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ABSTRACT

The problem of pure thermovibrational flow in a two-dimensional square cavity containing a viscoelastic liquid is investigated in the frame-
work of a numerical approach based on the governing balance equations for mass, momentum, and energy in their complete and non-linear
time-dependent form. For problem closure, these equations are complemented with the transport equation for the elastic stress formulated
using the finitely extensible nonlinear elastic Chilcott–Rallison (FENE–CR) constitutive model. A complete parametric study is carried out to
highlight the different path of evolution taken by the considered viscoelastic fluid with respect to the corresponding Newtonian counterpart
when the Gershuni number is increased. Attention is paid to the patterning scenario in terms of time-averaged flow and related multicellular
structures. It is shown that the triadic relationship among the typical characteristic time scales involved in these phenomena, namely, the
thermally diffusive time, the fluid relaxation time, and the period of vibrations, can lead to a kaleidoscope of states, which differ in regard to
the prevailing symmetry and the related spatiotemporal behaviors. Moreover, the complex interaction between the external vibrations and
the elastic property of the polymer molecules, mediated by viscous effects, can produce an interesting “intermittent response.”

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041226

I. INTRODUCTION

Apart from the purely theoretical interest that attaches to the math-
ematical representation of viscoelastic fluids and their non-linear dynam-
ics, these liquids find a wide spectrum of versatile applications in many
fields of science and engineering. Relevant examples range from the
development of plastic materials to a variety of complex fluids, which
include (but are not limited to) colloids, polymer solutions, and particu-
late suspensions with often counter-intuitive fluid mechanical behavior.

For these reasons, over the years, viscoelastic fluids have been the
subject of interest both in academia and industry. By definition, this
class of fluids can exhibit a viscous and an elastic response at the same
time. Therefore, they are able to retain stresses even if no velocity gra-
dient is effective in the entire considered physical domain. As a natural
consequence, a variety of interesting phenomena can be produced due
to the intrinsically non-linear behavior, such as rod-climbing,1 extrude
swell or “die swell” effect (Ref. 2 and references therein), the tubeless
siphon,3 the Uebler effect,4 elastic recoil,5 and vortex inhibition6 just to
mention some of them.

More recently, significant interest has been attracted by flows
of “natural” origin, i.e., convection produced by buoyancy

(thermogravitational flow) or surface-tension effects (thermocapillary or
“Marangoni” flow). Relevant examples pertaining to these lines of inquiry
are indeed, Refs. 7–18 and 19–21, for buoyancy and Marangoni convec-
tion, respectively.

As revealed by these studies, whereas thermal convection in
Newtonian fluids can be organized in well-defined universality classes,
the interpretation of viscoelastic flow realizations is always more chal-
lenging, due to the inherent complexity and unpredictability.

In particular, this work examines the consequence of a long-held
weakness of the existing literature, a problem which appears to have
never been considered before, i.e., the study of the companion cases
where viscoelastic fluid motion is naturally induced through the appli-
cation of vibrations, i.e., thermovibrational convection. Surprisingly,
with the exception of a few studies (Refs. 22 and 23) where thermovi-
brational flow in viscoelastic fluids was investigated in conjunction
with the presence of standard gravitational (buoyancy) convection, no
research has been intentionally dedicated to the purely vibrational case
(i.e., microgravity conditions).

In order to fill this gap, through this research study, many ques-
tions will be tackled on aspects as varied as: the role played by the
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relative importance of (vibrationally induced) buoyancy and viscous
effects, the relationship between the emerging flow and the frequency
of vibrations, the outcomes produced by an increase in the level of
elasticity, and, last but not least, the onset of possible instabilities
inducing a change in the dominant pattern.

A vast related literature exists for the case of Newtonian fluids
(see, e.g., Refs. 24–33). It is known that this kind of convection can
develop a non-zero time-averaged velocity in addition to the fluctuat-
ing field induced by the imposed forcing. While for small frequency
and high amplitude of the vibrations, the purely oscillatory component
of the fluid velocity is prevalent, the relative importance of this compo-
nent and the (time-averaged) velocity is reversed in the opposite situa-
tion. This property leads to the remarkable possibility to address the
problem in the framework of a potential flow theory. Indeed, many
investigators have used this strategy over the years to determine the
time-averaged component of velocity “directly,” i.e., with no need to
account at the same time for fluctuating contributions. This approach
is generally known as the “Gershuni formulation.”34

In general, the interest of investigators in time-averaged quanti-
ties has a precise rationale. These can have undesired effects on experi-
ments conducted in the microgravity environment.35,36 In particular,
using the Gershuni’s approach, it has been revealed that different solu-
tions can be produced even if a configuration as simple as a square
cavity is considered. For instance, for relatively small values of the so-
called Gershuni number (formally defined in the next section), a stable
quadrupolar cells pattern initially occurs. On increasing this parame-
ter, however, the system bifurcates from the quadrupolar roll configu-
ration to a stable flow structure (inversional symmetry pattern)
resulting from the merging of two of the four initial cells along a diago-
nal direction (see, e.g., Refs. 32 and 37 and 29–31). It is also worth
mentioning that, if the assumption of high-frequency (Gershuni
regime) is not applicable, the system can respond to the applied forc-
ing in different ways, namely, in a synchronous, or half sub-harmonic
or non-periodic way, as described in Refs. 28 and 38.

In a certain way, the present analysis should be regarded as an
extension of the line of inquiry about thermovibrational effects in
complex fluids started in past works of the present authors.39–43 More
specifically, we address now the case in which the vibrated non-
isothermal fluid is viscoelastic.

Following a common practice in the previous literature about
buoyancy convection in closed cavities, we consider this problem in the
simplified framework represented by a two-dimensional (2D) configu-
ration, leaving to later studies the task of assessing three-dimensional
effects through focused comparisons with dedicated 3D simulations. In
particular, here, special emphasis is given to the triadic relationship
among the three distinct temporal scales involved in these phenomena,
namely, the characteristic times related to the diffusion of heat and the
relaxation of viscoelastic stresses, and the additional scale dictated by
the peculiar nature of the considered flow, i.e., the frequency of
“forcing.” As using a simplified formulation such as that originally
introduced by Gershuni might filter out the physical effects residing on
small temporal scales, the overarching equations are solved in their
complete non-linear and time-dependent form, as illustrated in Sec. II.

II. MATHEMATICAL MODEL

A two-dimensional (2D) square cavity having lateral no-slip and
adiabatic walls (@T=@njwall ¼ 0) and with a fixed difference of

temperature between the top and bottom no-slip walls is considered.
In order to disentangle the intricacies illustrated in the Introduction,
the analysis is performed for both Newtonian and viscoelastic fluids.
This problem is summed up in Fig. 1. The direction of the vibrations
n̂ is fixed and orthogonal to the temperature gradient rT . A conve-
nient way to take into account the vibrations39–43 is to approximate
them as a sinusoidal displacement, i.e.,

sðt�Þ ¼ b sin ðxt�Þn̂; (1)

where b is the amplitude and x is the angular frequency (x ¼ 2pf ).
From this displacement, the corresponding acceleration can be derived
by considering its second derivative with respect to time,

axðt�Þ ¼ c sin ðxt�Þ; (2)

where c ¼ �bx2n̂.
Given these premises, the equations governing fluid motion can

be written in dimensional form by using the Boussinesq approximation
as

r � u� ¼ 0; (3)

q
@u�

@t�
þ qr � ðu�u�Þ ¼ �rp� þ gsr2u� þ r � ~s�

þqbTðT � Tref Þaxðt�Þ ; (4)

@T�

@t�
¼ �r � ðu�T�Þ þ ar2T�; (5)

where t� is the time, u� is the velocity, T� is the temperature, p� is the
pressure, ~s� is the extra-stress tensor due to the viscoelastic effect, q is
the density of the fluid, gs is the dynamic viscosity of the solvent (for
Newtonian fluids gs ¼ g simply represents the dynamic viscosity of
the liquid), bT is the thermal expansion coefficient, and a is the ther-
mal diffusivity. The symbol (�) is used to highlight that the quantities
are dimensional.

Although the set of Eqs. (3)–(5) accounts for the main physical
quantities characterizing fluid convection (mass, momentum, and
energy), however, they do not represent a mathematically closed prob-
lem; indeed, they lack a relationship between the viscoelastic stress ten-
sor ~s� and the velocity, which must therefore be introduced separately.

In the literature, plenty of these models can be found, for
instance, the Maxwell, Giesekus, Leonov, Oldroyd-B, FENE-CR
(Chilcott–Rallison variant of the so-called finitely extensible nonlinear
elastic approach), and many other variants. In particular, for thermal
convection problems in viscoelastic fluids, the Oldroyd-B model has

FIG. 1. Sketch of the geometry and schematization of the problem.
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enjoyed a widespread use for the development of linear stability analyses
(LSA) and the implementation of other numerical methods able to
account for non-linear effects (see, e.g., Refs. 16, 19, 22, 23, and 44).
Although the Oldroyd-B is actually at the root of most of the recent
studies on thermal convection in viscoelastic fluids, however, it is
affected by a well-known problem, that is, it has an infinite extensional
viscosity. This not only can lead to unphysical behaviors but also pose
numerical challenges in specific circumstances (Refs. 45–50). This is the
main reason for which this study has entirely been based on the FENE-
CR model.51,52 By replacing the linear Hook law with a finite extensible
non-linear spring, this paradigm has already proven to give good results
for the case of pure thermogravitational convection (see Ref. 18) as well
as to be stable over a wide range of parameters. The improved versatility
of this model goes some way to explain its substantial recent develop-
ment and utilization. The related equation for the temporal evolution of
the extra-stress tensor in its dimensional form can be cast in the form:

k
@~s�

@t�
þ u� � r~s�

� �
þ f ðtrð~s�ÞÞ~s�

¼ gpf ðtrð~s�ÞÞðru� þ ðru�Þ>Þ
þkð~s� � ru� þ ðru�Þ> � ~s�Þ; (6)

where f ðtrð~sÞÞ is a quantity related to the possible deformation of the
polymeric molecule and reads

f ðtrð~s�ÞÞ ¼
L2 þ k

gp
trð~s�Þ

L2 � 3
; (7)

where gp is the dynamic viscosity of the polymer, k is the so-called
relaxation time, and L2 is the so-called finite extensibility parameter of
the polymer molecule.

Other relevant physical parameters are the total dynamic viscosity
of the viscoelastic fluid g0 ¼ gs þ gp and the solvent-to-total viscosity
ratio n ¼ gs=g0.

The overarching closed set of balance equations can be put in
non-dimensional form using the side ‘ of the square cavity as refer-
ence length, a=‘ for the velocity, ‘2=a for the time, a=‘2 for the fre-
quency, qa2=‘2 for the pressure, DT ¼ Th � Tc for the temperature,
and q�sa=‘

2 for the extra-stress tensor ~s�. In the last scaling factor, �s
is the kinematic viscosity of the Newtonian solvent (�s ¼ gs=q).

Accordingly, the non-dimensional balance equations in their
time-dependent non-linear form read

r � u ¼ 0; (8)

@u
@t
¼ �rp�r � ðuuÞ þ Prr2uþ Prr � ~s

�PrgRaxT sin ðXtÞn̂; (9)

@T
@t
¼ �r � ðuTÞ þ r2T; (10)

#
@~s

@t
þ u � r~s

� �
þ f ðtrð~s�ÞÞ~s

¼ ff ðtrð~s�ÞÞðruþ ðruÞ>Þ
þ#ð~s � ruþ ðruÞ> � ~sÞ: (11)

The non-dimensional groups that appear in these equations
are the Prandtl number for the Newtonian solvent Pr ¼ �s=a, the

non-dimensional frequency X ¼ ‘2x=a, the generalized Prandtl num-
ber Prg ¼ Pr=n, the elasticity number # ¼ ka=‘2, the viscosity ratio
f ¼ gp=gs ¼ ð1� nÞ=n, and the vibrational Rayleigh number,

Rax ¼
bx2bTDT‘3

�0a
; (12)

where �0 ¼ g0=q is the total kinematic viscosity. This expression can
be seen as an alternate form of the classical Rayleigh number, where in
place of the classical steady gravitational acceleration, the amplitude of
the considered monochromatic periodic acceleration is used.
Moreover, for the sake of clarity, it is worth highlighting that the
parameter #, which is referred to in this work as elasticity
number,16,18,19 is analogous to the so-called Deborah number.20

We also introduce a new non-dimensional quantity, that is, the
ratio of the relaxation time k (the characteristic time of the polymer
molecules dynamics) and the period of the oscillations T�x
(Tx ¼ 2p=X, i.e., the characteristic time of the external dynamic
force),

R ¼ k
T�x
¼ #X

2p
: (13)

Furthermore, following the traditional approach used in the field of
thermovibrational flows, we split the fluid velocity into a time-average
component umean and a periodic component that oscillates at the same
frequency of the imposed vibrational disturbances (u0 ¼ u� umean),
where

umean ¼
1
Tx

ð
Tx

uðtÞ dt: (14)

The temperature and the viscoelastic stress fields are decomposed
accordingly. In such a context, it is also worth recalling that the inten-
sity of the average field is directly related to another non-dimensional
parameter known in the literature as the Gershuni number,29

Gs ¼ ðbxbTDT‘Þ2

2�0a
¼ Rax

X

� �2 Prg
2
: (15)

As shown in Refs. 39–42, typically, umean and u0 scale with Gs and
Rax, respectively.

III. NUMERICAL METHOD

The balance Eqs. (8)–(11) have been integrated over the domain
through an algorithm that belongs to the category of the so-called pro-
jection methods.53–56 In particular, openFOAMVR relies on the so-
called PISO (Pressure-Implicit with Splitting of Operators) method
and the related Rhie and Chow57 interpolation scheme, which allows
the set of mixed parabolic and hyperbolic balance equations to be
solved on a co-located grid.

Moreover, a standard Second-Order Upwind Difference Scheme
(SOUDS) has been used for the spatial discretization of the convective
terms of the momentum and energy equation, while a Central
Difference Scheme (CDS) stencil, yet accurate to the second-order, has
been implemented for the diffusive terms. Special attention has been
paid to the solution of Eq. (11). In particular, in place of the SOUDS
scheme, a Midmod variant has been chosen for the discretization of
the convective terms. This approach has guaranteed good performan-
ces over a wide range of parameters and good agreement with test
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cases. Moreover, to mitigate the numerical singularities mentioned in
Sec. II, in line with the methodology proposed by Favero et al.,58

Eq. (9) has been implemented numerically as

@u
@t
þr � ðuuÞ � Prð1þ fÞr2u

¼ �rp� Prfr2uþ Prr � ~s � PrgRaxT sin ðXtÞ : (16)

Put simply, two diffusive terms having similar “weight” and meaning
by a mathematical point of view have been introduced at the left and
right hand sides of this equation. Nonetheless, one has been numeri-
cally treated in an implicit way while the other one has been imple-
mented explicitly. In this way, some artificial numerical diffusivity,
quantitatively negligible, has been introduced in the time-marching
procedure, in order to increase appreciably the “ellipticity” of the
momentum equation and improve the numerical stability of the solver
accordingly. This methodology is known in the literature as DEVSS
(Discrete Elastic-Viscous-Split-Stress) method.59

A. Validation

The viscoelastic kernel of the computational platform described
in the preceding sections was already validated by Lappa and Boaro18

in the framework of a multi-stage approach by considering different
types of convection and fluid-dynamic instabilities. Both fundamental
situations where the emerging instability has a purely elastic nature
(isothermal liquids) or a thermal origin (overstable Rayleigh-B�enard
convection) were examined and good agreement was found with the
existing literature on these subjects. In particular, the reader is referred
to Table I for what concerns the outcomes of the comparison with the
LSA by Mart�ınez-Mardones and P�erez-Garc�ıa60 for the onset of stan-
dard Rayleigh-B�enard convection in a layer of Oldroyd-B fluid delim-
ited by top and bottom solid walls with Prg ¼ 10, n ¼ 0:5, and
# ¼ 0:1. The present results have been obtained using a structured
mesh (2D simulation) with 4500 nodes and a domain having non-

dimensional horizontal extension 15 with periodic boundary condi-
tions at the lateral boundaries. The non-dimensional angular fre-
quency of oscillation of the flow ~x has been determined. Then it has
been extrapolated to the value of the critical Rayleigh number pre-
dicted by the LSA, i.e., Rac � 1700. As evident in this table, the differ-
ence between the values predicted by those authors and the present
one obtained with the Oldroyd-B model is�2%.

As a next step of such a validation hierarchy, given the specific
topic considered in this work, we have considered gravitationally mod-
ulated viscoelastic convection. Relevant information on such a bench-
mark has been sourced from the study by Lyubimova and
Kovalevskaya,23 where the authors applied a LSA technique to investi-
gate the onset of Rayleigh-B�enard convection in a horizontal layer of
Oldroyd-B fluid delimited by top and bottom stress-free walls under
the effect of a time-periodic acceleration axðtÞ added to the steady
gravitational acceleration g. In particular, these authors modeled such
additional acceleration as a square wave superimposed on a steady
value, that is,

axðt�Þ ¼ ctanhð10 sin ðxt�ÞÞ; (17)

which leads to express the buoyancy term appearing in the momen-
tum equation (in dimensional and in non-dimensional form, respec-
tively) as

Bðt�Þ ¼ qgbðT� � T�0 Þð1þ
bx2

g
tanhð10 sin ðxt�ÞÞÞ̂ig (18)

and

BðtÞ ¼ RaTð1þ C tanhð10 sin ðXtÞÞÞ̂ig ; (19)

where Ra is the classical Rayleigh number based on the steady gravita-
tional acceleration, C ¼ bx2=g is the non-dimensional amplitude of
the oscillatory acceleration, and îg is the unit vector along the direction
of the gravitational acceleration.

Moreover, the free-free boundary condition originally used by
Lyubimova and Kovalevskaya23 for the top and bottom boundary has
been implemented here as follows:

ððruÞ þ ðruÞ>Þ þ ~s
h i

� n̂B ¼0; (20)

where n̂B is the unit vector perpendicular to the boundary.
For Prg ¼ 7, X ¼ 26:5, C ¼ 1, n ¼ 0:1, and # ¼ 0:06,

Lyubimova and Kovalevskaya23 found a critical value of the Rayleigh
number for the onset of buoyancy convection Rac � 470. Following
the approach already undertaken by Lappa and Boaro,18 the present
computations have been performed using both the Oldroyd B (origi-
nally employed by these authors) and the FENE-CR assuming differ-
ent values of the parameter L2, namely, L2 ¼ 1000 and L2 ¼ 200. We
wish to recall that the latter is a typical value used in most of the exist-
ing literature based on this model; accordingly, it has also been
employed in this work to produce the results presented in Sec. IV. The
data shown in Table II have been obtained using a structured
mesh (2D simulation) with 4500 nodes and a domain having
non-dimensional horizontal extension 15 with periodic boundary con-
ditions at the lateral boundaries. In particular, in order to mimic the
typical modus operandi at the basis of LSA, we have determined the
non-dimensional amplitude A of the unsteady convective state for

TABLE I. Comparison with the linear stability analysis by Mart�ınez-Mardones and
P�erez-Garc�ıa [60]. (a) Non-dimensional angular frequency ~x determined with differ-
ent models as a function of the Rayleigh number. (b) Non-dimensional angular fre-
quency ~x extrapolated to the critical Ra predicted by the linear stability analysis.

(a)
FENE-CR

Ra Oldroyd-B L2 ¼ 104 L2 ¼ 103

2500 15.03 15.01 15.00
2200 12.90 12.87 12.60
2000 10.90 10.90 10.90
1900 7.48 7.46 9.63
1800 5.82 5.80 7.50
1775 5.10 5.10 5.65

(b)
Approach ~x

FENE-CR (L2 ¼ 103) 4.93
FENE-CR (L2 ¼ 104) 4.85
Oldroyd-B 4.74
Linear Stability Analysis 4.63
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different values of Ra [Table II(a)] and then we have computed Rac
through (quadratic) extrapolations of A to 0 [Table II(b)]. As quantita-
tively substantiated by these tables, the agreement between the present
results and those yielded by LSA is excellent. Interestingly, these tables
demonstrate that the overall mathematical and numerical treatment
underpinning the present work is consistent, i.e., as the finite extensi-
bility parameter of the polymer molecule L2 increases, the results cal-
culated with the FENE-CR constitutive equation tend to those
obtained with the Oldroyd-B (as expected).

B. Mesh refinement study

The balance equations have been discretized on a Cartesian grid
having the same number of divisions in each direction. For the grid
refinement, we have considered as control parameters the amplitude
(Auy ) and the frequency (Xuy ) of the y component of umean signal
measured with two virtual probes located in the center and in the
north-west corner of the cell, respectively, assuming a viscoelastic fluid
with Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103, and # ¼ 0:1
(R ¼ 1:6). As witnessed by the results in Table III, a mesh having
80 cells in each direction is sufficient to ensure grid-independent
solutions, which explains why we have used this resolution for all the
cases described in Sec. IV.

IV. RESULTS

As already explained to a certain extent in the Introduction, this
study aims to carry out a parametric analysis of the thermovibrational
problem in a square cavity filled with a FENE-CR fluid and compare
the results with those obtained for a Newtonian liquid under the same
conditions. Toward this end, without loss of generality, we set Prg
¼ 10 (this value being representative of a large class of high-Pr “Boger
fluids,” known for their ability to retain an essentially constant
viscosity over a wide range of shear rates, see, e.g., Refs. 16 and 18);
obviously, for a Newtonian fluid Prg ¼ Pr since it does not have a
polymeric component.

Moreover, we consider a viscoelastic fluid having n ¼ 0:5! f
¼ ð1� nÞ=n ¼ 1 and L2 ¼ 200. Due to the high-dimensional nature
of the space of parameters that characterizes this problem, we system-
atically vary one parameter while the other independent non-
dimensional groups are kept constant. Notably, in the absence of
observational information to properly constrain the model parameters,
such an approach is instrumental in revealing the “process controlling
factors.”

A. Preliminary analysis of the Newtonian problem

Most conveniently, in the frame of the above-mentioned step-by-
step approach, we analyze initially the effect of the Gershuni number on
the pattern evolution of umean for a Newtonian fluid. More specifically,
we fix the value of the angular frequency to X ¼ 102 and vary Rax in
order to have Gs spanning the range of orders of magnitude from
Oð102Þ to Oð107Þ. In this regard, we start from the observation that, in
general [Gs > Oð102Þ], the mean-field is not steady, but exhibits an
oscillatory behavior. A first example of such dynamics for the initial sub-
range of Gs going fromOð103Þ toOð104Þ is depicted in Fig. 2.

The aforementioned inversional symmetry pattern can be distin-
guished there, i.e., two small cells are located in opposite corners of the
cavity while a big central vortex, stretched along the diagonal of the
square, occupies almost the entire domain [Fig. 2(a)]. This diagonal
direction represents a symmetry plane for the pattern. As revealed by
the sequence of snapshots, however, as time passes, the eddies located
in the corners keep expanding until the four cells with comparable
diameter, representing the aforementioned “quadrupolar field,” are
formed. At this stage, a new process is enabled by which two cells of
this configuration progressively undergo coalescence until a condition
similar to the one represented in the initial snapshot is recovered. The
cells in the corners eventually grow again until the intermediate state
with the quadrupolar field re-appears. This process is characterized by
a period (hereafter denoted by TumeanÞ much larger than the period of
the forcing (i.e., Tumean � Tx).

Figure 3 shows the corresponding total velocity field. As the
reader will realize by taking a look at this sequence, the flow essentially
consists of a main roll that changes periodically its sense of circulation
(from the clockwise to the counterclockwise sense and vice versa
within the forcing period Tx). In some snapshots, smaller rolls nucle-
ating inside the main circulation can be seen.

TABLE II. Comparison with the linear stability analysis by Lyubimova and
Kovalevskaya.23 (a) Non-dimensional amplitude of oscillation A determined with dif-
ferent models as a function of the Rayleigh number. (b) Critical Rayleigh number Rac
extrapolated for A¼ 0.

(a)
FENE-CR

Ra Oldroyd-B L2 ¼ 104 L2 ¼ 103

530 6.52 6.51 6.52
560 8.31 8.31 8.31
590 11.96 11.96 11.90
620 12.99 12.94 13.07

(b)
Approach Rac

FENE-CR (L2 ¼ 200) 469
FENE-CR (L2 ¼ 104) 473
Oldroyd-B 472
Linear Stability Analysis 470

TABLE III. Mesh refinement study. Case Prg ¼ 10, Gs ¼ 5� 102,
X ¼ 102; Rax ¼ 103; # ¼ 0:1; R ¼ 1:6, viscoelastic fluid. Presented data relate
to probes located in the center of the cell (1/2,1/2), and in the point (1/8,7/8) (the
“corner”).

Mesh

Center Corner

Auy Xuy Auy Xuy

20� 20 0.014 9 0.192 0.003 2 0.194
40� 40 0.015 4 0.197 0.003 5 0.193
60� 60 0.015 6 0.197 0.003 1 0.195
80� 80 0.015 7 0.196 0.003 3 0.195
100� 100 0.015 8 0.195 0.003 1 0.195
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Notably, these behaviors should be interpreted as the result of the
superposition of convective modes with different symmetries. Relevant
information along these lines can be found, e.g., in the study by
Mizushima.61 Although that analysis was entirely focused on classical
Rayleigh-B�enard (RB) convection, the considerations elaborated there
are relatively general and can, therefore, be applied also to the circum-
stances considered in this work.

In general, the distinct modes of convection allowed in a spe-
cific geometry can be identified a priori on the basis of the various
possible symmetries that can be retained or broken by the emerg-
ing flow. For the square cavity, these are obviously the reflection
with respect to the x axis in Fig. 1, i.e., the symmetry with respect
to the direction of the imposed vibrations, and the analogous
reflection property with respect to the vertical cavity centerline, i.e.,
the direction of the applied temperature gradient. The combination
of these two properties can produce an additional possible solution,
characterized by an even higher degree of symmetry, that is the
flow satisfying the so-called centro-symmetry; this makes the square
geometry an ideal target to study many concurrent aspects. On the
basis of these relatively simple arguments partially based on the
earlier analysis by Mizushima,61 the set of possible modes relevant
to the present problem can immediately be partitioned into four
fundamental classes (see Fig. 4), namely:

(aa): The antisymmetric-antisymmetric mode. Both the x-symme-
try and y-symmetry are broken in this case, the flow typically dis-
playing an odd number of rolls along both directions.
(sa): The symmetric-antisymmetric mode. Only the symmetry
with respect to the (vertical) y axis is retained, the flow being typi-
cally characterized by an even number of rolls along the x and an
odd number of rolls along y.
(as): The antisymmetric-symmetric mode. Only the symmetry
with respect to the (horizontal) x axis is retained, the flow being
typically characterized by an odd number of rolls along the x and
an even number of rolls along y.
(ss): The symmetric-symmetric mode. This mode has an even
number of vortex cells along both the x and y axes. It gives rise to
a centro-symmetric configuration when the number of rolls along
both the x and y directions is the same and to a columnar arrange-
ment if the number of rolls along y is larger.

Although for standard RB convection, one mode only is generally
selected at the onset, it is known that the combination of different
modes excited at the same time for relatively high values of the control
parameter (the standard Rayleigh number) can lead to more complex
patterning behaviors. As an example, Mizushima and Adachi62 found
the diagonal mode, i.e., the pattern with the central extended roll that
seems to tilt to one side under the influence of the smaller vortices, to

FIG. 2. Streamlines of umean, Pr¼ 10, Gs ¼ 5� 102; X ¼ 102, and Rax ¼ 103. Thermovibrational convection in Newtonian fluid. Four snapshots equally spaced in time
within the oscillation period Tumean ffi 30. (a) t0 ¼ 39:6, (b) t ¼ t0 þ ð1=4ÞTumean, (c) t ¼ t0 þ ð1=2ÞTumean, and (d) t ¼ t0 þ ð3=4ÞTumean.

FIG. 3. Streamlines of the total velocity u, Pr¼ 10, Gs ¼ 5� 102; X ¼ 102, and Rax ¼ 103. Thermovibrational convection in Newtonian fluid. Details of the inversion of the
central cell in the neighborhood of Tx=4. (a) t¼ 0.28, (b) t¼ 0.2838, (c) t¼ 0.284, and (d) t¼ 0.2848.
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be produced as a result of the interplay of more fundamental modes
[(aa) þ (ss)]. Similar results were also reported in the study on RB
convection by Lappa63 where a sequence of events like that depicted in
Fig. 2 was found for relatively high values of Ra (Ra ¼ 5� 105 for
Pr¼ 15).

This way of categorizing different solutions on the basis of the
number and location of rolls is extremely useful; it is generally regarded
as “a spatial perspective” for flow interpretation, an application of what
is generally known as “vorticity thinking.” In the light of these

propaedeutical arguments, the stages of evolution reported in Fig. 2 can
therefore be seen as the superposition or competition of fundamental
modes of time-averaged convection with different symmetries.

As witnessed by Fig. 5, however, an increase in Rax can induce a
change in the time-averaged streamlines distribution
(Gs ¼ 1:01� 105). Some of the features visible in the previous Fig. 2
can still be clearly recognized; as an example, by comparing Figs. 2(a)
and 5(a) it becomes evident that, though the considered increase in
Rax affects the minimum size of the smaller cells located in the cor-
ners, the diagonal directions still play the role of symmetry planes.
Nevertheless, interestingly, new features show up during the evolution.
These are very evident in Fig. 5(b), where four small cells pop up in
proximity to the lateral adiabatic walls (two for each side). Apart from
these details, however, the evolution is quite similar to the one dis-
cussed for the previous case.

As qualitatively illustrated in Fig. 6, other morphological changes
become effective on further increasing Rax (Gs ¼ 2:75� 105). The
two opposing couples of newly formed cells adjacent the adiabatic
walls have now a size that is comparable to that of the corner cells
[Fig. 6(b)]. Although the dynamics are still similar to those described
for Gs ¼ 5� 102, as an important distinguishing mark, the big central
cell is taken over by an involved circulation system encompassing a
zig-zag-shaped arrangement of (four) smaller cells [see Fig. 6(a)].

The spatiotemporal scenario consists essentially of the alternation
of a configuration with eight distinct time-averaged rolls regularly
arranged in two vertical columns and four horizontal rows, i.e., a (ss)
configuration [Figs. 6(b) and 6(d)] and two intermediate patterns
where one cell of each row contributes to the formation of a zig-zag
shaped circulation system pervasive throughout the cavity [Figs. 6(a)
and 6(c) being one the mirror image of the other]. Hereafter, we will
refer to these patterns as the “columnar mode of time-averaged
convection.”

A further increase in the vibrational Rayleigh number does not
affect considerably the dynamic evolution of this mode from a qualita-
tive point of view. However, the cells located in the center of the cavity
keep growing until configurations like those shown in Figs. 7(a) and
7(b) are obtained. The cells located close to the adiabatic sides of the
cavity become so large that they occupy almost the whole space of the
geometry [see Fig. 7(b)].

FIG. 4. Categorization of possible solutions of buoyancy convection in 2D finite
enclosures in terms of related symmetries. (aa): antisymmetric-antisymmetric
mode, (sa): symmetric-antisymmetric mode, (as): antisymmetric-symmetric mode,
and (ss): symmetric-symmetric mode.

FIG. 5. Streamlines of umean, Pr¼ 10, Gs ¼ 1:01� 105; X ¼ 102, and Rax ¼ 1:42� 104. Thermovibrational convection in Newtonian fluid. Four snapshots equally spaced
in time within the oscillation period Tumean ffi 26:8. (a) t0 ¼ 40, (b) t ¼ t0 þ ð1=4ÞTumean, (c) t ¼ t0 þ ð1=2ÞTumean, and (d) t ¼ t0 þ ð3=4ÞTumean.
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Before moving to the cases with viscoelastic fluid, as a concluding
remark for this section, we wish also to highlight that for not too high
values of X, (as expected) the problem also sensitively depends on this
parameter.

Interestingly, if we increase X to 1:5� 102 keeping Gs constant,
the dynamics of the system changes completely. As an example, Fig. 8
shows the streamlines patterning behavior of a fluid with the same
value of Gs considered in Fig. 2 (Gs ¼ 5� 102) and a slightly larger
value of X (Rax ¼ 1:5� 103 andX ¼ 1:5� 102).

As the reader will easily realize by inspecting this figure, the sce-
nario is different. Initially [Fig. 8(a)] there is a single cell with stream-
lines having square morphology. However, two smaller cells, located
in the north-east and south-west corners, respectively, grow as time
passes. Due to this phenomenon, the central cell undergoes a progres-
sive corrugation process that breaks it into eight independent rolls.

This time, however, the time-averaged rolls are not aligned along
the direction of the walls; rather they are disposed radially with respect
to the center of the cavity, i.e., they satisfy a property of centro-
symmetry; therefore, we coin for this regime the denomination of
“radial mode of time-averaged convection.”

After some time, the central vortex pervasive throughout the cav-
ity forms again; however, in this case, the smaller cells (the eddies) are

located in the north-west and south east corners. Stripped to its basics,
this specific phenomenon may therefore be interpreted as the alterna-
tion of modes with the (aa) and the central symmetry, respectively.

The complexity of the pattern increases as the frequency is set to
X ¼ 1:75� 102 (as depicted in Fig. 9). In these circumstances, the ini-
tial size of the two eddies mentioned before is bigger than that found
for the case with X ¼ 1:5� 102. Moreover, although the evolution
mechanism is very similar to the previous one, at a certain stage, four
big rolls manifest in the center of the cavity while other four smaller
cells are located in pair close to the cold and hot walls, respectively.
This state may therefore be regarded as a “hybrid radial-columnar
time-averaged mode of convection.”

A further increase in X to 200 generates a pattern that is basically
the same already illustrated in Fig. 2. This solution seems to take the
role of preferred mode of convection even for higher values of X.

B. The influence of Gs for a viscoelastic fluid

Following the same approach undertaken in the previous section,
specific numerical examples are conceived and presented to provide
inputs for an increased understanding of the mechanisms underlying
viscoelastic fluid flow. In order to do so, we fix the frequency to X
¼ 102 and vary Rax (and therefore Gs). Obviously, in this case, the set
of parameters to be considered is richer as it also includes the elasticity
number #, which we set initially to # ¼ 0:1 (the corresponding value
of R being R ¼ 1:6).

Starting again from the case Gs ¼ 5� 102 (the related pattern
evolution being depicted in Fig. 10), it can be seen that the initial
frames [Figs. 10(a) and 10(b)] look similar to the corresponding ones
in Fig. 9 (the aforementioned mixed radial-columnar mode of time-
averaged convection); although in this case the lateral eddies nucleate
in the north-west and south-east corners, they still manifest themselves
in proximity to the adiabatic walls. In particular, comparison of
Fig. 9(b) and Fig. 10(b) is instrumental in showing that when the
viscoelastic fluid is considered, the streamlines of the main central
vortex are more “undulated” with respect to the Newtonian case. The
evolution in time is similar to that already illustrated in Fig. 9, but the
streamlines display a more complex topology. Indeed, due to the emer-
gence of two new couples of (small) rolls along the hot and cold walls,
respectively, a total of twelve cells can be distinguished at a certain
stage. Such cells are organized in two columns aligned with the

FIG. 6. Streamlines of umean, Pr¼ 10, Gs ¼ 2:75� 105; X ¼ 102, and Rax ¼ 2:35� 104. Thermovibrational convection in Newtonian fluid. Four snapshots equally spaced
in time within the oscillation period Tumean ffi 32:1. (a) t0 ¼ 40:2, (b) t ¼ t0 þ ð1=4ÞTumean, (c) t ¼ t0 þ ð1=2ÞTumean, and (d) t ¼ t0 þ ð3=4ÞTumean.

FIG. 7. Streamlines of umean, Pr¼ 10, X ¼ 102. Thermovibrational convection in
Newtonian fluid. Snapshots to compare to Fig. 6(b). (a)Gs ¼ 6� 105; Rax

¼ 3:46� 104, t ¼ 40:8þ ð1=4ÞTumean; Tumean ffi 32 and (b)Gs ¼ 1� 107;
Rax ¼ 1:41� 105, t ¼ 43þ ð1=4ÞTumean; Tumean ffi 32.
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temperature gradient direction. Also in this case, the more spatially
extended rolls located in the central area expand and merge until a sin-
gle main vortex is established again. The second half of the period
begins and evolves displaying a qualitatively similar behavior.

In this regard, comparison of Fig. 11 with Fig. 3 is also extremely
useful as it reveals the changes induced by viscoelastic effects in the
total (instantaneous) velocity. Indeed, it can be seen that in terms of
total velocity field, the number of rolls present in the latter case is
always larger. This indirectly confirms the increased complexity of the

time-averaged pattern shown in Fig. 10 with respect to that reported
in Fig. 2.

For the sake of completeness, Figs. 12 and 13 show the evolution
over the forcing period Tx of selected components of the viscoelastic
stress tensor, i.e., the first normal stress and tangential stress, respec-
tively (the second normal stress is not shown as it displays a configura-
tion that appears rotated by 90	 with respect to that of the first normal
stress). Interestingly, these patterns indicate that the first (second) nor-
mal stress generally attains relatively large values in proximity to the

FIG. 8. Streamlines of umean, Pr¼ 10, Gs ¼ 5� 102; X ¼ 1:5� 102, and Rax ¼ 1:5� 103. Thermovibrational convection in Newtonian fluid. Four snapshots equally
spaced in time within the oscillation period Tumean ffi 22:3. (a) t0 ¼ 26:5, (b) t ¼ t0 þ ð1=4ÞTumean, (c) t ¼ t0 þ ð1=2ÞTumean, and (d) t ¼ t0 þ ð3=4ÞTumean.

FIG. 9. Streamlines of umean, Pr¼ 10, Gs ¼ 5� 102; X ¼ 1:75� 102, and Rax ¼ 1:75� 103. Thermovibrational convection in Newtonian fluid. Eight snapshots equally
spaced in time within the oscillation period Tumean ffi 18:3. (a) t0 ¼ 22, (b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, (d) t ¼ t0 þ ð3=8ÞTumean,
(e) t ¼ t0 þ ð1=2ÞTumean, (f) t ¼ t0 þ ð5=8ÞTumean, (g) t ¼ t0 þ ð3=4ÞTumean, and (h) t ¼ t0 þ ð7=8ÞTumean.
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walls perpendicular (parallel) to the imposed temperature gradient.
The corresponding tangential component essentially follows the evolu-
tion of the instantaneous velocity field, i.e., it is characterized by
regions of positive and negative values adjacent to the solid bound-
aries, which periodically swap their position within the forcing period.
As evident in Fig. 14(b), if evaluated in the time-averaged space, this
component gives rise to a sort of four-pole pattern displaying a weak
modulation in time (not shown). In previous studies (see, e.g., Ref. 64),
one of the remarkable flow features of both Boger and shear-thinning

viscoelastic fluids has been found to be vortex formation and vortex
enhancement near corners and other similar geometrical features,
which is in line with the present findings.

The most striking effect produced by an increase in Rax can be
appreciated in Fig. 15, where for Gs ¼ 2� 103 a significant change in
the smoothness of the time-averaged streamlines also starts to develop.

Although the dynamics are basically the same already described
for smaller values of the Gershuni number, the shape of the stream-
lines, previously slightly undulated, exhibits an evident corrugation.

FIG. 10. Streamlines of umean, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Eight snapshots
equally spaced in time within the oscillation period Tumean ffi 32:14. (a) t0 ¼ 39:1, (b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, (d) t ¼ t0 þ ð3=8ÞTumean,
(e) t ¼ t0 þ ð1=2ÞTumean, (f) t ¼ t0 þ ð5=8ÞTumean, (g) t ¼ t0 þ ð3=4ÞTumean, and (h) t ¼ t0 þ ð7=8ÞTumean.

FIG. 11. Streamlines of the total velocity u, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid.
Details of the inversion of the central cell in the neighborhood of Tx=4. (a) t¼ 0.3539, (b) 0.3557, (c) 0.3566, and (d) 0.3575.
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The center of the main vortex [compare Figs. 10(b) and 15(b)]
moves from the middle of the cavity to a position closer to the corner.
Figure 15(c) also reveals that the transitional multicellular structure
(established in a certain sub-interval of the period Tumean) is now
distorted and the overall pattern is no longer symmetric (as it was in
the previous case with respect to the vertical mid-plane). Moreover,
the distortions, due to elastic effects, tend to generate smaller cells
inside the four bigger central rolls [see Fig. 15(c)].

Quite surprisingly, as a fleeting glimpse into Fig. 16 would con-
firm, a further increase in the vibrational Rayleigh number
(Rax ¼ 2:32� 103; Gs ¼ 2:7� 103) leads to a mode of convection
that is more ordered. A relatively extended central vortex is still pro-
duced; however, in this case, its shape resembles an inclined cross with
the branches oriented along the diagonals of the cavity. A preferred
(main) diagonal, i.e., the south-west to north-east one [see, e.g.,

Figs. 16(a) and 16(b)], can still be identified in certain stages of evolu-
tion. A switch in this preferred direction, however, occurs every half
period. In the corners not occupied by the central vortex, i.e., the cor-
ners lying on the secondary diagonal, three smaller independent eddies
(for each corner) appear. Notably, their size increases until they
occupy a region that is approximately 1/8 of the total area of the
square cavity. During this evolution, a radial distribution of the cells,
resembling the aforementioned radial mode of time-averaged convec-
tion [depicted in Fig. 8(b) for the Newtonian case], can be recognized.
There is indeed a notable analogy between these two modes of convec-
tion. Some differences can be identified as well. The outer boundary of
the cells is not smooth and displays some undulations. Besides, several
smaller secondary eddies, not present in Newtonian liquids, are
located in proximity to the walls. A further increase in Rax has the
effect to reduce the size of the small rolls located in the corners [Fig.

FIG. 12. First normal stress, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Four snapshots
equally spaced in time within the oscillation period Tx. (a) t0 ¼ 0:34, (b) t ¼ t0 þ Tx=4, (c) t ¼ t0 þ Tx=2, and (d) t ¼ t0 þ 3=4Tx.

FIG. 13. Tangential stress, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Four snapshots
equally spaced in time within the oscillation period Tx. (a) t0 ¼ 0:34, (b) t ¼ t0 þ Tx=4, (c) t ¼ t0 þ Tx=2, and (d) t ¼ t0 þ 3=4Tx.
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17(b) for the case of Gs ¼ 3:6� 103]. Furthermore, taking a look at
the morphological evolution of the main central vortex, it may be con-
cluded that as Gs (Rax) is made higher, the morphology of this cell is
gradually transformed from the initially elliptic shape seen in Fig. 15
to a cross-like geometrical configuration [Fig. 17(a)].

Finally, Fig. 18 reports the evolution of the maximum of the
instantaneous and time-averaged components of the viscoelastic
stress tensor as a function of the Gershuni and the vibrational
Rayleigh numbers for fixed # and X. Although we did not notice
morphological changes in the structure of the patterns already
shown in Figs. 12–14 over these ranges of Gs and Rax, the growing
behavior of these quantities can clearly be discerned in this figure.
This should be seen as a justification for the increasing recognizable
importance of the aforementioned “undulations” in the shape of
the streamlines. Interestingly, both the fluctuating and the mean
components of the viscoelastic stress tensor scale with Ra1=2x , which
might be seen as a similarity with known behaviors in the
Newtonian case for small forcing frequencies such as those consid-
ered in the present work (Ref. 65 and references therein).

FIG. 14. Mean stress tensor component, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102;
Rax ¼ 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic
fluid. Snapshot for t¼ 39.1. (a) Mean first normal stress and (b) mean shear stress.

FIG. 15. Streamlines of umean, Prg ¼ 10, Gs ¼ 2� 103; X ¼ 102; Rax ¼ 1:61� 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Four
snapshots equally spaced in time within half oscillation period Tumean ffi 32:1 (the second part of the period is specular with respect the diagonal of the cavity). (a) t0 ¼ 39:2,
(b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, and (d) t ¼ t0 þ ð3=8ÞTumean.

FIG. 16. Streamlines of umean, Prg ¼ 10, Gs ¼ 2:7� 103; X ¼ 102; Rax ¼ 2:32� 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Four
snapshots equally spaced in time within half oscillation period Tumean ffi 33 (the second part of the period is specular with respect the diagonal of the cavity). (a) t0 ¼ 39:15,
(b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, and (d) t ¼ t0 þ ð3=8ÞTumean.
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Due to viscoelastic singularities, we were prevented from study-
ing situations with Gs > 3:6� 103, this being a well-known problem
of this category of liquids (Refs. 45–49).

C. The influence of R and #

Having completed a sketch of the situations that can be obtained
when Gs is increased for a moderate level of elasticity (# ¼ 0:1 in the
preceding section), we now turn to considering the role played in all
these dynamics by the triadic interplay existing among the typical
characteristic time scales involved in these phenomena, namely, the
reference timescale (‘2=a), the fluid relaxation time, and the period of
vibrations.

In the non-dimensional space of parameters, these can be
reduced to two characteristic numbers only, i.e., # andR. As illustrated
in Sec. II, these two parameters can be varied independently.

Starting again with the case # ¼ 0:1 (R ¼ 1:6) already shown in
Fig. 10, in particular, we have varied the value of the elasticity number
in an interval between # ¼ 0:2 and # ¼ 0:9 while keeping fixed X.
Interestingly, the simulations have revealed that, in a rather unex-
pected way, higher values of # can produce more ordered phenomena
(Fig. 19) with a sequence of stages of evolution that does not change
qualitatively as # grows.

The patterning behavior looks really similar to the one already
reported in Fig. 8 for a Newtonian fluid. However, a closer look also
reveals some differences. Indeed, small eddies are located close to the
corners [south-west corner in Fig. 19(a) and north-west/south-east in
Fig. 19(d)] and other secondary cells (similar to the ones found for
# ¼ 0:1) emerge in proximity to the adiabatic walls [Fig. 19(c)].

A simple rationale for the observed “regularization” of this pattern
can be elaborated once again taking into account the influence of the
viscoelastic stresses. Along these lines, the curves in Fig. 20 are instru-
mental in demonstrating that, for a fixed X ¼ 100, the instantaneous

FIG. 17. Streamlines of umean, Prg ¼ 10, Gs ¼ 3:6� 103; X ¼ 102; Rax ¼ 2:68� 103; # ¼ 0:1, and R ¼ 1:6. Thermovibrational convection in viscoelastic fluid. Four
snapshots equally spaced in time within half oscillation period Tumean ffi 33 (the second part of the period is characterized by dynamics which are specular with respect the
diagonal of the cavity). (a) t0 ¼ 39:2, (b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, and (d) t ¼ t0 þ ð3=8ÞTumean.

FIG. 18. Representation of the maximum of the instantaneous first normal stress sxx (�), the time-averaged first normal stress sxx;mean (�), the instantaneous shear stress sxy
(�), and the time-averaged shear stress sxy;mean (�) as a function of the control parameters. Prg ¼ 10, X ¼ 100, # ¼ 0:1. (a) Variation of the components of ~s and ~smean as
a function of Gs and (b) variation of the components of ~s and ~smean as a function of Rax.
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and time-averaged components of the viscoelastic stress tensor
decrease as a function of # (which varies in the range between 0.1 and
0.9). Although this behavior may look rather counter-intuitive, we wish
to recall that similar findings have been reported by other authors for a
set of companion problems (Refs. 66–68). In the present case, the
related dependencies can be expressed mathematically as follows:

sxx � 0:9#�1:1669; (21)

sxx;mean � 0:354#�1:4429; (22)

sxy � 1:01#�0:9716; (23)

sxy;mean � 0:277#�0:403: (24)

In order to complete the analysis of the different functional
dependencies and gain further understanding of the observed dynam-
ics, the sensitivity of the overall fluid-dynamic problem to the R
parameter has also been assessed. In particular, as shown by Eq. (13),
for a fixed #, R has been modified by changingX.

The case of R ¼ 1:6 has already been analyzed in Sec. IVB. For
larger values of this parameter, the simulations show that the pattern
comes back to the configuration illustrated in Fig. 2. Interestingly, on
increasing R, for # fixed to 0.1, the time-averaged viscoelastic tangen-
tial stress exhibits a growing trend, whereas its corresponding instanta-
neous (total) counterpart and the normal stress (both instantaneous
and mean versions) become all smaller as R grows (Fig. 21). As quali-
tatively and quantitatively substantiated by Fig. 22, however, an even
more interesting scenario can be observed in terms of non-
dimensional amplitude and non-dimensional angular frequency of the
umean signal, measured by a virtual probe located in the center of the
cavity.

As evident in this figure, both the curves display a series of max-
ima and minima. For instance, for R ¼ 9:6 a minimum is attained;
the resulting pattern is a quadrupolar distribution of the streamlines
with a quasi-stationary behavior. On increasing R to 16, the evolution
previously shown in Fig. 2 is recovered.

FIG. 19. Streamlines of umean, Prg ¼ 10, Gs ¼ 5� 102; X ¼ 102; Rax ¼ 103; # ¼ 0:5, and R ¼ 8. Thermovibrational convection in viscoelastic fluid. Four snapshots
equally spaced in time within half oscillation period Tumean ffi 32:1 (the second part of the period is characterized by dynamics which are specular with respect the diagonal of
the cavity). (a) t0 ¼ 38:7, (b) t ¼ t0 þ ð1=8ÞTumean, (c) t ¼ t0 þ ð1=4ÞTumean, and (d) t ¼ t0 þ ð3=8ÞTumean.

FIG. 20. Variation of the maximum of the instantaneous first normal stress sxx (�),
the time-averaged first normal stress sxx;mean (�), the instantaneous shear stress
sxy (�), and the time-averaged shear stress sxy;mean (�) as a function of #. Prg
¼ 10, X ¼ 100, Gs ¼ 5� 102; Rax ¼ 103.

FIG. 21. Variation of the maximum of the instantaneous first normal stress sxx (�),
the time-averaged first normal stress sxx;mean (�), the instantaneous shear stress
sxy (�), and the time-averaged shear stress sxy;mean (�) as a function of R. Prg
¼ 10, Gs ¼ 5� 102; Rax ¼ 103; # ¼ 0:1; X 2 ½10; 8� 103
.
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This non-monotonic trend obviously calls for a complementary
interpretation and, perhaps the most obvious way to do so is to point
out that the switching of the trajectory of a system in the space of
phases among two or more concurrent attracting sets (as one of the
control parameters is changed) is not a new phenomenon in fluid-
dynamics, especially when viscoelastic fluids are considered. As illus-
trated, e.g., by Refs. 18 and 19, convection in viscoelastic fluids is often
characterized by the existence of multiple attractors, i.e., solutions
which can coexist in the space of phases for a fixed set of input param-
eters. It is known that the presence of multiple attractors can act as an
additional source of apparent randomness in a chaotic system produc-
ing sudden and repeated jumps from a branch of solutions to another
branch. As an example, a chaotic attractor can reduce to a simple
time-periodic flow following a chaos “crisis” similar to that observed
in standard Rayleigh-B�enard convection by Paul et al.69 (this kind of
bifurcation can be viewed as a sudden change in the size of the attrac-
tor70). As also illustrated by Grebogi et al.71 and Arnold et al.,72 appar-
ently intermittent behaviors can be induced by the “collision” of a
chaotic attractor with an unstable periodic orbit or its stable manifold.
Such collisions can drive a system toward a different scenario giving
rise to non-monotonic trends similar to that displayed in Fig. 22.

Before being carried away by this fascinating idea, however, one
should reflect on the fact that, since in the present case the flow has
always been found to be simply periodic, mechanisms based on the
crisis of strange attractors, such as those invoked by Ref. 19, should
obviously be ruled out.

While a precise clarification of the cause-and-effect relationships
underlying such non-monotonic behavior will require tools and meth-
ods which are beyond the scope of the present study, here we limit
ourselves to pointing out that additional simulations conducted using
the Oldroyd-B paradigm have shown no significant departure from
the trend summarized in Fig. 22, which indirectly provides evidence
that such fascinating dynamics should not be ascribed to the specific
viscoelastic model employed (the FENE-CR). Using this observation
as a pre-requisite and building on some common principles on which
both the Oldroyd-B and the FENE-CR rely, we have elaborated a
potentially useful analogy between the present and other known phe-
nomena. The related arguments are based on some notable similarities
between two seemingly unrelated branches of physics and engineering
(which the interested reader will find in Appendix A).

V. CONCLUSIONS

This research has attempted to assemble a simple, physically
intuitive and reasonably self-contained discussion of pure thermovi-
brational convection in a viscoelastic fluid. A square cavity has been
considered given its intrinsic ability to reveal the hidden symmetries of
the different convective modes that can be excited in the space of
parameters. As made evident by a critical comparison of Newtonian
and viscoelastic cases, viscoelasticity can deeply influence the proper-
ties of this type of flow.

For Newtonian fluids, the patterning scenario (in terms of time-
averaged flow) essentially consists of the alternation of a roll configura-
tion displaying inversional symmetry and a quadrupolar roll distribu-
tion. This spatiotemporal behavior is stable over a relatively wide
range of values of the Gershuni number. For relatively high values of
Gs, the transition to a different pattern occurs gradually and in an
ordered way. The shape of the streamlines remains smooth and the

interpretation of the time-dependent flow is relatively straightforward.
The number of rolls changes from a minimum of three to a maximum
of eight in the range of Gs considered in the present work.
Furthermore, specific symmetry properties can be recognized in each
case.

For the viscoelastic liquid, the scenario changes dramatically. The
regular phenomena displayed by the Newtonian case are taken over by
more involved mechanisms, which, for the lowest values of Gs reduce
to the alternation between three and twelve principal time-averaged
rolls plus four additional small rolls located in proximity to the adia-
batic walls. Besides, hand by hand with an increase in the complexity
of the pattern, the time-averaged flow displays an increasing sensitivity
to Gs (or to Rax for a given value of the forcing frequency).
Remarkably, changes are not limited to a qualitative modification of
the flow topology. Appreciable variations also affect the magnitude of
the time-averaged velocity. As an example, for Gs ¼ 5� 102,
X ¼ 102, and # ¼ 0:1, the amplitude (A) of the signal of time-
averaged velocity measured by a probe located in the center of the cav-
ity is Aviscoelastic ¼ 1:57� 10�2 and ANewt ¼ 8:2� 10�3 for the visco-
elastic and the corresponding Newtonian fluid, respectively.

The most interesting cases are those where the characteristic time
of the vibrations and the relaxation time are comparable. In such con-
ditions, complex dynamics are established due to the competition
between the propensity of polymer molecules to return to a relaxed
position and the external vibrations that stretch and shrink them on a
regular basis. This phenomenon manifests itself with complex patterns
characterized by corrugated rolls and with a non-monotonic behavior
in the amplitude-R plane. The latter trend exhibits a fascinating simi-
larity with the typical behavior of mechanical systems equipped with
viscoelastic “components” for vibrational mode control. Notably, vis-
coelastic flows share a remarkable analogy with these systems in terms
of governing equations and physical interpretation of the involved
terms (the interested reader being referred to Appendix A).

An exciting prospect for the future is to investigate the corre-
sponding dynamics for the case in which the constraint of two-
dimensionality is removed. While for standard (constant gravity)
buoyancy convection in the Newtonian case (Refs. 73–76), 3D effects
have been shown to be limited to viscosity-induced phenomena in
thin regions located in proximity to the sidewalls perpendicular to the
spanwise direction, there is no guarantee that a similar concept would
be applicable to the viscoelastic case.

APPENDIX A

In this appendix, we consider the evident similarity between
the phenomenon reported in Fig. 22 and another category of prob-
lems, i.e., that of mechanical systems subjected to vibrations where
viscoelastic “components” are intentionally used to implement
vibrational mode control.

Developing this analogy obviously requires understanding how
these systems work. In practice, they generally employ a series of
viscoelastic parts as connections between sub-structures.77 From a
technical standpoint, such components are used for their renowned
ability to provide a good protection against vibrations through gen-
eration of deformations (by which a significant part of the available
vibrational energy is dissipated).
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In the past, these complex multi-component structures (widely
used for disparate applications in engineering) have been characterized
in terms of relatively simple models able to provide meaningful infor-
mation on their behavior in a relatively straightforward way. Such mod-
els have generally been built on the basis of rational physical arguments
and by turning the original mechanical system into a network of special-
ized functions, each accounting for a specific physical effect.

As an example, since the above-mentioned parts are generally made
of materials that have high elasticity and, at the same time, can play the
role of energy-dissipating components, each of them can be considered
theoretically equivalent to an assembly formed by a spring (with a certain
stiffness) and a damper (with a certain energy dissipation coefficient). The
simplest case is obviously that of an isolated viscoelastic mass (a single
substructure) vibrating under the effect of an external forcing, which can
be mimicked or modeled as a simple spring-oscillator model with a single
degree of freedom (DOF). If the single spring is assembled with the
damper in a side-by-side configuration, the problem can be reduced from
a purely mathematical point of view to a single ordinary differential equa-
tion m€x þ c _x þ kx ¼ f ðt;XÞ, where m is the mass, c is the damping
coefficient, k is the stiffness, and f ðt;XÞ represents the external forcing.

Of course, actual mechanical systems77 used for vibrational
mode control are very complicated and have large amounts of
DOFs. For this reason, their mathematical characterization, in gen-
eral, relies on systems of coupled equations (their number being
equal to the number of involved DOFs). These sets of coupled equa-
tions have largely been studied over the years due to their ability to
predict the so-called “resonances” and “anti-resonances.”77,78 The
former simply correspond to the well-known ability of dynamical
systems to produce oscillations of relatively high amplitude, not
because a particularly chaotic state has been entered, but because
the frequency of the forcing has become equal to one (there might
be many depending on the number of DOFs) of the frequencies of
natural oscillation of the considered system. Vice versa, the latter
refers to the remarkable possibility to mitigate the oscillatory behav-
ior induced by an external forcing by taking advantage of the intrin-
sic elastic response of the system itself. Put simply, this means that

specific frequencies exist for which a destructive interference is
established between the external driving force and one of the many
oscillators present in the considered multi-component structure;
most remarkably, it is known that at these frequencies the oscilla-
tion amplitude can drop to almost zero.

These resonances and anti-resonances can typically be seen in the
so-called amplitude-frequency characteristic curve of the considered sys-
tem, i.e., a plot reporting the amplitude of oscillation and a function of
the frequency of the driving force, where they correspond to peaks and
valleys, respectively. These plots (see, e.g., Refs. 77 and 79) are surpris-
ingly similar to that shown in Fig. 22, which may indicate that the
dynamics of the vibrated viscoelastic fluid considered in the present
work are governed by similar principles. Along these lines and further
pursuing the analogy between the present problem and the aforemen-
tioned multi-functional structures (consisting of viscoelastic parts sub-
jected to external vibrational forcing), it is worth recalling the
fundamental properties of the so-called Dumbbell paradigm on which
the viscoelastic models described in Sec. II are based. In the framework
of this paradigm, indeed, a viscoelastic fluid can be seen as a combina-
tion of a collection of fluid parcels of a solvent (masses) and molecules
of polymer (springs).

The analogy set in this way might easily be extended even to
the governing mathematics. Although for multi-components
mechanical systems it essentially consists of sets of ordinary differ-
ential equations, whereas for a viscoelastic fluids the dynamics are
governed by partial differential equations, a one-by-one relationship
could be established among the related terms: namely, m

__x__; c _x; kx
and fðt;XÞ corresponding to the substantial derivative of the fluid
velocity, the Laplacian of velocity (viscous effect), the divergence of
the elastic (extra) stress tensor, and the time-dependent buoyancy
term in Eq. (9), respectively.

To put our results in a broader perspective and create other
useful links with the existing literature, the reader may also consider
some other studies appearing recently about the dynamics of visco-
elastic fluids in pipe systems. Actually, the idea that the response of
viscoelastic fluids to external excitations can provide a new way to
control a system with “dynamic modulation functions” is not new
and has already been exploited to a certain extent to develop new
microfluidic logical components considering the effect of constant
or impulsive forces.80 As another example, most recently, by apply-
ing the Oldroyd-B model to the transient response of a viscoelastic
Poiseuille flow in a two-dimensional channel for different types of
forcing at the inflow, Zhang et al.81 have clearly shown that a state
of resonance can be attained if a periodic square wave force is
applied and its frequency matches the intrinsic frequency of oscilla-
tion of the viscoelastic, i.e., the frequency of the oscillatory flow that
would be obtained by applying a force constant in time.
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