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Abstract: We theoretically present a design of self-starting operation of microcombs based
on laser-cavity solitons in a system composed of a micro-resonator nested in and coupled to an
amplifying laser cavity. We demonstrate that it is possible to engineer the modulational-instability
gain of the system’s zero state to allow the start-up with a well-defined number of robust solitons.
The approach can be implemented by using the system parameters, such as the cavity length
mismatch and the gain shape, to control the number and repetition rate of the generated solitons.
Because the setting does not require saturation of the gain, the results offer an alternative to
standard techniques that provide laser mode-locking.
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citation, and DOI.

1. Introduction

‘Microcombs,’ or optical frequency combs in nonlinear microcavity resonators, are well known as
a promising technology for the design of compact metrological sources [1–5]. Leveraging on the
rich background of nonlinear dissipative systems in optics [6–10], microcombs find applications
also in spectroscopy, optical communications, microwave photonics, and frequency synthesis
[11–19].

In particular, microcombs operating with temporal cavity solitons (TCS) have been shown
to optimize spectral features of the frequency combs in terms of both the bandwidth and
spectral density [20–25]. Such pulses are the temporal counterpart of spatial cavity solitons
[10,26–30], i.e., self-confined waves balancing dispersion and nonlinearity in optical resonators
while maintaining equilibrium between losses and energy supply. TCS, first predicted in [31]
and observed in fiber loops [32], have also been largely studied in microresonators in passive
configurations that are well described by the Lugiato-Lefever equation (LLE) [1–3].

In general, these types of localized dissipative waves arise in bistable systems, in parameter
regions where an unstable uniform continuous-wave (CW) high-energy state coexists with a stable
low-energy one. In such a configuration, cavity solitons can be produced by a local perturbation
applied to the low-energy state. Being able to store energy and information, cavity solitons
have been extensively studied as a basis for memory schemes, both spatial [26,28] and temporal
[33–35] ones. In this context, methods allowing to write and erase cavity solitons locally are well
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established in both spatial schemes and their low-repetition-rate temporal counterparts. This is
usually hard to realize in microcavities, where writing a soliton requires more complex start-up
approaches, usually involving a perturbation applied to the background state [2,3].

In this framework, it is relevant to stress that an essential feature of a pulsed optical source
is its ability to self-start from noise, being initially turned on from an off state. This has been
largely discussed for mode-locked lasers, being configurations such as Kerr-lens mode-locking a
primary example of a self-starting laser. In microcombs, this feature is typically demonstrated
by delocalized Turing-type “roll solutions”. These periodic patterns are generated by the
modulational instability (MI) of the low-energy background state, hence they can self-start.
Turing rolls usually have a very small number of spectral components in comparison to solitons,
the latter species of nonlinear modes being preferable for metrological microcomb applications,
while Turing patterns are more suited for microwave technologies [36–38].

Cavity solitons are strictly stable when the underlying low-energy uniform state is stable
(solitons over unstable backgrounds can exist, but their existence is limited in conditions and range
[39,40]). This property has critical consequences for the occurrence of the start-up of the mode:
when the system is initiated in the stable low-energy state, no perturbation can spontaneously
grow, thus pulses cannot naturally emerge.

For this reason, much interest in the study of microcombs has been drawn to states such as
soliton crystals [41,42], which can start from the MI of the background. The respective solutions
may appear as the limit form of the Turing patterns entering the region in the parameter space
where solitons are possible [43].

Notably, the MI of the background state can be affected by modifying, for example, the
dispersion of the nonlinear gain profile, as in the case of self-injection locking [44]. This has led
to the experimental demonstration of self-starting soliton crystals in microcombs [45].

Microcombs with gain elements combined with the nonlinear microcavity [15,21,46–53] have
been drawing increasing interest in the course of ongoing studies. In addition to the self-injection
locking mechanism for Kerr microresonators [15,21,46–49], cavity solitons have also been
observed in an injected quantum-cascade laser [52], for which an LLE-based model has been
recently derived [53].

Furthermore, cavity solitons in laser microcombs with a microcavity nested in a gain cavity
[52–53] have been recently discovered and explained [54]. Cavity solitons in this setting
exist without a background, similarly to laser-cavity solitons in the spatial [29,30,55] and
semiconductor-based temporal [34] configurations.

The corresponding model consists of a set of coupled equations, shown in Section 2, which
shares important properties to those previously elaborated for the frequency-selected feedback
in spatial semiconductor and coupled-fiber amplifiers [56–60]. Two equations are, in general,
sufficient to capture the basic features of the system. The model can be expanded by adding
additional equations to improve its accuracy in describing the real physical setting.

An important peculiarity of such model, in comparison to previous works for general mode-
locked systems, is the absence of fast saturation of the gain: pulses in this system are sustained
solely by the Kerr nonlinearity of a nonlinear-Schrödinger-like equation coupled to an equation
with linear gain. Usually, gain saturation or, equivalently, nonlinear absorption is required in a
laser to generate stable pulses. Laser mode-locking is usually well described by the generalized
complex Ginzburg-Landau equation (CGLE), which requires to include a quintic term for
producing stable solitons [1,57]. On the other hand, starting from the consideration of the model
for fiber-coupled amplifiers [57], it was found that a coupling of the CGLE to a linear equation
was sufficient to stabilize the system with the cubic-only nonlinear term, without including any
quintic nonlinearity. In this connection, it is relevant to mention that the recent demonstration of
laser-cavity soliton microcombs shows that nonlinear gain-attenuating elements are not required
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in such a coupled system while maintaining stable dissipative solitons [54]. This possibility leads
to a considerable reduction in the complexity of the microcomb devices.

Finally, the use of a system of two coupled equations allows one to keep the gain-filtering
element separated from the nonlinear Kerr element. Gain-filtering is necessary for any stable
amplifying system, allowing it to perform nonlinear broadening of the spectrum without any
bandwidth limitation. Thus, this system of coupled equations represents a simple prototype of an
alternative type of broadband optical sources completely free of saturation elements.

In this paper, we discuss the ability of the laser TCS system to self-start from noise. We first
discuss the stability properties of the solitons in detail, also showing that the system supports a
stable analytical solution in the simplest configuration: a nonlinear Schrödinger equation coupled
to a dispersion-free equation carrying the linear gain.

Then, we show how to engineer the MI gain of the trivial state to produce a solitary solution
that can start directly from noise. A recent study [61] considered the MI spectral gain of the
trivial state and its impact on Turing patterns. Here we study how it affects the buildup of
solitons and soliton crystals from a noisy zero solution. We find domain boundaries for the
trivial solution in a simple analytical form, which allows us to reveal the effects of different laser
parameters. The effects of the walk-off and convection have been studied for noise-sustained
bidimensional structures, that, however, are short-lived ones [62,63]. In transverse nonlinear
optics, gain diffusion has also been shown to modify the stability region of solitary waves [64].
Here we show how to use these parameters to secure the self-start microcomb laser solitons,
select the number of solitons in the emerging “crystal” (or array of pulses), control their repetition
rate, and extend their existence in the parameter space towards high energies.

2. Single-mode nested-cavity model with gain: linearly coupled equations

In its simplest form, the model studied here and related to recently implemented experimental
settings [54,61] has the form of a lossy nonlinear Schrödinger equation for complex field a,
linearly coupled to a lossy linear dispersive equation for the complex field b [56,61,65–67]:

∂ta =
iζa
2
∂xxa + i |a|2a − κa +

√
κb, (1)

∂tb = −v∂xb +
(︃
iζb
2
+ σ

)︃
∂xxb + (2πi∆ + g − 1)b +

√
κa. (2)

The system is written in terms of the propagation variable and longitudinal coordinate (or, in
other words, slow and fast times), t and x. The equation for b includes the group-velocity and
frequency mismatch terms, accounted for by coefficients ν and ∆, respectively, with ν being often
referred to as the walk-off parameter. Coefficients (g − 1) and σ represent the linear gain/loss
and dispersive-loss terms, respectively. In the present scaling, the linear-coupling constant,

√
κ,

also determines the linear-loss factor, κ, in the equation for the field a. Similar models to Eqs. (1)
and (2) have also been discussed in the context of spatial semiconductor frequency-selective
feedback lasers [56] and coupled fiber amplifiers [57–60,68]. Interestingly, Eqs. (1) and (2) are
obtained for a configuration with two nested cavities [54,61], which feed energy respectively
one another on two different points of the system. For this reason, in this system, the linear
coupling terms

√
κ are real and have the same sign, representing a cross-gain of the coupled

modes. This formulation is different from the coupled system considered in [57–60] and [68],
where the modes are conservatively coupled like, for instance, in coupled waveguides. In the
latter case, the coupling terms are imaginary.

Group-velocity-dispersion (GVD) coefficients in Eqs. (1) and (2) are ζa,b. One can consider
the case of fully anomalous GVD, with both ζa,b being positive, and fully normal GVD, with
both ζa,b being negative, as well as the mixed case, with opposite signs of ζa and ζb. Note that
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Eq. (1) implies the focusing sign of the Kerr nonlinearity. In general, the cases of the focusing
nonlinearity and fully anomalous GVD, and that of a defocusing medium combined with fully
normal GVD are mutually equivalent, as the equations for these cases are complex conjugates of
each other, apart from the change of sign of the mismatch ∆. This means that there are four main
cases of interest. Two of them correspond to the focusing medium and fully anomalous or fully
normal GVD, and two others to the same nonlinearity combined with mixed GVDs, that have
ζa>0, ζb<0 or vice versa. Following the experimentally relevant settings [54,61], we concentrate
here on the case of the focusing medium and fully anomalous GVD, which makes it possible
to construct a bright soliton. Other cases that allow one to produce, e.g., dark solitons, will be
presented elsewhere.

2.1. Continuous wave (CW) solutions

The system of Eqs. (1) and (2) admits the trivial CW solution a= b= 0. Taking the linearized
version of Eqs. (1) and (2) for x-independent solutions, and assuming perturbations in the form
of (ã, b̃) = (δa, δb)exp(λt), one arrives at the following quadratic equation for the instability gain
λ of the zero state:

λ2 + (1 − g + κ − 2πi∆)λ − κ(g + 2πi∆) = 0. (3)

A straightforward analysis of this equation demonstrates that it gives rise to instability, i.e.
solutions with Re λ > 0, if g exceeds a minimum threshold value determined by equation

(2π∆)2 = [(2π∆)2 + (1 + κ − gth)
2]gth. (4)

Exactly at g = gth, the instability gain takes purely imaginary eigenvalues, λ = ±iκ
√︁

gth/(1 − gth).
It follows from Eq. (4) that gth ≈ (2π∆)2(1 + κ)−2 for small mismatch ∆, and gth ≈ 1− κ2(2π∆)−2

for large values of the mismatch. Under the fact that both these relations predict 0<gth<1, the
gain coefficient g in Eq. (2) is assumed to take values between 0 and 1: it must be positive to
provide the instability gain, and it must be smaller than 1 (in the present notation) to prevent
blowup of field b(x, t).

In addition to the trivial state, the system also admits a set of two CW solutions, which
can be obtained by substituting the respective ansatz, a(t, x) =

√
I exp(−i2πϕAt), b(t, x) =

B exp(−i2πϕBt). It solves the system under the condition ϕA = ϕB = ϕ, which allows finding two
solutions [54,61]:

ϕ± = −

(︂
∆ ± (2π)−1√︁(1 − g)g

)︂
, (5)

I± =

(︄
2π∆ ±

√g(1 − g + κ)√︁
1 − g

)︄
. (6)

Note that the stationary intensities of the two fields belonging to these solutions are related by
|b|2 = κ (1 − g)−1 |a|2, while the phases of the fields differ in the two cases, leading to relation

B =
√
κ I±

(︃
1 ∓ i

√︂
g(1 − g)−1

)︃
.

There are two threshold values of the mismatch at which field a acquires nonzero intensity:

∆
±
th = ∓(2π)−1

√g(1 − g + κ)√︁
1 − g

. (7)

As the gain coefficient g belongs to interval 0<g<1, the expression (7) is well defined. For a
given value of g, when increasing ∆ from negative to positive values, one first passes a first
threshold I+ , at which the CW solution emerges via a pitchfork bifurcation [69]. Above this
threshold, there are two coexisting states, I+ and the zero solution, and the intensity of the branch
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I+ increases linearly with ∆. Increasing ∆ further, a second threshold is passed, at which the
solution I− , with I−< I+ , appears through its bifurcation. Above the second threshold, there are
three coexisting solutions: zero, I− and I+ , in order of increasing magnitude.

The thresholds given by Eq. (7) are fully tantamount to the stability boundary of the zero state
given by Eq. (3). This conclusion is natural, as nonzero solution branches emerge simultaneously
with the onset of the zero state instability.

Knowing the stability conditions for the zero solution helps to identify the (in)stability of the
nonzero CW branches. Increasing ∆ across the first bifurcation, as mentioned above, one has two
stationary solutions, one of them (the zero state), being unstable above the bifurcation point. This
fact implies, in agreement with general principles of the bifurcation theory [69], that the solution
branch I+ is stable, as straightforward examinations of Eqs. (1) and (2) demonstrate that the loss
terms do not allow the solutions growing to infinite values. Above the second bifurcation point,
the zero solution is stable again, hence the new CW solution, I− , with the lower intensity, has to
be unstable, while the upper branch I+ remains stable, in the framework of the x-independent
equations (I− is unstable as a separatrix between attraction basins of the two stable states). Note,
however, that I+ may be affected by MI [61], which can give rise to stable solitons. This is
generally expected when the system is bistable, with a modulationally unstable upper branch.
This argument points out at a possible existence of a stability region for solitons at ∆>∆−

th.

2.2. Soliton solutions

Solitons in this system are, in general, not available in an analytical form. Before resorting to
numerical analysis, we discuss analytical soliton solutions in a particular region of parameters.
A set of analytical Schrödinger-type solutions can be found in the case of a dispersionless,
gain-flat amplifier and group-velocity matched system, i.e. ζb = 0, ν = 0 and σ=0. In
particular, following [57,65,68], it is possible to explore solutions in the form of a(t, x) =√

Isech
(︁√
η x

)︁
exp(−2πiϕ t), b(t, x) = Bsech

(︁√
η x

)︁
exp(−2πiϕ t).

Substituting this ansatz in Eqs. (1) and (2), we arrive at a set of simple equations:(︃(︃
iζa
2
η + 2πiϕ − κ

)︃
√

I + i (I − ζaη)
√

I sech2(
√
ηx) +

√
κB

)︃
= 0, (8)

(
√
κI + (g − 1 + 2πi(∆ + ϕ))B) = 0. (9)

A familiar NLS-type linear relation between the intensity and the inverse pulse-width follows
from here, η = I/ζa (as the coefficient in front of the single x-dependent term, sech2 (︁√

η x
)︁
, must

vanish), along with formulas that determine two possible solutions:

ϕ± = −

(︂
∆ ± (2π)−1√︁(1 − g)g

)︂
, (10)

I± = 2

(︄
2π∆ ±

√g(1 − g + κ)√︁
1 − g

)︄
. (11)

Note that the relations for frequency ϕ [Eq. (10)] and amplitude B =
√
κ I±

(︃
1 ∓ i

√︂
g(1 − g)−1

)︃
are the same as for the CW state [see Eq. (5)], while the peak power, given by Eq. (11), is doubled
in comparison to its CW counterpart in Eq. (6). Therefore, these soliton solutions share the
bifurcation thresholds [see Eq. (7)] with the CW states, and similar conjectures can be made
for their stability: only the trivial solution exists and is stable at ∆<∆+th, for ∆+th<∆<∆−

th solution
I+ exists along with the unstable trivial state and is unstable too (as a localized state with the
unstable zero background), while at ∆>∆−

th there is a solution I−, with lower power than I+, which
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plays the role of the separatrix between the stable trivial state and a possibly stable upper soliton
branch I+ [59,60].

We have verified these conjectures numerically, including numerical solutions for solitons
in the case of nonzero coefficients ν, ζb and σ in Eq. (2), in which case the above analytical
solutions are not available. To this end, we performed a numerical continuation, starting from
the particular analytical solution given by Eqs. (10) and (11), and iteratively advancing into the
parameter space from the initial solution using the pde2path software package [70]. A set of
stationary states produced by the continuation process were identified as branches of the general
solution family, and their stability against small perturbations was explored. In particular, we
calculated the eigenvalue spectrum of the system’s Jacobian at each point of the continuation.
This technique made it possible to detect instabilities arising from small perturbations with a
spatial dependence whose maximum spatial frequency was limited by the discretization of the
spatial domain. In Fig. 1, we present the peak intensity of the field a, following the variation of
mismatch ∆ in Eq. (2) for a set of other parameters (κ = 2π, ζa = 1.25 · 10−5, g = 0.1), while
the GVD coefficients were taken as ζb = h × 3.5 · 10−5 and σ = h × 1.5 · 10−4, with h varying
from 0 to 1. The objective is to trace a link between the analytical solution and experimentally
measured modes reported in [54].

 

 

the parameter
of stationary 
general solut
particular, we
the continuat
perturbations 
discretization 
following the1.25 ∙ 10ିହ ߪ݃ , = ݄ ൈ 1.5 ∙
analytical solu

The graph
analytically p
when a nonze
largest possib
in the bistabil
be produced a
Eqs. (10) and 
Kerr nonlinea
included. 

Fig. 1
(a) an
g = 0.
h = 0
repres
of Δ, s
green 
intens
respec

2.3. The Mod

The study of
corresponding
through which
frequencies ௫݂
solutions. Som
previous anal

r space from th
states produce
ion family, an
e calculated th
tion. This tech
with a spatial 
of the spatial
variation of m݃ = 0.1), whi10ିସ,	 with h 

ution and expe
hs in Fig. 1 c
predicted for th
ero dispersion 
ble energy for t
lity region, Δ >
as an analytica
(11). While th

arity, the field

. Stability branche
nd frequency (b) on
.1, and ߞ௕ = ݄	3.5
0 pertaining to th
sent stable solution
showing the inten
and dashed red li

sity. Top and bot
ctively. 

dulational-Ins

f the MI spect
g to the exist
h they arise. Th௫݂  is beneficial 
me analytical c
lysis performe

he initial soluti
ed by the conti
nd their stabil

he eigenvalue s
hnique made p
dependence wh
l domain. In F
mismatch Δ in E
le the GVD c
varying from 

erimentally mea
clearly confirm
he soliton bran
is added, the b

the soliton, wit> Δ୲୦ି. These re
l continuation 

he field ܽ main
d ܾ  spreads ou

es of the soliton s
n mismatch Δ, for ∙ 10ିହ, ߪ = ݄	1.5
e analytical solut
ns. In panel (c) sel
sity profiles for fi
nes, respectively. 
ttom panel in (c)

stability Spect

trum of the tr
ence of stable
he appearance 
for the growt

considerations
ed for ݔ-indepe

 

 

on using the p
inuation proce
lity against sm
spectrum of th
possible to de
hose maximum

Fig. 1, we pres
Eq. (2) for a se
coefficients we
0 to 1. The ob
asured modes r

m the existenc
nches in the ca
branches merge
th the top branc
esults show ho
of the nonlinea

ntains a well-co
ut in the botto

tates, shown by th
a set of other coef∙ 10ିସ,	 with h va
ions given by Eq
ected stable solito
ields ܽ and ܾ (both
The profiles are n
) pertain to h=0,

trum of the Ze

rivial state allo
e solitons and
of a spectrum 

th of noise pe
on the MI spe

endent perturb

pde2path softw
ess were identi
mall perturbat

he system’s Jac
etect instabilit
m spatial freque
sent the peak i
et of other par
ere taken as ߞ
bjective is to tr
reported in [54
e of the stabi
ase of ߥ = ௕ߞ
e into a single 
ch maintaining

ow the solitons
ar-Schrödinger
onfined profile
om plot of Fig

he dependence of 
fficients: ߢ = ,ߨ2
arying from 0 to 1
qs. (10) and (11).
ons are displayed f
h represented by s
normalized to the p
, Δ = 2.99  and h

ero State and

ows predicting
d exploring th

m that is unstabl
erturbations in
ectrum can be 
bations to ݔ-de

ware package [7
ified as branch
tions was exp
cobian at each
ties arising fro
ency was limit
intensity of th
rameters (ߢ ௕ߞ= = ݄ ൈ 3.5 ∙
race a link bet

4].  
ility region at = ߪ = 0. Inte
 one, which de

g the stability p
s considered in
r-type solitons

e under the acti
g. 1(c), when 

the peak intensity
௔ߞ  = 1.25 ∙ 10ିହ,
 (green to purple),
Continuous lines

for a specific value
symbol ݑ) by solid
peak values of the

h=0.01, Δ = 2.27
d Start-Up from

g the paramete
he dynamical 
le against high

nto multipeake
 done by exten
ependent ones

70]. A set 
hes of the 
plored. In 
h point of 
om small 
ted by the 

he field ܽ, 2,ߨ	ߞ ௔ = 10ିହ  and 
tween the Δ > Δ୲୦ି , 
restingly, 
efines the 
properties 
n [54] can 
 given by 
ion of the 

GVD is 

 

y 
, 
, 
s 
e 
d 
e 
, 

m Noise 

er ranges 
scenarios 

her spatial 
ed soliton 
nding the 

s ൫ ෤ܽ, ෨ܾ൯ =

Fig. 1. Stability branches of the soliton states, shown by the dependence of the peak
intensity (a) and frequency (b) on mismatch ∆, for a set of other coefficients: κ = 2π, ζa =
1.25 · 10−5, g= 0.1, and ζb = h 3.5 · 10−5, σ = h 1.5 · 10−4, with h varying from 0 to 1
(green to purple), h= 0 pertaining to the analytical solutions given by Eqs. (10) and (11).
Continuous lines represent stable solutions. In panel (c) selected stable solitons are displayed
for a specific value of ∆, showing the intensity profiles for fields a and b (both represented
by symbol u) by solid green and dashed red lines, respectively. The profiles are normalized
to the peak values of the intensity. Top and bottom panel in (c) pertain to h=0, ∆ = 2.99 and
h=0.01, ∆ = 2.27, respectively.

The graphs in Fig. 1 clearly confirm the existence of the stability region at ∆>∆−
th, analytically

predicted for the soliton branches in the case of ν = ζb = σ = 0. Interestingly, when a nonzero
dispersion is added, the branches merge into a single one, which defines the largest possible
energy for the soliton, with the top branch maintaining the stability properties in the bistability
region, ∆>∆−

th. These results show how the solitons considered in [54] can be produced as an
analytical continuation of the nonlinear-Schrödinger-type solitons given by Eqs. (10) and (11).
While the field a maintains a well-confined profile under the action of the Kerr nonlinearity, the
field b spreads out in the bottom plot of Fig. 1(c), when GVD is included.
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2.3. Modulational-instability spectrum of the zero state and start-up from noise

The study of the MI spectrum of the trivial state allows predicting the parameter ranges
corresponding to the existence of stable solitons and exploring the dynamical scenarios through
which they arise. The appearance of a spectrum that is unstable against higher spatial frequencies
fx is beneficial for the growth of noise perturbations into multipeaked soliton solutions. Some
analytical considerations on the MI spectrum can be done by extending the previous analysis
performed for x-independent perturbations to x-dependent ones (ã, b̃) = (δa, δb) exp(λ t + iωxx),
being ωx = 2πfx. By deriving an equation for eigenvalue λ and setting it to be purely imaginary
to identify stability boundaries as done above in Section 2.1 [see Eqs. (3) and (7)], we find two
thresholds:

∆
±
th =

2vωx + (ζb − ζa)ωx

4π
±

(︁
1 − g + σω2

x + κ
)︁

2π

√︄ (︁
g − σω2

x
)︁

1 − g + σω2
x
. (12)

The stability boundary in the plane of the detuning ∆ and spatial frequency is better visualized in
the implicit form:(︃

2π∆th − vωx −
(ζb − ζa)ω

2
x

2

)︃2

= (1 − G (ωx) + κ)
2 G (ωx)

1 − G (ωx)
, (13)

where G(ωx) is the gain spectral response, which is g − σω2
x in this case, but may be generalized

to take into account different gain and filter spectral shapes in more general systems. Note
that for ωx = 0, Eq. (13) reproduces Eq. (7) exactly. For ν → 0 and small (or properly
matched) dispersions ζa,b, the MI boundary assumes an ellipse-like shape, as determined by the
gain-dispersion parameter σ, see Figs. 2(a) and 2(b). The shape tends to degenerate into straight
lines defined by the threshold given by Eq. (7) for σ = 0. Thus, the gain dispersion allows one
to control the maximum MI frequency. Note that, for all values of detuning ∆, the instability
region always includes ωx = 0, which corresponds to the maximum of the MI gain and rules the
instability dynamics.

Parameters such as the walk-off have been previously used to control spatial multipeaked modes
in parametric amplifiers, but in these cases, the solitons are pushed out from the central region
of the spatial cavity towards the boundary and they decay [62]. On the other hand, temporal
cavity systems are intrinsically periodic. Hence such control only affects the repetition rate of
the solitons [54]. Here we see that an increase of the group-velocity, ν, leads to a rotation of
the ellipse axis in Fig. 2(b). Interestingly, by acting on the group velocity ν and gain-dispersion
parameter σ, it is possible to engineer the shape of the stability region to obtain a set of values
of frequency detuning ∆ at which the instability occurs only at high spatial frequencies. If
such a region falls within the region of stability of the solitons, there is a possibility that
multipeak self-starting solutions can arise. These regions can also be obtained by adjusting the
group-velocity dispersion mismatch (ζb − ζa), which determines the distortion of the symmetry
axis of the stability boundaries in the form of a parabola by controlling the sign and magnitude
of its curvature in Fig. 2(c). In addition, the spectral shape of the gain, G(ωx), may be further
adjusted to engineer the boundaries of the instability domain. In Fig. 2(d) we have considered a
generalized two-peak gain that can be modeled with a simple quartic polynomial,

G(ωx) = g + σ1ω
2
x − σ2ω

4
x , (14)

and will be further explored in Section 3.2. Spatial frequencies that maximize the MI gain
determine the perturbation spectral components more likely to grow.

According to the previous considerations, in the case of Fig. 2(a) the CW state is the one
most likely to appear (fx = 0 implies no spatial dependence). However, in other cases, the
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Fig. 2. Maps of the MI gain spectrum of the zero state in the plane of detuning frequency
∆ and modulation frequency fx for Eqs. (1) and (2). Numerically calculated MI gain is
represented by the color scale. Instability boundaries predicted by Eq. (12) are shown by
green lines, and the symmetry axes of the boundaries, determined by the left-hand side of
Eq. (13), is shown by black dashed lines. In all the panels, we fix κ = 2π, ζa = 1.25 · 10−5,
ζb = 3.5 · 10−5 and g= 0.08. (a) For the given set of parameters (σ = 1.5 · 10−4, ν = 0),
the ellipse-type shape is dominant. (b) When the group-velocity mismatch is increased to
ν = 0.1, the ellipse is distorted along a straight line. (c) When the gain spectrum is enhanced
(σ is decreased to 1 · 10−5), while maintaining ν = 0, the stability domain expands along
the axis of modulation frequency fx, to allow observing the parabolic distortion of the axis
under the action of the group-velocity- dispersion mismatch, (ζb − ζa). Finally (d), the case
of the fourth-order gain, (G(ωx) = g + σ1ω

2
x − σ2ω

4
x ), with σ1 = 4 · 10−5, σ2 = 2 · 10−8, is

displayed, showing expansion of the instability domain towards high spatial frequencies at
large values of detuning ∆.

presence of MI gain maxima at fx ≠ 0 promotes the growth of perturbations with a spatial period
determined by such frequency. Note that, for self-starting Turing patterns, a cascading effect of
the MI can be used by seeding the pattern in a modulationally unstable CW, as discussed in [61]),
while the self-starting generation of solitons requires the stability of the zero background against
perturbations with fx = 0.

Here we present a simple example of soliton start-up, induced by the effect of the walk-off
with ν = 0.1 [for its MI spectrum, see Fig. 2(b)]. First, it is useful to visualize the MI gain as a
function of spatial modulational frequency fx, as shown in Fig. 3(a) for two values of detuning ∆.
For every value of ∆, it is possible to extract the frequency values corresponding to the MI gain
maxima. The distribution of such values in the (∆, g) plane is shown in Fig. 3(b). This plot
predicts the spatial frequency that is most likely to appear from the start-up of the system.

To secure the start-up of the soliton regime, we also need to know its stability domain, which can
be numerically evaluated and, generally, depends on the number of solitons. A particular example
of such a calculation is provided in the next section. In general, following the consideration
presented in the previous section and Fig. 1(a), solitons are expected to form for positive values
of ∆. Here we select two points, namely ∆ = 0.41, g = 0.10, and ∆ = 0.58, g = 0.18, which
are indicated, respectively, in Fig. 3(b) by the red and green points, corresponding to spatial
frequencies fx = 2.25 and fx = 3.12. Initiating the propagation with initial white noise and such a
set of parameters, we obtain the temporal and spectral outputs displayed in Figs. 3(c) and 3(d),
respectively, where the generation of two and three solitons is evident. The propagation of the
three-soliton state is shown in further detail in Fig. 4.
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Fig. 3. (a) The MI gain vs. the transverse frequency for ν=0.1, g=0.08 with ∆=0 and 0.03
(blue and orange plots, respectively), showing maxima at fx=0 and fx = 3. Their position in
the MI spectrum plot is shown in the inset by means of the same colors. (b) The distribution
of the spatial frequency corresponding to the maximum of the MI gain in the plane of (∆, g).
Red and green points correspond, respectively, to ∆ = 0.41, g = 0.10 and ∆ = 0.58, g = 0.18.
(c-d) Soliton regimes (the micro-cavity intensity profile shown in red, and the spectrum
shown by black dots) were obtained by calculating the electric field evolution in time from
simulations of Eqs. (1) and (2) with a seed of initial noise. The two (three)-soliton regime is
reached by choosing the parameters corresponding to the red (green) point in (b). Intensity
(red) and spectrum (black) profiles of the micro-cavity electric field are taken from the last
time slice.
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Fig. 4. Self-starting of three solitons with ∆ = 0.58, g = 0.18, ν = 0.1. Initiated by a noise
seed, the time-domain evolution of the model is simulated by means of Eqs. (1) and (2).
(a) The evolution of the micro-cavity electric field in the spatial domain. (b) Details of the
pattern formation (top) and steady-state propagation (bottom) in the spatial domain. (c) The
evolution of the micro-cavity electric field in the spatial-frequency domain.
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Figures 4(a) and 4(c) present the temporal evolution in both spatial and spatial-frequency
domains. As small white noise is injected in the propagation, the modulation with the spatial
frequency fx = 3 starts to grow, as seen in the top plot of Fig. 4(b), eventually transitioning to
a triplet of solitons visible in the bottom plot of Fig. 4(b). It is interesting to notice that, after
the start-up, the three solitons do not necessarily propagate equally spaced, as can also be seen
in Figs. 3(c) and 3(d). We also remark that all the simulations have been performed over a
large number of roundtrips and a broadband frequency noise was added to further confirm their
stability.

3. Full model for the nested cavities with gain

In this section, we focus on the connection of the model with the physical setting and, specifically,
with a nonlinear Kerr micro-cavity nested in a main amplifying loop. We introduce a system
of mean-field equations derived from the coupled-mode model of the two cavities [54,61].
Here, the field a represents the field in the microcavity, while the field in the main amplifying
loop is represented by a superposition of supermodes bqwhich are periodic with respect to the
microcavity’s length. In this way, both a and bq are functions of the normalized spatial coordinate
in the microcavity, x, and normalized time, t. Further details concerning the physical constants
can be found in [54,61]. The normalized model reads as follows:

∂ta =
iζa
2
∂xxa + i |a|2a − κa +

√
κ

N∑︂
q=−N

bq, (15)

∂tbq =

(︃
iζb
2
+ σ

)︃
∂xxbq − v∂xbq + 2πi(∆ − q)bq + gbq −

N∑︂
p=−N

bp +
√
κa. (16)

Equation (16) governs the evolution of the supermodes identified by index q. This model allows
to scale up its accuracy by increasing the number 2N+1 of coupled supermode equations. The
case of N= 0 corresponds to Eqs. (1) and (2) with b0 = b. When the number of amplified modes
in the microcavity lines is small (with κ = π representing one mode per line, and κ = 2π two
modes per line, which is the case addressed by the numerical results reported below), Eqs. (1)
and (2) grasp the main physical purport of the solitons. However, it is crucial to take into account
the periodic nature of the system. Periodicity directly affects the instability region of the trivial
state reported in Fig. 5 for the same parameters as in Fig. 2, where the periodic repetition of the
instability areas for multiple values of detuning ∆ is clearly visible. For better accuracy, here and
below, we focus on the case N= 7, which uses 15 supermodes, allowing us to maintain good
fidelity in the description of the system.

In light of such multiplicity, in the following subsection, we extend the considerations presented
above in Section 2 through a detailed numerical study of the variation of the stability region with
a change of the walk-off parameter, demonstrating the ability to control the multiplicity of the
solitons self-starting from noise.

3.1. Soliton stationary states and start-up from noise: the role of walk-off

We start by exploring the stability of single-soliton states using a numerical-continuation [70]
of Eqs. (15) and (16). Figure 6(a) reports a set of branches obtained by varying the frequency
detuning ∆ for a set of gain values g. Here the group velocity mismatch equals zero, ν = 0. It is
useful to project the stability region of the soliton onto the stability domain of the zero state in
the plane of (∆, g), where the spatial frequency corresponding to the maximum MI gain is fx = 0.
The projection is displayed in Fig. 6(b). The periodicity of the system imposes an upper boundary
on the MI gain. Such a stability region can be computed by varying the walk-off parameter ν.
The results of the systematic study are reported in Fig. 6(c), where we project the stability regions
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Fig. 5. MI gain spectrum of the zero state in the plane of detuning ∆ and spatial modulation
frequency fx, as obtained from Eqs. (15) and (16) with N= 7. Numerically calculated values
of the gain are displayed by means of the color scale. Instability boundaries analytically
predicted by Eq. (12) are shown by green lines. The symmetry axis of the boundary
determined by the left-hand side of Eq. (13) is shown by black dashed lines. Parameters are
the same as in Fig. 2.

of the branches obtained at different values of ν onto the plane of (∆, g). The three-dimensional
region enclosed by the obtained surface comprises all parameter values supporting the stable
single-soliton operation. Here, it is evident that the single-soliton stability condition constrains ν
to be limited to a region of width ≈ 0.24, considering the symmetry of the stability boundaries
about the ν = 0 plane. The stability region for the case ν = 0.1, along with the spatial frequency
distribution corresponding to the maximum MI gain is presented in Fig. 6(d). It can be observed
that, although an increase of ν leads to contraction of the stability region in the (∆, g) plane, it
also helps it to penetrate the instability region of the zero state. In this particular case, it overlaps
with the zone where the zero-state’s MI gain has a maximum for fx = 1. The zero state is unstable
here against perturbations with the spatial period covering the entire transverse range, hence very
broad solitons can be created by such a perturbation.

Because the MI gain has a spectrum spread in the spatial frequency, we can, furthermore,
predict that it affects the stability of multipeak soliton arrays [68] or an equally spaced soliton
crystal. We have then reproduced the study of the stationary states for two and three equidistant
solitons. Such solutions do not necessarily inherit the stability properties of the underlying
one-soliton state, as is evident in Figs. 7(a) and 7(b). In fact, on the contrary to the single-soliton
case, the projection of the stability region onto the (∆, g) plane does not overlap with the stability
boundaries of the zero state. In particular, two and three equidistantly placed soliton solutions
are stable when the spatial frequency corresponding to the largest MI gain takes values around
2 − 3. This property of the multi-soliton states helps to expand the stability boundaries towards
larger values of gain g, and thus create high-energy states and broad patterns that are relevant for
practical applications.

These considerations provide clear guidance for the engineering of the start-up region of the
system. As an example, we realized the start-up for parameters in the stability regions defined in
Figs. 6(d) and 7 by injecting low-energy, random noise in the first time slice of the simulations.
Figure 8 summarises the self-starting of the one-, two-, and three-soliton states. In each case,
we performed the same simulation for different realizations of the initial noise to estimate our
strategy’s accuracy to control the multiplicity of the produced state. Solutions with a large
number of solitons generally correspond to broader spectra, as they appear under the action of a
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Fig. 8. The self-start of multiple solitons. Initiated by initial noise, the time-domain
evolution of the model is produced by simulations of Eqs. (15) and (16), with N= 7. (a)
The evolution of the micro-cavity electric field in the spatial domain; (b) intensity (red)
and spectral (black) profiles of the micro-cavity electric field in the last time slice for the
single-soliton solution (∆ = 0.358, g = 0.05, ν = 0.1). Panels (c) and (d) display the same
for the two-soliton solution (∆ = 0.420, g = 0.09, ν = 0.1). Panels (e) and (f) display the
same for three-soliton solution (∆ = 0.45, g = 0.09, ν = 0.14).

stronger gain, as evident in Fig. 7. Therefore, this approach provides access to stable structures at
large values of the gain, which produce only instability in the single-soliton sector, for ν = 0.

3.2. Engineering the spectral gain for self-starting multi-soliton solutions

The MI analysis of the zero state suggests that the particular frequency profile of the gain included
in the model plays an essential role in the selection of the spatial frequency corresponding
to the peak of the MI gain. In previous sections, we considered a gain spectrum defined as
G(ωx) = g−σω2

x , which is parabolic and centered at ωx = 0, as is common to most experimental
settings. However, as the spectral shape of the gain can be easily engineered through appropriately
designed spectral filters, it is relevant to explore the degrees of freedom offered by different
spectral profiles. In particular, it is interesting to reproduce the spectrum of a two-peaked gain,
which is easily achievable in actual experiments. For simplicity, we consider the symmetric
shape modeled by Eq. (14), where the first and third-order terms are absent as we consider the
gain centered at ωx = 0.
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We here address the MI induced by such gain spectra. To this end, we extended the system of
Eqs. (15) and (16) by adding in the latter equation an extra fourth-order derivative in x with new
parameters σ1 and σ2 obtaining:

∂tbq = −σ2∂xxxxbq +

(︃
iζb
2

− σ1

)︃
∂xxbq − ν∂xbq + 2πi(∆ − q)bq

+ g bq −

N∑︂
p=−N

bp +
√
κa.

(17)

The parameter g still refers to the gain at the spatial frequency ωx = 0 that we keep with a constant
difference to the side-lobe peak gain. In Fig. 9(a), the MI gain attains a maximum at spatial
frequencies close to the side-lobe peaks for most values of ∆. This is confirmed in Fig. 9(c) by the
peak-frequency chart in the (∆, g) parameter plane. With the increase of ν, the MI gain frequency
profile varies similarly to Fig. 9(b). The variation leads to overlap of adjacent frequency profiles,
reducing the stability range of the zero background to a very limited range in the (∆, g) plane in
Figs. 9(b) and 9(d). Note that the peak-frequency chart exhibits a sharp change around ∆ = 0,
with the frequency corresponding to the largest MI gain being |fx | = 5 around ∆ = 0.

Fig. 9. Effect of the gain shaping, in the form of G(ωx) = g + σ1ω
2
x − σ2ω

4
x , with

σ1 = 4 · 10−5, σ2 = 2 · 10−8, on the MI gain of the zero state. (a) The MI gain vs. ∆ and
the spatial frequency of the modulational perturbation at ν = 0, g = 0.08. (b) The same at
ν = 0.025, g = 0.08. (c) The map of the spatial frequency corresponding to the largest MI
gain in the plane of (g, ∆) at ν = 0. (d) The same at ν = 0.025. Yellow point corresponds to
∆ = 0.34, g = 0.08.

This fact suggests that the gain-shaping approach effectively extends the range in which the
system can self-start with the desired soliton multiplicity, thus offering better control of the
soliton number in the emerging patterns in an extensive range of values of frequency detuning ∆.
Similar to our previous analysis, these considerations have been validated against time-domain
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simulations with the noise input [see Fig. 10], confirming that a properly chosen gain-shaping
profile forces the system to self-start with the intended number of solitons (five, in that case).

Fig. 10. The multi-soliton self-start, implemented with the shaped gain (∆ = 0.34, g = 0.08,
ν = 0.025). Initiated by the initial-noise seed, the time-domain evolution of the gain-shaped
model is simulated, using Eqs. (15) and (17) with N= 7. (a) The evolution of the micro-cavity
electric field in the spatial domain. (b) The evolution of the micro-cavity electric field in the
spatial-frequency domain. (c) The corresponding pattern formation. (d) The steady-state
propagation. (e) Intensity (red) and spectrum (black) profiles in the last time slice.

4. Conclusions

We have analyzed properties of laser TCS in the model of a gain-cavity with a nested micro-cavity
where cross-gain terms linearly couple the fields. An essential feature of this model is the absence
of nonlinear saturation of the gain, in stark difference with standard models based on CGLEs
(Complex Ginzburg-Landau Equations). The analysis focuses on the stability of soliton solutions
and on strategies to obtain self-starting regimes, which are crucially essential properties for
developing optical sources.

We started with analytical considerations. They result in two distinct analytical solutions
for solitary pulses in the model with the dispersion-free amplifier, the higher-amplitude branch
being stable for values of the mismatch (detuning frequency), ∆ in Eq. (2), which exceeds the
threshold value. It corresponds to the red-detuned frequency in the Kerr-focusing component
[Eq. (1)], in agreement with experimental observations [54]. By numerically continuing the
original analytical solutions into the experimentally relevant region of parameters, including the
gain dispersion, it is possible to produce soliton solutions fitting the experiments. The limitation
on the gain bandwidth imposes an upper limit on the maximum energy that the solitons may have
for a given gain, but it does not bound the bandwidth of the solitons, nor it affects the stability
region. This region is related to the MI (modulational instability) domain of the zero state. We
have presented a detailed analysis of the MI gain, deriving analytical forms for the instability
boundaries in Eqs. (4), (7), (12) and (13). Then, we addressed different strategies to engineer
such a boundary, aiming to identify a set of parameters for which the zero state is unstable to
perturbations of large spatial frequencies but stable against spatially-uniform perturbations, for
detuning frequencies ∆>0. It is more likely to obtain stable solitons under such conditions. By
exploiting system parameters such as the cavity length mismatch and the gain shape, we observe
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self-start from noise of single or clusters of laser TCS in the system of Eqs. (1) and (2). Quite
notably, our strategy grants direct control over the number and repetition rate of the generated
laser TCS.

We have extended the numerical analysis to the full set of Eqs. (15) and (16), which describes
more accurately the multimodal structure of the experimental setting. This system also makes it
possible to identify self-start regimes from noise and produce chains composed of a required
number of solitons by adjusting the group-velocity mismatch, alias the walk-off and the gain-
shaping profile, which are readily controllable parameters in an actual experiment.

Although parameters used in this work are focused on modeling a particular experimental
setting, the results offer the basis for the development of ultrafast optical-soliton sources with
amplifiers that do not use any nonlinear dependence of the gain/loss elements. The stabilization
of the pulses is provided by the linear coupling of the two underlying equations, and the system
can self-start from noise, producing stable trains of solitons in a large parameter region by
taking advantage of the walk-off. The results can be easily understood with the help of the
straightforward MI considerations. This work paves the way for designing a new class of optical
sources based on coupled waveguides or multiple cavities. As stressed above, they will be
stabilized by the linear coupling instead of the usually assumed ultrafast saturation, offering a
well-defined operational region to create a controllable number of robust solitary pulses.
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