
22â32 = −0.00015552

0.0666â223 + 0.0333â11â33 + 0.0333â13â33 − 0.1549â23â33 + 0.037â233 = 0.0007659

. (33)

Then, Eq. (31) is further simplified, and â12 is used to represent â11, â13, â22, â23, to get{
â11=− 9

37 â12, â13 = −10
37 â12

â22 =
0.0666
â12

, â23 = −0.1369
â12

. (34)

By substituting Eq. (34) into Eq. (33), the equations of â12, â32, â33 can be derived, as

0.0333â312â32−0.01031634â12â32+0.037â212â
2
32+0.000295408296

â212
= 0.00065367

−0.009â312â33+0.02120581â12â33+0.037â233â
2
12+0.001248191226

â212
= 0.00019647

0.0252â312â32−0.01031634â12â32+0.0370â212â
2
32+0.000295408296

â212
= −0.00015552

−0.0171â312â33+0.02120581â12â33+0.037â233â
2
12+0.001248191226

â212
= 0.0007659

. (35)

Combine the first equation and the third equation in Eq. (35), one gets
0.0333â312â32−0.01031634â12â32+0.037â212â

2
32+0.000295408296

â212
= 0.00065367

0.0252â312â32−0.01031634â12â32+0.0370â212â
2
32+0.000295408296

â212
= −0.00015552

. (36)

According to Eq. (36), two sets of the solution of â12, â32 are solved as{
â12 = −0.37, â32 = −0.27
â12 = 0.37, â32 = 0.27

. (37)

Combining the second equation and the fourth equation in Eq. (35), one gets
−0.009â312â33+0.02120581â12â33+0.037â233â

2
12+0.001248191226

â212
= 0.00019647

−0.0171â312â33+0.02120581â12â33+0.037â233â
2
12+0.001248191226

â212
= 0.0007659

. (38)

According to Eq. (38), two sets of the solution of â12, â33 are solved, yielding{
â12 = −0.37, â33 = 0.19
â12 = 0.37, â33 = −0.19

. (39)

According to Eq. (37) and Eq. (39), two sets of the solution of â12, â32, â33 are obtained as{
â12 = −0.37, â32 = −0.27, , â33 = 0.19
â12 = 0.37, â32 = 0.27, , â33 = −0.19

. (40)

January 25, 2021 16:35 IJBC_CYDCL

16 B. Chen et al.

By substituting Eq. (40) into Eq. (33), two sets of the solution of â11, â12, â13, â22, â23, â32, â33 are solved as{
â11 = 0.09, â12 = −0.37, â13 = 0.1, â22 = −0.18, â23 = 0.37, â32 = −0.27, â33 = 0.19
â11 = −0.09, â12 = 0.37, â13 = −0.1, â22 = 0.18, â23 = −0.37, â32 = 0.27, â33 = −0.19

. (41)

Noted that Eq.(31) - Eq.(41) is the solving process of the nonlinear equations using the method of gobal
substitution and simplified evaluation. When using Maple 2018 software to solve the nonlinear equations
in Eq.(26) and Eq.(30), the numerical solution can be obtained in about 1.3 seconds.

3.4.5. Confirm the unique solution of â11, â12, â13, â22, â23, â32, â33
To confirm the correctness and uniqueness of the solutions of â11, â12, â13, â22, â23, â32, â33 in Eq. (41), they
are substituted into Eq. (7), yieldingx1(k + 1) = â11x1(k) + â12x2(k) + â13x3(k)

x2(k + 1) = a21p(k) + â22x2(k) + â23x3(k)
x3(k + 1) = a31p(k) + â32x2(k) + â33x3(k) + ε sin(σp(k))

. (42)

When the secret keys of the sender and the receiver match, Eq. (7) and Eq. (42) can realize self-
synchronization. Therefore, Eq. (41) is substituted into Eq. (42) to investigate the synchronization between
Eq. (7) and Eq. (42). When Eq. (7) and Eq. (42) are synchronized, the corresponding synchronization
error tends to 0; otherwise it does not tend to 0. The simulation results are shown in Figs. 4 (a) and (b),
respectively.

(a)Simulation result of synchronization error when
â11 = 0.09, â12 = −0.37, â13 = 0.1, â22 = −0.18,
â23 = 0.37, â32 = −0.27, â33 = 0.19.

(b)Simulation result of synchronization error when
â11 = −0.09, â12 = 0.37, â13 = −0.1, â22 = 0.18,
â23 = −0.37, â32 = 0.27, â33 = −0.19.

Fig. 4. Simulation results of synchronization errors

In Fig. 4, the simulation results of synchronization errors show that when â11 = 0.09, â12 = −0.37, â13 =
0.1, â22 = −0.18, â23 = 0.37, â32 = −0.27, â33 = 0.19, Eq. (7) and Eq. (42) can realize self-synchronization.
Thus, the unique solution of â11, â12, â13, â22, â23, â32, â33 can be confirmed. Experimental results show that
the deciphered secret keys â11, â12, â13, â22, â23, â32, â33 are exactly equal to the given values of the secret
keys a11, a12, a13, a22, a23, a32, a33, which verifies the effectiveness of the proposed DCA-TMNCIC.

4. Comparisons and discussions of DCA-TSNCIC and DCA-TMNCIC
For n-D SCSC (n = 3, 4, 5, · · ·), under DCA-TSNCIC, there are n options to select initial conditions. The
set of all options is derived as

S1 = {(c1, 0, · · · , 0), (0, c2, 0, · · · , 0), · · · , (0, · · · , 0, cn−1, 0), (0, 0, · · · , cn)}, (43)

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 17

where ci (i = 1, 2, · · · , n) denotes the non-zero constant.
Moreover, under DCA-TMNCIC, there are 2n − 1 options to select initial conditions. The set of all

options is derived as

S2 = {(c1, 0, · · · , 0), (0, c2, 0, · · · , 0), · · · , (0, 0, · · · , cn), (c1, c2, 0, · · · , 0), · · · , (c1, c2, · · · , cn)}. (44)

Obviously, one can know that Eq. (43) is just a subset of Eq. (44). When n=3,4,5,6,7,8, comparison
results of the numbers of initial condition options under the same dimension are shown in Table 3. With
the same dimension, one can see that the number of all options under DCA-TMNCIC is more than the
number of all options under DCA-TSNCIC.

Table 3. Comparison results of the numbers of initial condition options under the same dimension

n Number of all options under DCA-TSNCIC Number of all options under DCA-TMNCIC

3 3 7
4 4 15
5 5 31
6 6 63
7 7 127
8 8 255

For example, in 3-D SCSC-2, there are three options to select initial conditions under DAC-TSNCIC.
The set of all options is given by (x1(0), x2(0), x3(0)) ∈ {(c1, 0, 0), (0, c2, 0), (0, 0, c3)}. Obviously, (c1, 0, 0)
is an invalid initial condition, and others are valid initial conditions. When DCA-TSNCIC is used for the
security analysis of 3-D SCSC-2, the number of valid initial conditions is only two. In the first iteration, only
two nonlinear equations can be established under the two valid initial conditions. At this time, to combine
more nonlinear equations, more iterations are needed. However, more iterations cause a higher complexity
of nonlinear equations, thereby increasing the workload of deciphering the secret keys. Especially in n-D
SCSC-2 and n-D SCSC-3 (n = 4, 5, 6, 7, 8), more secret keys are introduced. With more iterations, the
relationship between secret keys will become more complex, increasing the difficulty of solving nonlinear
equations.

However, when DCA-TMNCIC is used for the security analysis of 3-D SCSC-2, the number of valid
initial conditions obtained by DAC-TMNCIC is six. In the first iteration, six nonlinear equations can be
established under the six valid initial conditions. At this time, only two iterations are needed to solve the
nonlinear equations. For n-D SCSC-2 and n-D SCSC-3 (n = 3, 4, 5, 6, 7, 8), more valid initial conditions
mean that, in each iteration, more nonlinear equations are obtained, consequently less iterations are needed
to decipher the secret keys. Less iterations will make a lower degree of the product terms in the nonlinear
equations and decrease the workload of deciphering the secret keys.

Most numerical analysis results show that, when the proposed DCA-TMNCIC is used for security
analyses of n-D SCSC-2 and n-D SCSC-3 (n=4,5,6,7,8), the secret keys can be deciphered, usually only
after two or three iterations. In contrast, the DCA-TSNCIC proposed in [Lin et al., 2018] cannot decipher
the secret keys even with a much larger number of iterations. For example, when DCA-TMNCIC is used
for security analysis of 4-D SCSC-2, the secret keys can be deciphered after three iterations. However, when
DCA-TSNCIC is used for security analysis of 4-D SCSC-2, the secret keys cannot be deciphered even after
six iterations.

According to the above comparisons and discussions, one can summarize the comparisons of DCA-
TSNCIC and DCA-TMNCIC for n-D SCSC (n=3,4,5,6,7,8), as shown in Table 4.

From Table 4, one can see that DCA-TMNCIC is not only suitable for n-D SCSC-1 (n=3,4,5,6,7,8),
3-D SCSC-2 and 3-D SCSC-3, but also for n-D SCSC-2 and n-D SCSC-3 (n=4,5,6,7,8). Note that the
attack intensity grows with the numbers of valid initial conditions and the nonlinear equations obtained in
the same iteration. Therefore, the attack intensity of DCA-TMNCIC is higher than that of DCA-TSNCIC.

January 25, 2021 16:35 IJBC_CYDCL

18 B. Chen et al.

Table 4. Comparisons of DCA-TSNCIC and DCA-TMNCIC for n-D SCSC

DCA-TSNCIC proposed in [Lin et al., 2018] DCA-TMNCIC proposed in this paper

Number of initial conditions n 2n − 1

Number of valid initial conditions Fewer More

Number of equation iterations
required to decipher a given cipher More Fewer

Number of nonlinear equations
obtained in the same iteration Fewer More

Attack intensity Weaker Stronger

Applicable ciphers n-D SCSC-1, 3-D SCSC-2, 3-D SCSC-3 n-D SCSC-1, n-D SCSC-2, n-D SCSC-3

5. 3-D SCSC-NNS and its security analysis
According to the security analysis results in Section 3, 3-D SCSC-2 cannot resist DCA-TMNCIC. To further
resolve this problem, an improved scheme named 3-D SCSC-NNS is proposed, to satisfy as many invalid
initial conditions as possible. Under the invalid initial conditions, the secret keys will never appear in the
encryption-decryption equations, so the invalid initial conditions need not be considered in the analysis.
Under valid initial conditions, the secret keys will appear in the encryption-decryption equations, so that
the valid initial conditions can be considered in the analysis. Less valid initial conditions mean that, in
each iteration, less nonlinear equations are obtained; therefore, more iterations are needed. However, more
iterations cause a higher degree of product terms thereby increasing the workload of deciphering the secret
keys. This design method can make the cryptanalysis equation fail to meet the basic conditions of the divide-
and-conquer attack, so the secret keys cannot be deciphered further by the divide-and-conquer attack.

5.1. Design of 3-D SCSC-NNS
A nominal matrix of nonlinear functions is designed to satisfy as many invalid initial conditions as possible.
The expression of the nominal matrix of nonlinear function F can be designed as

F =

F11 F12 F13

F21 F22 F23

F31 F32 F33

 =


a11x2(k)

µ
a12x3(k)

µ
a13x2(k)

µ

a21
a22x3(k)

µ a23

a31 a32
a33x2(k)

µ

 , (45)

where µ = 1010, a11 = 0.09, a12 = −0.37, a13 = 0.1, a21 = −0.1, a22 = −0.18, a23 = 0.37, a31 = 0.27,
a32 = −0.27, a33 = 0.19, ||xi(k)||/µ < 1(i = 2, 3). According to Eq. (45), the controlled chaotic system is
designed as x1(k + 1)

x2(k + 1)
x3(k + 1)

 =

F11 F12 F13

F21 F22 F23

F31 F32 F33

x1(k)
x2(k)
x3(k)

+

 0
0

g(σx(k), ε)

 , (46)

where g(σx(k), ε) = ε sin(σx1(k)), ε = 3.3× 108, σ = 2.5× 105.
According to Eq. (46), the chaotic cipher is design asx1(k + 1) = F11x1(k) + F12x2(k) + F13x3(k)

x2(k + 1) = F21p(k) + F22x2(k) + F23x3(k)
x3(k + 1) = F31p(k) + F32x2(k) + F33x3(k) + ε sin(σp(k))

. (47)

The ciphertext p(k) in Eq. (47) is derived as

p(k) = mod

(⌊
x1(k)x2(k)x3(k)

227

⌋
, 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(⌊
x1(k)x2(k)x3(k)

227

⌋
, 28

)
, (48)

where k = 1, 2, · · · , m(k) denotes the corresponding plaintext.

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 19

5.2. Security analysis of 3-D SCSC-NNS
Consider the chosen-ciphertext attack. According to Eq. (47), by setting p(k) = 0, one getsx1(k + 1) = F11x1(k) + F12x2(k) + F13x3(k)

x2(k + 1) = F22x2(k) + F23x3(k)
x3(k + 1) = F32x2(k) + F33x3(k)

. (49)

According to Eq. (45) and Eq. (49), the nonlinear iterative equation is derived as
x1(k + 1) = a11

µ x1(k)x2(k) +
(
a12
µ + a13

µ

)
x2(k)x3(k)

x2(k + 1) = a22
µ x2(k)x3(k) + a23x3(k)

x3(k + 1) = a32x2(k) +
a33
µ x2(k)x3(k)

, (50)

where k = 1, 2, · · · .

5.2.1. Situations of the first iteration
By substituting k = 0 into Eq. (50), the first iteration result is derived as

x1(1) =
a11
µ x1(0)x2(0) +

(
a12
µ + a13

µ

)
x2(0)x3(0)

x2(1) =
a22
µ x2(0)x3(0) + a23x3(0)

x3(1) = a32x2(0) +
a33
µ x2(0)x3(0)

. (51)

By substituting x1(0) = c1, x2(0) = c2, x3(0) = c3 into Eq. (51), one has
x1(1) = (a11µ)c1c2 +

(
a12
µ + a13

µ

)
c2c3

x2(1) =
a22
µ c2c3 + a23c3

x3(1) = a32c2 +
a33
µ c2c3

. (52)

According to the seven initial conditions given in Eq. (11), with the chosen-ciphertext attack, the cor-
responding plaintext mi(1)(i = 1, 2, · · · , 7) can be obtained by substituting pi(1) = 0(i = 1, 2, · · · , 7) into
Eq. (48). According to Eq. (52), consider the first iteration as follows:

(1) By substituting the first initial condition (c1, 0, 0) into Eq. (52), one obtains x1(1) = x2(1) =
x3(1) = 0, satisfying x1(1)x2(1)x3(1) = 0. According to Eq. (48), one can see that (c1, 0, 0) is an invalid
initial condition.

(2) By substituting the second initial condition (0, c2, 0) into Eq. (52), one obtains x1(1) = x2(1) = 0,
x3(1) = a32c2 ̸= 0, satisfying x1(1)x2(1)x3(1) = 0. According to Eq. (48), one can see that (0, c2, 0) is an
invalid initial condition.

(3) By substituting the third initial condition (0, 0, c3) into Eq. (52), one obtains x1(1) = x3(1) = 0,
x2(1) = a23c3 ̸= 0, satisfying x1(1)x2(1)x3(1) = 0. According to Eq. (48), one can see that (0, 0, c3) is an
invalid initial condition.

(4) By substituting the fourth initial condition (c1, c2, 0) into Eq. (52), one obtains x1(1) =
(a11/µ)c1c2 ̸= 0, x2(1) = 0, x3(1) = a32c2 ̸= 0, satisfying x1(1)x2(1)x3(1) = 0. According to Eq. (48),
one can see that (c1, c2, 0) is an invalid initial condition.

(5) By substituting the fifth initial condition (c1, 0, c3) into Eq. (52), one obtains x1(1) = x3(1) = 0,
x2(1) = a23c3 ̸= 0, satisfying x1(1)x2(1)x3(1) = 0. According to Eq. (48), one can see that (c1, 0, c3) is an
invalid initial condition.

(6) By substituting the sixth initial condition (0, c2, c3) into Eq. (52), one gets
x1(1) =

(
a12
µ + a13

µ

)
c2c3 ̸= 0

x2(1) =
a22
µ c2c3 + a23c3 ̸= 0

x3(1) = a32c2 +
a33
µ c2c3 ̸= 0

, (53)

January 25, 2021 16:35 IJBC_CYDCL

20 B. Chen et al.

which satisfies

x1(1)x2(1)x3(1) =

((
a12
µ

+
a13
µ

)
c2c3

)
×
(
a22
µ

c2c3 + a23c3

)
×
(
a32c2 +

a33
µ

c2c3

)
̸= 0. (54)

According to Eq. (48), one can see that (0, c2, c3) is a valid initial condition.
(7) By substituting the seventh initial condition (c1, c2, c3) into Eq. (52), one gets

x1(1) =
a11
µ c1c2 +

(
a12
µ + a13

µ

)
c2c3 ̸= 0

x2(1) =
a22
µ c2c3 + a23c3 ̸= 0

x3(1) = a32c2 +
a33
µ c2c3 ̸= 0

, (55)

which satisfies

x1(1)x2(1)x3(1) =

(
a11
µ

c1c2 +

(
a12
µ

+
a13
µ

)
c2c3

)
×
(
a22
µ

c2c3 + a23c3

)
×

(
a32c2 +

a33
µ

c2c3

)
̸= 0. (56)

According to Eq. (48), one can see that (c1, c2, c3) is a valid initial condition.
Since only valid initial conditions are considered, by substituting Eq. (53) and Eq. (55) into Eq. (48),

one obtains

m6(1) = mod
(⌊((

a12
µ + a13

µ

)
c2c3

)
×
(
a22
µ c2c3 + a23c3

)
×
(
a32c2 +

a33
µ c2c3

)/
227

⌋
, 28

)
m7(1) = mod

(⌊(
a11
µ c1c2 +

(
a12
µ + a13

µ

)
c2c3

)
×
(
a22
µ c2c3 + a23c3

)
×

(
a32c2 +

a33
µ c2c3

)/
227

⌋
, 28

) .

(57)

5.2.2. Situations of the second iteration
By substituting k = 1 into Eq. (50), the second iteration result is derived as

x1(2) =
a11
µ x1(1)x2(1) +

(
a12
µ + a13

µ

)
x2(1)x3(1)

x2(2) =
a22
µ x2(1)x3(1) + a23x3(1)

x3(2) = a32x2(1) +
a33
µ x2(1)x3(1)

. (58)

When the initial condition is determined to be invalid in the first iteration, it is still invalid after several
iterations. Thus, one can see that (0, c2, c3) and (c1, c2, c3) are valid initial conditions in the second iteration.
Consider the valid initial condition (0, c2, c3). By substituting Eq. (53) into Eq. (58), the second iteration
result is obtained, as

x1(2) =
a11
µ

(
a12
µ + a13

µ

)
c2c3

(
a22
µ c2c3 + a23c3

)
+
(
a12
µ + a13

µ

)
×

(
a22
µ c2c3 + a23c3

)
×
(
a32c2 +

a33
µ c2c3

)
x2(2) =

a22
µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 +

a33
µ c2c3

)
+ a23

(
a32c2 +

a33
µ c2c3

)
x3(2) = a32

(
a22
µ c2c3 + a23c3

)
+ a33

µ

(
a22
µ c2c3 + a23c3

)
×
(
a32c2 +

a33
µ c2c3

) . (59)

Consider the valid initial condition (c1, c2, c3). By substituting Eq. (55) into Eq. (58), the second
iteration result is obtained as

x1(2) =
a11
µ

(
a11
µ c1c2 +

(
a12
µ + a13

µ

)
c2c3

)
×
(
a22
µ c2c3 + a23c3

)
+
(
a12
µ + a13

µ

)
×

(
a22
µ c2c3 + a23c3

)
×
(
a32c2 +

a33
µ c2c3

)
x2(2) =

a22
µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 +

a33
µ c2c3

)
+ a23

(
a32c2 +

a33
µ c2c3

)
x3(2) = a32

(
a22
µ c2c3 + a23c3

)
+ a33

µ

(
a22
µ c2c3 + a23c3

)
×
(
a32c2 +

a33
µ c2c3

) . (60)

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 21

Since only valid initial conditions are considered, by substituting Eqs. (59)-(60) into Eq. (48), one has

m6(2) = mod





 a11
µ

(
a12
µ + a13

µ

)
c2c3

(
a22
µ c2c3 + a23c3

)
+
(
a12
µ + a13

µ

)
×

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

)
×
(
a22
µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

)
+ a23

(
a32c2 + a33

µ c2c3

))
×
(
a32

(
a22
µ c2c3 + a23c3

)
+ a33

µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

))/
227

 , 28



m7(2) = mod





 a11
µ

(
a11
µ c1c2 +

(
a12
µ + a13

µ

)
c2c3

)
×

(
a22
µ c2c3 + a23c3

)
+
(
a12
µ + a13

µ

)
×

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

)
×
(
a22
µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

)
+ a23

(
a32c2 + a33

µ c2c3

))
×
(
a32

(
a22
µ c2c3 + a23c3

)
+ a33

µ

(
a22
µ c2c3 + a23c3

)
×

(
a32c2 + a33

µ c2c3

))/
227

 , 28



. (61)

5.2.3. Security analysis by using DCA-TMNCIC
According to Eq. (57) and Eq. (61), two nonlinear equations are obtained in the first iteration, and the
highest degree of the product term is 3. In the second iteration, four nonlinear equations are obtained, yet
the highest degree of product term reaches 9. If the solution conditions are not satisfied, the third iteration
is required so as to obtain six nonlinear equations. However, the highest degree of the product term will
reach 21 at this time. Hence, it is concluded that more iterations will cause a higher degree of the product
term, thereby increasing the workload of deciphering the secret keys in 3-D SCSC-NNS.

According to the results given by Eq. (57) and Eq. (61), one cannot set appropriate values of the initial
conditions to realize the divide-and-conquer attack. If Eq. (57) and Eq. (61) can be expressed as

ml(k) = mod
(⌊

f
(k)
l

(
c1, c2, c3, a11, a12, a13, a22, a23, a32, a33, 2

27, µ
)⌋

, 28
)

= mod
(⌊

cq × F
(k)
l

(
cv, cu, a11, a12, a13, a22, a23, a32, a33, 2

27, µ
)⌋

, 28
), (62)

where k = 1, 2, 3, · · · , l = 4, 7, 227, µ are constants, cv, cu are invariant constants, and q, v, u ∈ {1, 2, 3},
q ̸= v ̸= u, then cq can be used to realize the divide-and-conquer attack. However, this is actually impossible.
For example, according to Eq. (57) and Eq. (61), there are only two sets of valid initial conditions, namely
c1 = 0, c2 ̸= 0, c3 ̸= 0 and c1 ̸= 0, c2 ̸= 0, c3 ̸= 0. The following process only needs to examine all the
possibilities of these two sets of valid initial conditions, and other invalid initial conditions need not be
considered.

In the first case, let c1 ̸= 0, c2 ̸= 0, c3 ̸= 0. According to Eq. (57) and Eq. (61), the requirement of Eq.
(62) cannot be met.

In the second case, let c1 = 0, c2 = 1, c3 ̸= 0. According to Eq. (57) and Eq. (61), one gets

m6(1) = mod
(⌊((

a12
µ + a13

µ

)
c3

)
×

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

)/
227

⌋
, 28

)
m7(1) = mod

(⌊((
a12
µ + a13

µ

)
c3

)
×

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

)/
227

⌋
, 28

)

m6(2) = mod



(
a11
µ

(
a12
µ + a13

µ

)
c3

(
a22
µ c3 + a23c3

)
+

(
a12
µ + a13

µ

)
×

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

))
×
(
a22
µ

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

)
+ a23

(
a32 + a33

µ c3

))
×
(
a32

(
a22
µ c3 + a23c3

)
+ a33

µ

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

))/
227

 , 28



m7(2) = mod



(
a11
µ

((
a12
µ + a13

µ

)
c3

)
×

(
a22
µ c3 + a23c3

)
+

(
a12
µ + a13

µ

)
×

(
a22
µ c3 + a23c3

)
×

(
a33
µ c3

))
×
(
a22
µ

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

)
+ a23

(
a32 + a33

µ c3

))
×
(
a32

(
a22
µ c3 + a23c3

)
+ a33

µ

(
a22
µ c3 + a23c3

)
×

(
a32 + a33

µ c3

))/
227

 , 28



.

(63)
However, according to Eq. (63), it is impossible to extract all c3 , so that the requirement of Eq. (62) cannot
be met.

In the third case, let c1 = 0, c2 ̸= 0, c3 = 1. According to Eq. (57) and Eq. (61), it is obvious that the
requirement of Eq. (62) cannot be met.

In summary, no matter how one selects the valid initial conditions, Eq. (57) and Eq. (61) cannot be

January 25, 2021 16:35 IJBC_CYDCL

22 B. Chen et al.

guaranteed to meet the requirement of Eq. (62). Therefore, Eq. (57) and Eq. (61) cannot satisfy the basic
conditions of the divide-and-conquer attack. Thus, it can be concluded that 3-D SCSC-NNS is safe against
the combinational effect of chosen-ciphertext attack and divide-and-conquer attack.

6. n-D SCSC-SM and its security analysis
In Section 5, the design method of 3-D SCSC-NNS was described. However, this design method is suitable
only for the case of n = 3, 4, with low dimensionality. For the case of n = 5, 6, 7, 8, with high dimensionality,
the difficulty and complexity of designing the chaotic cipher will be greatly increased. As a remedy, in this
section an improved scheme, n-D SCSC-SM (n = 3, 4, 5, 6, 7, 8), is proposed, which can effectively resist
DCA-TMNCIC.

6.1. Design of n-D SCSC-SM
Consider a 4-D SCSC-SM. The iterative equation is given by

x1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k) + a14x4(k)
x2(k + 1) = a21p(k) + a22x2(k) + a23x3(k) + a24x4(k)
x3(k + 1) = a31p(k) + a32x2(k) + a33x3(k) + a34x4(k)
x4(k + 1) = a41p(k) + a42x2(k) + a43x3(k) + a44x4(k)+ε sin(σp(k))

. (64)

The ciphertext p(k) in Eq. (64) is derived, as

p(k) = mod
(
⌊sin(x1(k))× ξ⌋ , 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(
⌊sin(x1(k))× ξ⌋ , 28

)
, (65)

where k = 0, 1, 2, 3, 4 · · · , ξ = 108 denotes a constant, m(k) denotes the corresponding plaintext, xi(k)(i =
1, 2, 3, 4) denotes the chaotic variable, and a11 = 0.1033, a12 = −0.6367, a13 = 0.4133, a14 = −0.0067,
a21 = −0.4833, a22 = −0.2033, a23 = 0.5667, a24 = 0.1467, a31 = −0.12, a32 = −0.58, a33 = 0.37,
a34 = 0.49, a41 = 0.02, a42 = −0.44, a43 = 0.63, a44 = 0.09, ε = 5.9× 108, σ = 3.3× 1010 denote the secret
keys.

With the same method, a more general n-D SCSC-SM (n = 3, 4, 5, 6, 7, 8) can be designed, and the
general form of its mathematical expression is

x1(k + 1) = f1(x1(k), x2(k), · · · , xn(k))
x2(k + 1) = f2(p(k), x2(k), · · · , xn(k))

...
xn−1(k + 1) = fn−1(p(k), x2(k), · · · , xn(k))
xn(k + 1) = fn(p(k), x2(k), · · · , xn(k))

, (66)

where n = 3, 4, 5, 6, 7, 8. The ciphertext p(k) in Eq. (66) is derived as

p(k) = mod
(
⌊sin(xi(k))× ξ⌋ , 28

)
⊕m(k) → m(k)⊕ p(k) = mod

(
⌊sin(xi(k))× ξ⌋ , 28

)
, (67)

where k = 0, 1, 2, 3, 4 · · · , i = 1, 2, · · · , 8, and m(k) denotes the corresponding plaintext. Note that the
value range of the constant ξ is 105 ≤ ξ ≤ 1014, and the value of ξ has great impact on the statistical
characteristics of the chaotic sequence and the sensitivity of the secret keys. A larger ξ results in a higher
sensitivity of the secret keys.

6.2. Security analysis of 4-D SCSC-SM
Take the 4-D SCSC-SM as an example and consider the chosen-ciphertext attack. According to Eq. (64),
by setting p(k) = 0, one gets

x1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k) + a14x4(k)
x2(k + 1) = a22x2(k) + a23x3(k) + a24x4(k)
x3(k + 1) = a32x2(k) + a33x3(k) + a34x4(k)
x4(k + 1) = a42x2(k) + a43x3(k) + a44x4(k)

. (68)

January 25, 2021 16:35 IJBC_CYDCL

Cryptanalysis of self-synchronous chaotic stream ciphers and improved schemes 23

6.2.1. Situations of the first iteration
By substituting k = 0 into Eq. (68), the first iteration results in

x1(1) = a11x1(0) + a12x2(0) + a13x3(0) + a14x4(0)
x2(1) = a22x2(0) + a23x3(0) + a24x4(0)
x3(1) = a32x2(0) + a33x3(0) + a34x4(0)
x4(1) = a42x2(0) + a43x3(0) + a44x4(0)

. (69)

By substituting x1(0) = c1, x2(0) = c2, x3(0) = c3, x4(0) = c4 into Eq. (69), one has
x1(1) = a11c1 + a12c2 + a13c3 + a14c4
x2(1) = a22c2 + a23c3 + a24c4
x3(1) = a32c2 + a33c3 + a34c4
x4(1) = a42c2 + a43c3 + a44c4

. (70)

The corresponding set of fifteen initial conditions is given by

(x1(0), x2(0), x3(0), x4(0)) ∈

 (c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4), (c1, c2, 0, 0),
(c1, 0, c3, 0), (c1, 0, 0, c4), (0, c2, c3, 0), (0, c2, 0, c4), (0, 0, c3, c4),
(c1, c2, c3, 0), (c1, c2, 0, c4), (c1, 0, c3, c4), (0, c2, c3, c4), (c1, c2, c3, c4)

 , (71)

where ci ̸= 0(i = 1, 2, 3, 4).
According to the fifteen initial conditions given in Eq. (71), with the chosen-ciphertext attack, the

corresponding plaintext mi(k)(i = 1, 2, · · · , 15) can be obtained by substituting pi(k) = 0(i = 1, 2, · · · , 15)
into Eq. (65). Note that the fifteen initial conditions in Eq. (71) are all valid initial conditions in the first
iteration. Therefore, the first iteration results corresponding to the fifteen initial conditions are substituted
into Eq. (65), yielding

m1(1) = mod
(
⌊sin(a11c1)× ξ⌋ , 28

)
m2(1) = mod

(
⌊sin(a12c2)× ξ⌋ , 28

)
...

...
m14(1) = mod

(
⌊sin(a12c2 + a13c3 + a14c4)× ξ⌋ , 28

)
m15(1) = mod

(
⌊sin(a11c1 + a12c2 + a13c3 + a14c4)× ξ⌋ , 28

) , (72)

6.2.2. Situations of the second iteration
By substituting k = 1 into Eq. (68), the second iteration result is obtained as

x1(2) = a11x1(1) + a12x2(1) + a13x3(1) + a14x4(1)
x2(2) = a22x2(1) + a23x3(1) + a24x4(1)
x3(2) = a32x2(1) + a33x3(1) + a34x4(1)
x4(2) = a42x2(1) + a43x3(1) + a44x4(1)

. (73)

Since the fifteen initial conditions in Eq. (71) are all valid initial conditions in the second iteration, the
second iteration results corresponding to the fifteen initial conditions are substituted into Eq. (65), yielding

m1(2) = mod
(⌊
sin((a211)c1)× ξ

⌋
, 28

)
m2(2) = mod

(
⌊sin((a11a12+a12a22+a13a32+a14a42)c2)× ξ⌋ , 28

)
...

...

m14(2) = mod

(⌊
sin(a11(a12c2+a13c3+a14c4)+a12(a22c2+a23c3+a24c4)
+a13(a32c2+a33c3+a34c4)+a14(a42c2+a43c3+a44c4))× ξ

⌋
, 28

)
m15(2) = mod

(⌊
sin(a11(a11c1+a12c2+a13c3+a14c4) + a12(a22c2+a23c3+a24c4)
+a13(a32c2+a33c3+a34c4)+a14(a42c2+a43c3+a44c4))× ξ

⌋
, 28

) . (74)

January 25, 2021 16:35 IJBC_CYDCL

24 REFERENCES

6.2.3. Security analysis by using DCA-TMNCIC
According to the results given by Eq. (72) and Eq. (74), one cannot set an appropriate value of the initial
condition ci(i = 1, 2, 3, 4) to realize the divide-and-conquer attack.

Note that Eq. (72) and Eq. (74) can be further expressed as

ml(k) = mod
(⌊

sin
(
f
(k)
l (c1, c2, c3, c4, a11, a12, a13, a14, a22, a23, a24, a32, a33, a34, a42, a43, a44)

)
× ξ

⌋
, 28

)
, (75)

where k = 1, 2, 3, · · · , l = 1, 2, · · · , 15 and ξ is a constant. According to Eq. (75), since the initial conditions
are involved in the sine function, there is an implicit relationship between ml(k) and ci(i = 1, 2, 3, 4). Thus,
it is impossible to extract ci(i = 1, 2, 3, 4) from sin(·), set an appropriate value of ci(i = 1, 2, 3, 4) and use the
divide-and-conquer attack to decipher the secret keys. In the case of a failed divide-and-conquer attack, only
using the chosen-ciphertext attack cannot obtain all the information of the secret key expressions, so that
the secret keys cannot be further deciphered. Therefore, it can be concluded that 4-D SCSC-SM is secure
against the combinational effect of chosen-ciphertext attack and divide-and-conquer attack. Similarly, the
same conclusion can be drawn for n-D SCSC-SM (n = 3, 5, 6, 7, 8).

7. Conclusions
In this study, a cryptanalysis method is studied, which combines chosen-ciphertext attack and DCA-
TMNCIC for n-D SCSC-2 and n-D SCSC-3 (n = 3, 4, 5, 6, 7, 8). Compared with the DCA-TSNCIC pro-
posed in [Lin et al., 2018], listed in Table 3, the attack intensity of DCA-TMNCIC is stronger. Note that
the attack intensity grows with the numbers of valid initial conditions and nonlinear equations obtained
in the same iteration. More valid initial conditions mean that in each iteration more nonlinear equations
are obtained, consequently less iterations are needed to decipher the secret keys. Less iterations will make
a lower degree of the product terms in the nonlinear equations and decrease the workload of decipher-
ing the secret keys. However, since the whole solution process is to solve nonlinear equations, this task is
more challenging. In general, when DCA-TMNCIC is used for security analysis of n-D SCSC-2 and n-D
SCSC-3 (n = 3, 4, 5, 6, 7, 8), the secret keys can be deciphered only after two or three iterations. In con-
trast, DCA-TSNCIC cannot decipher the secret keys of n-D SCSC-2 and n-D SCSC-3 (n = 4, 5, 6, 7, 8)
even with a larger number of iterations. On this basis, several new improved chaotic cipher schemes are
proposed, including 3-D SCSC-NNS and n-D SCSC-SM (n = 3, 4, 5, 6, 7, 8). These improved schemes can
completely resist the divide-and-conquer attack, so as to ensure the security against the combinational
effect of chosen-ciphertext attack and divide-and-conquer attack.

Acknowledgments

This work was supported by the National Key Research and Development Program of China
(No.2016YFB0800401), the National Natural Science Foundation of China (No. 61532020, 61671161). We
thank Prof. Guanrong Chen of City University of Hong Kong for assistance and comments that greatly
improved the manuscript.

References
Chen, B., Yu, S., Chen, P., Xiao, L. & Lü, J. [2020] “Design and Virtex-7-based implementation of video

chaotic secure communications,” International Journal of Bifurcation and Chaos 30, 2050075.
Chen, J., Zhu, Z., Fu, C., Zhang, L. & Zhang, Y. [2015] “An efficient image encryption scheme using lookup

table-based confusion and diffusion,” Nonlinear Dynamics 81, 1151–1166.
Chen, P., Yu, S., Chen, B., Xiao, L. & Lü, J. [2018] “Design and SOPC-based realization of a video chaotic

secure communication scheme,” International Journal of Bifurcation and Chaos 28, 1850160.
Diab, H. [2018] “An efficient chaotic image cryptosystem based on simultaneous permutation and diffusion

operations,” IEEE Access 6, 42227–42244.
Hu, G., Xiao, D., Wang, Y. & Li, X. [2017] “Cryptanalysis of a chaotic image cipher using latin square-based

confusion and diffusion,” Nonlinear Dynamics 88, 1305–1316.

January 25, 2021 16:35 IJBC_CYDCL

REFERENCES 25

Huang, L., Cai, S., Xiao, M. & Xiong, X. [2018] “A simple chaotic map-based image encryption system
using both plaintext related permutation and diffusion,” Entropy 20, 535.

Li, C., Lin, D., Lü, J. & Hao, F. [2018a] “Cryptanalyzing an image encryption algorithm based on auto-
blocking and electrocardiography,” IEEE Multimedia 25, 46–56.

Li, M., Lu, D., Wen, W., Ren, H. & Zhang, Y. [2018b] “Cryptanalyzing a color image encryption scheme
based on hybrid hyper-chaotic system and cellular automata,” IEEE Access 6, 47102–47111.

Lin, Z., Yu, S., Feng, X. & Lü, J. [2018] “Cryptanalysis of a chaotic stream cipher and its improved scheme,”
International Journal of Bifurcation and Chaos 28, 1850086.

Lin, Z., Yu, S., Lü, J., Cai, S. & Chen, G. [2015] “Design and ARM-embedded implementation of a chaotic
map-based real-time secure video communication system,” IEEE Transactions on Circuits and Systems
for Video Technology 25, 1203–1216.

Matthews, R. [1989] “On the derivation of a chaotic encryption algorithm,” Cryptologia 13, 29–42.
Mollaeefar, M., Sharif, A. & Nazari, M. [2017] “A novel encryption scheme for colored image based on high

level chaotic maps,” Multimedia Tools and Applications 76, 607–629.
Niyat, A. Y., Moattar, M. H. & Torshiz, M. N. [2017] “Color image encryption based on hybrid hyper-chaotic

system and cellular automata,” Optics and Lasers in Engineering 90, 225–237.
Parvin, Z., Seyedarabi, H. & Shamsi, M. [2016] “A new secure and sensitive image encryption scheme based

on new substitution with chaotic function,” Multimedia Tools and Applications 75, 10631–10648.
Shafique, A. & Shahid, J. [2018] “Novel image encryption cryptosystem based on binary bit planes extraction

and multiple chaotic maps,” The European Physical Journal Plus 133, 331.
Shahzadi, R., Anwar, S. M., Qamar, F., Ali, M. & Rodrigues, J. J. [2019] “Chaos based enhanced RC5

algorithm for security and integrity of clinical images in remote health monitoring,” IEEE Access 7,
52858–52870.

Song, C. & Qiao, Y. [2015] “A novel image encryption algorithm based on DNA encoding and spatiotemporal
chaos,” Entropy 17, 6954–6968.

Wen, H. & Yu, S. [2019] “Cryptanalysis of an image encryption cryptosystem based on binary bit planes
extraction and multiple chaotic maps,” The European Physical Journal Plus 134, 337.

Wen, H., Yu, S. & Lü, J. [2019] “Breaking an image encryption algorithm based on DNA encoding and
spatiotemporal chaos,” Entropy 21, 246.

Wu, J., Liao, X. & Yang, B. [2018] “Cryptanalysis and enhancements of image encryption based on three-
dimensional bit matrix permutation,” Signal Processing 142, 292–300.

Wu, X., Zhu, B., Hu, Y. & Ran, Y. [2017] “A novel color image encryption scheme using rectangular
transform-enhanced chaotic tent maps,” IEEE Access 5, 6429–6436.

Xu, M. & Tian, Z. [2019] “A novel image cipher based on 3D bit matrix and latin cubes,” Information
Sciences 478, 1–14.

Ye, G. & Huang, X. [2015] “An image encryption algorithm based on autoblocking and electrocardiography,”
IEEE Multimedia 23, 64–71.

Ye, G., Jiao, K., Wu, H., Pan, C. & Huang, X. [2020a] “An asymmetric image encryption algorithm based
on a fractional-order chaotic system and the rsa public-key cryptosystem,” International Journal of
Bifurcation and Chaos 30, 2050233.

Ye, G., Pan, C., Dong, Y., Jiao, K. & Huang, X. [2020b] “A novel multi-image visually meaningful encryp-
tion algorithm based on compressive sensing and schur decomposition,” Transactions on Emerging
Telecommunications Technologies , e4071.

Zhang, W., Yu, H., Zhao, Y. & Zhu, Z. [2016] “Image encryption based on three-dimensional bit matrix
permutation,” Signal Processing 118, 36–50.

Zhang, X., Wang, L., Zhou, Z. & Niu, Y. [2019] “A chaos-based image encryption technique utilizing hilbert
curves and H-fractals,” IEEE Access 7, 74734–74746.

Zhang, Z. & Yu, S. [2019] “On the security of a latin-bit cube-based image chaotic encryption algorithm,”
Entropy 21, 888.

Zhao, J., Wang, S., Chang, Y. & Li, X. [2015] “A novel image encryption scheme based on an improper
fractional-order chaotic system,” Nonlinear Dynamics 80, 1721–1729.

Zhou, J., Zhou, N. & Gong, L. [2020] “Fast color image encryption scheme based on 3D orthogonal Latin

January 25, 2021 16:35 IJBC_CYDCL

26 REFERENCES

squares and matching matrix,” Optics and Laser Technology 131, 106437.

