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Two-layer nanofluid flow and heat transfer in a horizontal microchannel with
electric double layer effects and magnetic field

Qingkai Zhao, Hang Xu, Longbin Tao

Abstract

Purpose — The purpose of paper is to investigate the immiscible two-layer heat fluid flows in the
presence of the electric double layer (EDL) and magnetic field. The effects of EDL, magnetic field
and the viscous dissipative term on fiuid velocity and temperature, as well as the important physical
quantities are examined and discussed.

Design/methodology/approach — The two regions in a horizontal microchannel with one layer
being filled with a nanofiuid and the other with a viscous Newtonian fluid. The nanofiuid flow in the
lower layer is described by the Buongiorno’s nanofluid model with passively-controlled model at
the boundaries. An appropriate set of non-dimensional quantities are employed to simplify the
nonlinear systems. The resulting coupled nonlinear equations are solved by homotopy analysis
method.

Findings — The present work demonstrates that increasing the EDL thickness and Hartmann number
can restrain the fluid flow. The Brinkmann number has a significant role in the enhancement of heat
transfer. It is also identified that the influence of EDL effects on micro flow cannot be ignored.
Originality/Value — The effects of viscous dissipation involved in heat transfer process and the
body force due to the EDL and the magnetic field are considered in the thermal energy and
momentum equations for both regions, respectively. The detailed derivation procedure of the
analytical solution for electrostatic potential are provided. The analytical solutions can lead to
improved understanding of the complex microfluidic systems.

Keywords Two-layer flow; Nanofluid; Electric double layer; Magnetic field; Passively-controlled
model; Homotopy analysis method

Paper type — Research paper

Nomenclature
Br,, Br, Brinkman number
B, magnetic flux density in y-direction
B magnetic flux density vector
Co1>Cpm specific heat capacities at constant pressure [J kg 'K™!]
C nanoparticle volume fraction
G, reference nanoparticle volume fraction
G nanoparticle volume fraction at the interface
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G.G,
G,.G,

by,

Ha,,Ha,

cl>“e2

1,1

517 “52

J..J,

kK,

k

fl’k

72

local skin friction coefficients on the microchannel walls [kg m™—]
Brownian diffusion coefficient [m?s™]
thermophoretic diffusion coefficient [m?s™!]

charge of a proton [C]
maximum fotal average squared residual error for homotopy analysis

method computation order m

Eckert number

streaming potentials [V]

dimensionless streaming potentials
electric field strengths [V m™ or N C!]
electrical body forces [N m ]
gravitational acceleration [m 5_2]

dimensionless quantity, represent the ratio of EDL force to viscous force

dimensionless quantity, represent the ratio of streaming current to
conduction current

the hight of two-layer fluid in regions I and II, respectively [m]
Hartmann number

conduction currents [A]

streaming currents [A]

current density vectors

Debye-Hiickel parameters [m™]

Boltzmann constant [J mol 'K ]

thermal conductivities of the liquids [W m™K ]

length of the microchannel [m]
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nﬂl > nOZ

Nb

Nt

Nu,, Nu,
PP,
B.h
Pr,, Pr,
Qw1>9w2

dc

Re,,Re,

I.T,

ionic number concentration of the ith species
the bulk ionic concentrations [m—]
Brownian motion parameter

thermophoresis parameter

local Nusselt number

pressures [Pa]

non-dimensional pressure gradient parameters
Prandtl number

wall heat fluxes on the two wall of the microchannel [W m™2]

local wall flux of nanoparticles on the lower wall of the microchannel
[kg m™s™]
Reynolds number

temperatures [K]

reference temperature [K]

temperatures on the microchannel wall surface [K]
absolute temperature [K]

x-component of the fluid velocities [m s™!]
average velocity at the entrance [m s™']
dimensionless velocifies of the fluid

velocity vectors

width of the microchannel [m]

Cartesian coordinates

non-dimensional Cartesian coordinate
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Zy,Z,
Greek symbols

a,,a,

K. K,

Hors Aoy

ks Hy

V.V,
01,0,
6,.6,

¢
..,
Pe1> Pe>

Pr> P

T

T ...T

wl? " w2

6165

Vi-¥>

Y.,
Q,.0,

Subscript

the valences of ions

thermal diffusivities of the nanofluid [m?s™]
permittivity of vacuum [C V'm™]

dielectric constants of the medium

parameters characterizing the EDL

electrical conductivities of the fluid [ 'm™]
dynamic viscosities of the fluid [kg m™s™]
kinematic viscosities of the fluid [m?s!]
electrical conductivities

non-dimensional temperature distributions
non-dimensional nanoparticle volume fraction
viscous dissipation terms

charge densities [C m ]

density of the fluids [kg m~]

heat capacity ratio

shear stresses on the wall of the microchannel [Pa]
zeta potentials [V]

electrostatic potentials [V]

dimensionless electrostatic potentials

cross-sectional areas [m?]

4
http://mc.manuscriptcentral.com/hff

Page 4 of 55



Page 5 of 55

CO~NOYU AWk =

International Journal of Numerical Methods for Heat and Fluid Flow

w physical quantities on the microchannel wall
f.p denote the fluid and solid particles
1.2 Denote the quantities for regions I and II, respectively

1. Introduction

Recently, flow and heat transfer in a microchannel has gained great interest due to
its widely practical and potential applications in many industrial fields, such as cooling
of micro-electromechanical system(MEMS), production of a penny-sized nuclear
battery for small and microelectronic systems, enhancement of heat transfer in
aerospace technology (Darabi and Ekula, 2003; Donaldson, 2009). Mathematical
approaches for fluid and heat transfer problems have also been developed (Lewis et al.,
1996; Kulasegaram et al., 2004; Lewis ef al., 2004; Nithiarasu ef al., 2016). However,
some experimental observations and theoretical studies (Wang and Peng, 1994; Mala
et al., 1997; Mala and Li, 1999; Guo and Li, 2003) showed behaviour of thermal fluid
flow in a microchannel i1s different from that in macroscopic scale. Wang and Peng
(1994) noticed that the transition and laminar heat transfer behaviour in microchannel
are very complicated, and the behaviour may be strongly affected by liquid temperature,
velocity and microchannel size. Mala ef al. (1997) and Mala and Li (1999) indicated
that the fluid flow and heat transfer in a microchannel could be significantly affected
by some interfacial factors such as EDL (Hunter, 1981). It is widely accepted that the
effect of the EDL on velocity distribution and heat transfer cannot be neglected in
microchannel fluid flow. Microfluidic is one of the most important research fields in
MEMS, and microchannels are critical part of fluidic-MEMS. When the fluid flows
through a microchannel, the EDL can be formed due to hydrolysis and adsorption. The
effects of EDL plays an important role in transport processes in microchannel. For
instance, the EDL can restrain the fluid motion which can further affect the pressure,
heat transfer and the distribution of nanoparticles. Some studies on fluid flow in
microchannel actuated by the application of electrokinetic force under different

situations. Ren ef al. (2001) examined the magnitude of the additional flow resistance
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caused by the electrokinetic effect and pointed out that the EDL effect is the primary
cause of the significantly higher-pressure drop for pure water and dilute aqueous ionic
solutions flowing through microchannels. Ren and Li (2005) further developed a
theoretical model of the EDL field to investigate the effects of electric double layer on
pressure-driven flow in microchannel. You and Gu (2010) studied the effects of EDL
on the velocity distribution and the flow stability of the developed laminar flow in
microchannels. Recently, Jing er al. (2017) investigated fully developed pressure-
driven flow in a microchannel with consideration of the combined effect of surface
charge-induced EDL and surface charge-dependent slip. Based on their studies, the
authors revealed that EDL is a key factor to affect the fluidic behaviour and the thermal
performances of pressure-driven flow, including viscous dissipation and convective
heat transfer (Jing, 2017; Srinivas, 2016; Q1 and Ng, 2018; Zheng and Jian, 2018).

As a new kind of heat transfer medium, nanofluids have attracted much attention
of researchers in various fields. One of the most important features of nanofluids is their
capability to enhance heat transfer performance of the base fluid (Choi, 1995). Many
researchers have devoted to study the flow and heat transfer mechanism of nanofluid
and confirmed that the suspended nanoparticles significantly improve heat transfer
process primarily owning to the nanofluid possessing larger heat transfer coefficient
than that of the pure fluid (Xuan and Li, 2003; Heris ef al., 2006; Williams ef al., 2008;
Kuznetsov and Nield, 2010; Wang er al., 2014; Manikandan and Rajan, 2015;
Karimipour ef al., 2015). On the other hand, the subject of multi-fluid flow and heat
transfer has been studied extensively due to its importance in petroleum industry,
plasma physics and chemical industry. Many scientific and technological
applications involve multi-phase flow and multi-layer flow (Lewis and Ghafouri,
1997; Redapangu ef al., 2012; Li ef al., 2010; Moh’d and Al-Dafaie, 2014), such as
electroosmotic pumps consist of two immiscible or miscible liquids with different
viscosities. Previously, Arco ef al. (1991) studied the thermocapillary convection in a
two layer fluid system with flat interface. Subsequently, the immiscible two layer
fluid system with flat interface system has been investigated in recent years. Xie
and Jian (2017) studied the two immiscible fluids electroosmotic flow in the
presence of magnetic field through a microparallel channel. The effects of

magnetic field parameters on the local and total

6
http://mc.manuscriptcentral.com/hff

Page 6 of 55



Page 7 of 55

CO~NOYU AWk =

International Journal of Numerical Methods for Heat and Fluid Flow

entropy generation rates are studied in their work. Shit ez al. (2016) investigated a two-
layer fluid flow and heat transfer in a hydrophobic micro-channel by considering the
combined influence of pressure gradient and electro-osmotic forces and demonstrated
that the zeta potential difference plays an important role in controlling fluid velocity in
the micro-channel. ElImaboud er a/. (2019) studied the electromagnetic flow for two-
layer of immiscible fluids in an inclined channel and applied the homotopy analysis
method in the solution process, and revealed that the velocity decelerates with
increasing the magnetic field due to the Lorentz force.

More recently, the Buongiorno’s model (Buongiorno, 2006) has often been
adopted by researchers to study the flow and heat transfer of nanofluids in various
physical situations. Rohni ef al. (2013) investigated numerically the unsteady nanofluid
flow over a continuously shrinking surface with wall mass suction. Sheremet and Pop
(2014) studied the laminar natural convective nanofluid flow and heat transfer in a
square porous cavity with sinusoidal temperature distributions on both side walls.
Rahman er al (2015) studied the steady nanofluid flow past a permeable
exponentially shrinking surface by numerical simulation. Yu et al (2018)
investigated the laminar mixed convection nanofluid flow in an inclined lid-
driven cavity and applied Buongiorno’s nanofluid model to describe the nanofluid
behaviours. Their works not only demonstrated that the nanofluid can enhance heat
transfer, but also confirmed the validity of the Buongiorno’s model.

In this paper, the steady immiscible two-layer flow in a horizontal microchannel
with the EDL effects and magnetic field is studied. The body forces caused by the EDL
and magnetic field are considered in the momentum equation for both regions. The
Buongiorno’s model is adopted due to its advantage in explaining well the relationship
between the nanoparticles and the base liquid (Zhao ef al., 2018). The energy and the
concentration of the nanoparticle equations are established respectively. As one of the
highlights of the present study, a passively controlled nanofluid model was adopted at
the lower plate (Kuznetsov and Nield, 2013). Through nondimensionalization, the
governing equations are transformed into nonlinear ordinary differential equations. The
resulting coupled nonlinear equations are solved by homotopy analysis method (HAM)

(Liao, 2012), and the analytical solutions for electric potential, velocity, temperature
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and nanoparticle concentration are obtained. The effects of EDL, Hartmann number,
Brinkman number and thermophoresis parameter on various physical quantities are
examined and discussed. The improved understanding of these fundamental
phenomena and their mechanisms is deemed crucial for to the optimal design of

micro/nanofluidic systems.

2. Physical and mathematical modelling

In the following sections, the problem of a nanofluid flow adjacent to a clear fluid
through a microchannel between two parallel plates with the effects of EDL and
magnetic field is discussed in detail. The region I (0 < y <) is filled with a fluid of
thermal diffusivity «,, viscosity g and density p,. The region II (-, <y <0) 1s
filled with a nanofluid, the density, viscosity and thermal diffusivity are p,, u,,and
a, , respectively. The boundary walls of the channel are isothermal and are held at
different temperatures. The temperature of the upper wall and the lower wall are T,
and T

w2 >

respectively. The nanoparticle volume fraction at the interface 1s C,, while
a passively controlled nanofluid model 1s employed on the lower wall. The magnetic

flux density B is imposed along the y-axis. The length of the channel is L as illustrated

in Fig.1.
| L I
J F. i / FYFPIT
i.‘:.il" I 1
Region|
: ) h,
y Clear viscous flow P M. @ 8, K,
|_3( _____________________________________________ X.-.-
. Region I
Nanofluid  Pas Hos @ €5, Ky i
dc D, dr _
» dy T, dy
7

HHHIHTMHHIIB”

Figl. Schematic of the physical model
The flow is assumed to be steady, laminar, fully developed in both regions and the
thermophysical properties of the fluid remain constant. The pressure gradients are
assumed to be constants in both regions. The nanofluid flow in the lower layer is

described by the Buongiorno’s nanofluid model. Based on the previous work (Shit er
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al., 2016; Xie and Jian, 2017), the physical model and boundary conditions in this
research are valid. Therefore, the governing equations of the problem in both regions
are the electrostatic potential equation, the conservations of the total mass, momentum,

thermal energy equation and nanoparticle volume fraction equation and can be written

as
1). Regionl
Vi, =L o
&
V-V, =0, 2
p(V,-V)V, =—Vp, + uV?V, +F,, 3)
V-V =a VT + " o, @)
plcpl
i1). Region II
VZWQ __Pao , )
8082
V-V, =0, (6)
2,(V,-V)V,=-Vp, + ,UQVQVz +F,, (7N
V, V)T, = a,V°T, +([D,VT, VC+20vT v+ o, ®)
1, PaCp
v, -V)C:DBV2C+%V2T2, ©)

0

In the above equations, the subscripts 7=1,2 denote the values for regions I and II,
respectively. Here, v/, are the electrostatic potentials in the electric double layer, ¢,
are the dielectric constants of the fluid medium, g, is the permittivity of vacuum, V,
are the velocity vectors, p, are the pressures. The vector F, =E_p_+J,xB are the
electrical body forces originating from the presence of the electric double layer and
magnetic field, E  are the electric field strengths. p, are the charge densities, J,
are the current density vectors, B =(0,B;) is the magnetic flux density vector, I,

i

and 7; denote the temperatures and the reference temperature, respectively. C 1is the
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nanoparticle volume fraction, @, are the viscous dissipation terms, c,, are the heat
capacities. D, and D, represent the Brownian diffusion coefficient and the
thermophoretic diffusion coefficient respectively, and 7=(p,c,,),/(p,c,,), 1is the
heat capacity ratio. Subscripts p and f denote the nanoparticles and the base fluid
in region II, respectively.

For a parallel flow in channels, assume, without loss of generality, the flow is
unidirectional so that the velocity component is equal to zero along y-direction. Based

on these assumptions, the governing equations (1)-(9) are reduce to

1). RegionI
v, p,
s (10)
y 2591
d*u, dp, )
[Jld—yz—x—algoul‘l‘Exlpq :0_, (11)
d°T,  u du ’
oy —— +—1 Ll =0, (12)
dy’ d
Yy o P\ ay
i1). Region II
dy, P,
d 22 :_—23 (13)
Yy &%,
d*u, d
luzd—ygz_ df: ~0,Bsu, +E,,p,, =0, (14)
a:zd};z+r Bﬁd—ch&(dTZ] 4o (duz} =0, (15)
y dy dy T,\dy P, dy
2 2
dC+DTdT2—0 (16)

5 d ¥’ ?0 dy’ o
where, u, and o, (i=1,2)are the fluid velocities along the x-axis and the electrical
conductivities in the region I and region II, respectively.

It 1s assumed that the electrical potential, the velocity, the shear stress, the
temperature, and the flux at the interface are continuous. The velocities of fluid in both

regions satisfy the non-slip condition on the wall surface. The boundary conditions for

the temperature are isothermal. Based on previous work (Kuznetsov and Nield, 2013),
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the nanoparticle volume fraction satisfies a passively controlled nanofluid model at the
boundary. Therefore, the appropriate boundary and interface conditions of Eqs.(10)-(16)
are

9 v =¢, u(»=0, L(»=T,, ary=h.

1 vi(M) =y, (), () =u,(y), LM =L(»), C(»)=C,

15 dC D, dT, _

16 v,(¥)=¢,, u,(»)=0, I,(»)=1,,, Dy 5"' T, & 0,

CO~NOYU AWk =

at y=—h,.

19 where ¢, and k, (i=1,2) are the zeta potentials and the thermal conductivities in

the region I and region II, respectively.
23 2.1 The electrostatic potential equation and the analytical solution

26 Consider a microchannel consisting of two parallel plates as shown in Fig.1.
28 Assuming that the equilibrium Boltzmann distribution is applicable, it implies uniform
30 dielectric constant and neglecting fluctuation. According to the theory of electrostatics,
the relationship between the electrostatic potential w, and the charge density p, is
described by the Poisson equation. At any point in the fluid, it 1s described as (Mala et
35 al., 1997; Hunter, 1981)

-4 i=12, 18
38 ) ot (18)

41 where the subscripts i =1,2 denote the values for regions I and II, respectively

43 For the case of any fluid consisting of two kinds of ions of equal and opposite

charge z7, z”, the number of 10ons of each type are given by the Boltzmann equation

47 n, =n,, €xp 2V | and n’ =n,, exp A ., i=12, (19)
k, k,T

>0 where 7, and Z, are the bulk ionic concentrations and the valence of type i ions,

52 respectively, e denotes the charge of a proton, y, are the electrostatic potentials. £,

54 and 7T are the Boltzmann constant and the absolute temperature, respectively. Then the

56 net charge density p, in a unit volume of the fluid in both regions can be written as

57 ~
>8 P, =(n"—n )ze=-2n,zeSinh [:e—?} i=12. (20)

b
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Substituting Eq.(20) into the Poisson equation (18), the well-known Poisson-

Boltzmann equation is obtained

2 fad s
dY, _2mie smh[‘fe"ff J i=12. 1)
dy £y8,

b

Introducing a set of dimensionless quantities as follows

y -:EQW;' * Pei
Y=— Y.(X)=—F, p,(¥)=""-. 22
M= = (22)

and through nondimensionalization, Eq.(21) can be non-dimensionalized to the

2 2 2
following forms T2 — 2 sinh (¥, (1)), L0 __ K 7y 0<¥<1.23)
Y ay 2
d’¥,()
dy?

dPY,(Y) WK
Yy’ 2

— &2 Sinh (W, (V). 2 (T), _}l <Y<0. 24)
1

A1
where h=h/h,, x,=hk, in which k, = (Ilrf-méfe2 [e,&k,T )l “is the Debye-Hiickel

PR

parameter, and 1/k, is generally regarded as the EDL thickness (i =1,2).
According to the Debye-Hiickel linear approximation, the electric potential is
< ‘kbf

typically much smaller than the thermal energy of the ions, i.e. ‘Er.et,'/‘i , such that

the hyperbolic sine function in Eqs.(23) and (24) can be approximated by the first term

in a Taylor series. Thus, Eqs.(23) and (24) can be rewritten as

2
%:KE‘PI(}’), 0<Y<l, (25)
2
%:hzqu’z(}’), —%<Y<0, (26)

The non-dimensional boundary conditions of Eqs.(25) and (26) can be obtained
from Eq.(17), as
1

v.y=2% ¢ L _5eh 27
1() ;{bT 3 2( h) ;{bT E] ( )

d¥,(M)| _zd¥,@)

¥ (0)=z2%¥,(0), = ,
+(©) 2(0) dy |Y=0 e dY |Y=0

(28)

wherez=2/2,,6=¢/s,.
With the above boundary conditions (27) and (28), the solutions of Eqs.(25) and

(26) are obtained
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¥, (Y) =[ex, £, Sinh x, Cosh(x,Y) + hx, £, Cosh x, Sinh(x,Y)

AT s . (29)
+hx,2Z, Sinh(x, — x,Y)]/C,

Y,X)= [glcg’l Sinh(x, + hx,Y) — ek AQ Cosh x, Sih(hx, Y)

(30)
+hk 442 Sinh x, Cosh(hx, Y)]/(zC )

where C_ = ek, Sinhk, Coshx, + ik, Coshx,Sinhx, and ¢, =Zel, / (k,T)

&, =z5ed, / k,T are constants.
2.2 The dimensionless form of momentum, thermal energy and nanoparticles equations

For the convenience of mathematical calculation and in-depth analysis of the
physical mechanism, it is necessary to nondimensionalize the governing equations.
Define the non-dimensional quantities as follows (i =1,2)

-G,
-C,’

0

Yzj U(Y)— 8(1’)— ¢(Y)—

1 1

GD

where, u_ 1s the average velocity at the entrance, C, is the reference nanoparticle
volume fraction.
Non-dimensionalize the momentum Eqs.(11) and (14) by the non-dimensional

quantities (22) and (31), we obtain

2
du = Y, P-2GE,¥,-HalU =0, (32)
dZU 2 2 - 2 2
2+h"P,-2h"G,E,,¥, —h"Ha,U, =0, (33)

subject to the boundary conditions,

_1du,@)
ro M dY

U,)=0, U,0)=U,(0), T4D)

1
U,(->)=0, (34
17 . Uy( h) . (34

¥=0

where, h=nh/h,u=w/pn,, G and G, are constants, Ha, = Boh,.m
(i=1,2) are the non-dimensional Hartmann numbers in regions I and II, respectively,
which 1s a measure of the strength of the applied magnetic field. The parameters P,
and E, (i=1,2) are the non-dimensional pressure gradient parameters and the

streaming potentials in regions I and II, respectively, and are defined by
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p :_h_f% = _E, _E,L G- ny,z,e$ihy G - ny,z,e,h
' M, Ox, C ¢, & - i, L C 7 Mo, L

As seen in Eqs.(32) and (33), the streaming potential E, and E,, are unknown.

It is noted that as the electrolyte flows over a solid surface, free charged particles in the

EDL surface will move along the direction of liquid flow. The movement of these

charged particles leads to the accumulation of charges downstream. Thus, a potential

difference is formed between the upstream and downstream. This potential is known as

streaming potential. Correspondingly, the current produced by the movement of

charged particles is called streaming current, defined by

I, = [mp,dQ,,  inRegionl (35)
o

i — I Uy P,,dQ, in Region II (36)
Q2

here, €2, and €2, are the cross-sectional areas of theregionsIandIl,and Q =AW
(i=1,2), Wis the width of the microchannel.

Using Eqs.(22)-(24) and (31), the dimensionless form of streaming current is

obtained as

I, =2t ngZief, U, (¥, (V)dY 37)
0
L, =-2Whu,npie|  Uy(N)Y,(N)dY (38)
Considering that the streaming potential generated by the streaming current will
produce a conduction current in the reverse direction, thus

I = A B2

cl 2

in Region I (39)

- = 1 Region
AoEolly in Region IT 40

c2 2

where, A, and A, are the electrical conductivities of the fluid in regions I and II.

Using the relations E,=E, /¢, and Q,=hWW (i=1,2), the non-dimensional

conduction current is given by

I, = A’Uléllislhlw , (41)
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2y CrE W

= Rk kv e M (42)
L

Usually the net electrical current is the algebraic summation of the streaming

current and the conduction current. In a steady state, this net electrical current should

be zero, which indicates

1

51

+7

4=0, mRegionl (43)
I,+1,=0, inRegionlIl (44)

Therefore, the electrokinetic potential E_ (i =1,2) can be obtained by balancing
the streaming current and conduction current at the steady state. Using Eqs.(37)-(38)

and Eqs.(41)-(42), E,, and E,, are obtained

E, =26, E U(Y)¥,(Y)dY. inRegionl (45)
E,=2hG, Jﬂm U,(¥)¥,(Y)dY, inRegion I (46)
where G, =u,n,zel/(4,¢,) and G, =u,ny,z,eL/(A,(,) are constants.

Therefore, Eqs.(32)-(33) are transformed into the following form

d’U, 1
L+ R—4GG, | U\Y\dY¥, - HaiU, =0, 0<Y <l. (47)

YZ

d’U,

Y2

+IB,—4IG,G,[ U,¥,dV¥, - HalU, =0, —% <Y<0. (48)

Similarly, substituting the non-dimensional variables (31) into Eqs.(12) and (15)-
(16), we obtained the reduced energy equations and concentration of nanoparticles
equation as

3 2

j}i+3q[%J =0, 0<Y<l, (49)
) ) 2 - ~2
—d%JrNbdgz d¢+Nt[d92 +Brz[dUZ} =0, —1<Y‘<0= (50)
dY dYy dy dy dy h

2 2

d¢ Ntd6,_, _1_y.o, (51)

dY?  Nb dY h

The corresponding boundary conditions in non-dimensional form are
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6,1 =1 6,(0)=06,(0), 6,(— l/h) =1L ¢0)=1,

ﬁ = —5 d@z + Ntﬂ

rl,, k,dy .1 Ay
h

o (52)

Yo dY

=0

2

y—1

h
where, 6=(T,,-T,)/(T,,~T,) and k,=k, /kf2 are constants, the parameters
Br(i=1,2), Nb and Nt are the Brinkman number, the Brownian motion parameter

and the thermophoresis parameter, respectively, and they are defined by

7D5(C, - Cy) Ni = D (T, -T;)
a 2 2

Br,=Pr,-Ec,, Nb=
2 aZTO

(53)

in which Pr,=v,/a, and Ec,=u, / [, (T, —T})],(i=12) are the Prandtl number

and Eckert number in regions I and II, respectively.
2.3 Important physical quantities

It 1s noted that any real fluids flowing along a solid boundary will incur a shear
stress at the boundary. Besides, it is necessary to understand convective heat transfer
between the microchannel surface and the fluid flowing past it. Therefore, the
physically important quantities of practical interests are the local skin friction, the local
Nusselt number and the local Sherwood number. In present work, they are defined as

follows (i=1,2)

Cpmto Ny gy e (54)
2 Py kﬁ(Twi_I:]) Dy (G, —-Cy)
where,
du. dT’ dC
rwi:#izj E) qwz:_kﬁd_z E) QC:_DBd_ - (55)
Y= Y =y, Y ly=n,

Substituting Eqs.(31) and (55) into Eq. (54) , we obtain

r 2 r 1 r
Re, C, =2U((1), Re,C,, :Zyz (_Z), Nu, =-6/(D),

(56)
Nu :—1(9'(—1) Sh:—lgé'(—l)
R R h h

where Re, =p,u, /1, (i=1,2) are the Reynolds numbers in regions I and II,

respectively.
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3. Results and discussion

The homotopy analysis method(HAM) is applied to obtain solutions to the
problem defined in the previous section. It is worth mentioning that Eqs.(47) and (48)
contain two unknown constants IIUI‘PldY and IO U,¥,dY . The integral terms are

0 —1/h

typically difficult to calculate directly by either numerical or analytical methods. To
overcome this difficulty, in the present approach, extension has been made to the HAM
to obtain the accurate solutions of the nonlinear equations (25)-(28) and (47)-(52). In

1
the present computational process, the exact values for L UVY,dY and .[OL-;, U¥Y,dY

are obtained spontaneously without any approximations. Unlike the other analytic
techniques, the HAM provides us a convenient way to control and adjust the
convergence of solution series, so that the convergence of solution series can be
guaranteed. The details are shown in the Appendix.

To verify the accuracy of the results, the maximum total average squared residual

error function is defined as
E(m) =max{Ey (m), E; (m), E, (m), E,(m)}, i=12 (57)
where
Ey, (m)= [, (V1= dY,  Ey, (m)=[ (Vs—I'K3¥,)dY,
Ey (m)=[.(U+ R —4G,G, [ U,\¥,dY \¥, - HaU,)dY.
0 ", 1.2 3 0 277277 \2
Ey, (m)= | (U3 + P, —4h G,G, | U2 ¥odY ¥, — 1P HayU, ' dY,
(58)
E, (m)= [ (6/+ ByUY Y.

E, (m)= j_“w (07 + NbOLY + Nt& + BrU*VdY,
_ 0 ” Nf m2
E,(m)= an (¢ +E%) dy,

in which, m is the computational order.

Substituting m th order solutions into Eq.(57), the corresponding error can be
obtained. In order to facilitate calculation, the constants and the dimensionless
parameters are given the fixed values unless otherwise specified in the present work

including G, =G,=G,=G, =1, {,=¢(,=1, u=k;=¢=z=6=1, B=B=1.1t

17
http://mc.manuscriptcentral.com/hff



CO~NOYU AWk =

International Journal of Numerical Methods for Heat and Fluid Flow

1s worth noting that the distance ratio of the two-layer fluid # was commonly chosen
as 1 in most previous studies (Shit et al., 2016; Xie and Jian, 2017) implying that the
two-layer fluid have the same spatial scales. However, in a real engineering case, the
space scale occupied by the two layers of liquid are often different. In view of this, the
different spatial scales for the two-layer fluid are considered in the present study,
namely, /=2 . In this case, we obtain the maximum error E(m) for various values
of x; and «x, , as listed in Table I and Table II. It is shown that the maximum error
continues to decline with the increase of calculating order demonstrating that the
accuracy of the results 1s guaranteed. Therefore, the 40th order calculation results were
adopted for analysis and discussion in present work. It is noted that when the value of
k, or x, 1s greater than 5, the error convergence of the potential equation tends to be
slow, which subsequently leads to the slow convergence of other equations. In these
cases, the Homotopy-Padé technique (Liao, 2012) is employed to accelerate the
convergence of the HAM approximations.
Table I. The maximum error E(m) for different x; in the case of x, =1.Ha, = Ha, =1,

Br, =Br, =1 and Nb=Nt=0.1.

E(m) K =1
Order K =1 K =2 K =3 K =5 K, =10
m=10 0.0391 0.0049 0.0064 03116 113.111

m=20 | 1.736x10” | 8.908x10° | 1.205x10™° | 4.050x107" | 2.250x10

m=30 | 6248x107° | 1.358x107™" | 7.908x10™" | 6.312x107™" | 3.683x10~"

m=40 | 6.351x107"7 | 4.957x107"* | 3.267x107" | 1.919x107" | 7.055x10°®

Table II. The maximum error E(m) for different x, inthe caseof x; =1.Ha, = Ha, =1.

Br,=Br,=1 and Nb=Nt=0.1.

E(m) g =1

Order K, =1 K, =2 K, =3 K, =5 K, =10

m =10 0.0391 3.671x107" 0.0044 0.0079 531.073

m=20 | 1.736x10”° | 1.966x10™° | 1.469x10° | 4.438x10~ | 8.150x107’

m=30 | 6248x107° | 4219x107" | 3.612x107™™ | 3.521x10”° | 2.561x107’

m=40 | 6.351x107™" | 1.570x107" | 9.436x10™ | 2.516x10™" | 1.630x10°*
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Fig.2 The electrical potential W(Y) with €=z =

¢, = 52 =1. h=2. Line: analytical

solutions given by Eqs.(29) and (30); Triangle symbols: HAM solutions.

In Fig.2(a) and Fig.2(b), the electrical potential profiles are presented for different

values of the parameter x; and x, respectively. It 1s noticed that the present HAM
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solutions agree with the analytical ones given by (29) and (30) in the whole region
—0.5<Y <1 for all considered values of x; and x,. This further confirms the
validity and accuracy of the present solution procedures. As shown in Fig. 2, the solid
lines represent exact solutions which given by (29) and (30) and the symbols are the
results of the present HAM approximation. It can be observed that the electrical
potential profiles W(Y) are considerably reduced with increasmg x, and «,. As
seen in Fig.2(a), as x; becomes sufficiently large, W(Y) diminishes to zero near the
middle of the channel. The reason causing this phenomenon is that the largeris . the
thinner 1s the EDL. As «x; 1s considerably large, the thickness of EDL approaches to
zero on the upper wall of the microchannel. Therefore, the electrical potential near the
upper wall of the microchannel will decreases rapidly with x, increasing. Similar

phenomena can also be observed in Fig.2(b).
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(a) For various values of x; with x, =1
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Fig.3 The dimensionless velocity profiles U(Y) in the case of G, =G,=G;=G, =1,
B=P =1, Hay=Ha,=1 and h=2.

Fig.3(a) and Fig.3(b) show the non-dimensional velocity distribution in the
microchannel. The non-dimensional velocity 1s seen increasing with increasing x;
and x, . The reason for this is that increasing x; or x, implies either a large
separation distance between the channel walls or a smaller EDL thickness resulting in
larger portion of fluid not being affected by the EDL and indicates that increasing the
EDL thickness apparently restrains the fluid flow. Therefore, the EDL modifies the
velocity profile which will affect the heat transfer in the microchannel.

To mvestigate the relationship between EDL and heat transfer, the influence of x;
and x, on the dimensionless temperature profiles and nanoparticle volume fraction
profiles are presented in Fig.4(a) and Fig.4(b), respectively. In Fig.4(a), it 1s shown that
6(Y) increases gradually as x; evolves. If the distance of the two-layer fluid remains
unchanged, then x, is inversely proportional to the thickness of EDL. In the case, the
larger is «;, the thinner 1s the EDL. As seen from Fig.4(a), taking the value of «
from 1 to 10, the maximum value of &(Y) varies from 1.0188 to 1.0341. It indicates

that the effect of EDL on the distribution of temperature is not significant. In other
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words, the effect of EDL on temperature is generally negligible. Similar trend can also

be observed in Fig.4(b).
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Fig.4 The dimensionless temperature profiles &(Y) in the case of Ha, =Ha,=1 .

Nt=Nb=0.1, Br;=Br,=1 and h=2.
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Fig.5 The nanoparticle volume fraction profiles ¢(Y) for various values of x, in the case of
x,=1. Ha,=Ha,=1. Nt=Nb=0.1. B, =Br,=1 and h=2.

Fig.5 illustrates the change in nanoparticle volume fraction profiles for various
values of «, . It can be seen that the volume fraction of nanoparticles increases slightly
with the increase of «, . As mentioned in the previous part, the largeris ., , the thinner
is the EDL. It indicates that the EDL can influence the concentration of nanoparticles.
Therefore, for some precision instruments, increasing the EDL effect can effectively
reduce the attachment of nanoparticles to the wall. In addition, for sufficiently large
parameter «,, the temperature distribution and nanoparticle concentration distribution
curves will not change, as seen in Fig4(b) and Fig.5. It indicates that the EDL effect can
be ignored when «, 1s sufficiently large.

The mfluences of Hartmann number Ha, and Ha, on the distribution of
dimensionless velocity are presented in Fig.6(a) and Fig.6(b). It is shown that the
enlargement of the Hartmann number causes the reduction of the flow velocity in both
regions of the microchannel. Since the Hartmann number is the square root of the ratio
of electromagnetic force to the viscous force, the larger the Hartmann number is, the
stronger the magnetic field strength will be. While the magnetic field force caused by

fluid cutting magnetic field line and the viscous force are dominating in restraining the
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fluid flow. Consequently, the flow rate of the fluid is reduced with an increase in

Hartmann number.
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Normally, the influence of viscous dissipation on the fluid flow is negligible in

macro flow, therefore, viscous dissipation term often omitted under most circumstances.

However, the effects of viscous dissipation in microscopic ones can be very strong, and
the effect of viscous dissipation on temperature distribution can also be significant.
Therefore, it can further lead to the flow being markedly changed in the microchannel.
Fig.7(a) and Fig.7(b) exhibit the temperature distribution for different Brinkman
numbers Br; and Br, . Brinkman number is a dimensionless number representing the
ratio of viscous heat generation to external heating. As seen in Fig.7(a), the
dimensionless temperature increases with Br; increasing, especially in Region I of the
microchannel. It is also shown in Fig.7(b) that B7, has a significant effect on the
dimensionless temperature in Region II of the microchannel. The temperature rise in
the microchannel is mainly attributed to effect that the higher value of Brinkman
number, the slower the conduction of heat generated by viscous dissipation and hence

the greater the temperature rise.
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Fig.8 The nanoparticle volume fraction profiles ¢(Y) for various values of N/ in the case of
K,=K,=1, Ha =Ha,=1, Nb=0.1, Br;=Br,=1 and h=2.

The effects of thermophoresis parameter N/ on the nanoparticle volume fraction
is depicted in Fig.8. It can be observed that increasing the value of the thermophoresis

parameter, the nanoparticle volume fraction increases significantly in the vicinity of the
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lower wall. It is worth noting that the lower plate has the passive boundary condition
due to the passively controlled nanofluid model in the present study. In other words, the
concentration of nanoparticles on the wall is closely related to the temperature gradient
near the wall. While the thermophoresis parameter i1s proportional to the temperature
gradient. Therefore, the nanoparticle volume fraction on the lower wall varies with the
change of Nt.

The physical quantities such as the local skin friction, the local Nusselt number
and the local Sherwood number are of importance in channel flow. The following
section 1s mainly to examine the influence of physical parameters in region II on these
physical quantities. The wvariation of the local Sherwood number with the
thermophoresis parameter Nf for various values of the Brownian motion parameter
Nb on the lower wall of the microchannel is shown in Fig.9. It is seen that the local
Sherwood number increases monotonously as N/ increases. Also, it is obvious that
the local Sherwood number decreases rapidly with Nb increasing. It is shows that
Nt and Nb have a vital role in the mass transfer mechanism. That is to say, both the
type and the size of the nanoparticles will affect the heat and mass transfer in the

microchannel.
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Fig.9 Variation of the local Sherwood number with the thermophoresis parameter N7 for various

values of Nb inthe caseof K, =K, =1, Ha,=Ha,=1. Br;=Br,=1 and h=2.
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The influence of Hartmann number Ha, on the local skin friction, the local
Nusselt number and the local Sherwood number are examined in Fig.10 and Fig.11. It
can be seen in Fig.10 and Fig.11 that the variation of Ha, causes the different trends
for these physical quantities. In Fig.10, the increase of Ha, leads to a slight increase
of the skin friction on the upper wall, but results in the decrease significantly of the skin
friction on the lower wall. It is also observed that the effects of magnetic field parameter
on Sherwood number is negligible. In Fig.11, the Nusselt number on the upper wall has
a similar variation trend with the Sherwood number. The increase of Ha, causes a
slight increase of the Nusselt number on the lower wall. It is worth noting that, as Ha,
is considerably large, the values of the physical quantities close to certain constants,
respectively. The influence of the parameter &, on these physical quantities are also
depicted in Fig.10 and Fig.11. It is easy to observe in Fig.10 that the increase of X,
leads to a slight increase of the skin friction and the Sherwood number on the lower
wall, but causes a slight decrease of the skin friction on the upper wall. As seen in Fig.11,
the increase of X, makes the enhancement of the Nusselt number on the upper wall,

while causes the reduction of the Nusselt number on the lower wall.
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The influence of Brinkman number Br;, on the local Nusselt number and the local
Sherwood number are presented in Fig.12. It 1s evident that the increase of Br, leads
to a significant increase of the local Sherwood number. The local Nusselt number on
the upper wall increases slightly as Br, increases, while the local Nusselt number on
the lower wall decrease significantly as Br, increases. It can also be observed that the
local Nusselt number and the local Sherwood number have a linear relationship with
Brinkman number Br,. Therefore, the Brinkman number can be used to predict the
values of these physical quantities by using linear fitting to obtain their relationship. In
Fig.12, the Nusselt number on the upper wall and the local Sherwood number increase
with the enhancement of &, , while the Nusselt number on the lower wall reduces with

the enhancement of X, , resemble trends observed in Fig.10 and Fig.11.

4. Conclusions

The heat and mass transfer of immiscible two-layer flows in the presence of the
EDL and magnetic field have been investigated theoretically. Through
nondimensionalization, the governing equations are transformed into nonlinear
ordinary differential equations. The resulting coupled nonlinear equations are solved by
homotopy analysis method. The results of electric potential, velocity, temperature and
nanoparticle volume fraction are obtained and examined in detail. The main findings
are as follows:

1). The explicit exact solutions of the electrostatic potential in both regions are
obtained. Besides, the present results of electrostatic potential, velocity and
temperature are consecutive and smooth in the whole region.

11). The parameters X; and K, are the key factor to measure the EDL effects.
The larger 1s the parameter X, and X, , the thinner is the EDL on the upper
wall and lower wall. For sufficiently large parameter X; and X, ,the EDL
effects on the fluid motion and heat transfer can be ignored, thus the related
quantities tend to be constants.

111). Both the EDL effects and magnetic field can restrain the fluid flow in the
microchannel. Therefore, the EDL effect and magnetic field can be applied

for flow control in microchannels and microfluidic devices.
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1v). The increase in Brinkman number can enhance the temperature distribution in
both regions and the increase in thermophoresis parameter results in an
increase of the nanoparticle volume fraction in Region II.

Both the EDL and nanofluid characteristics have significant influence on the fluid
flow and heat transfer. The findings with the insights of physical characteristics
obtained in this study will provide solid basis for further research in the field of
microfluidics. The results presented in this paper also serve as a benchmark with

detailed information to optimize and improve microfluidic devices.

Appendix: Solution Procedures

In view of the HAM technique, we first define I; UY,dy , IOWUZ‘PZQ’Y as
below

1 ul 0 had
[0 dY =my+ Y m,, j_mU;PZJY:nOJanj, (59)
Jj=1 Jj=1

then the expression for the functions ¥,(Y),U,(Y),6.(Y)(i=12) and ¢(¥) canbe

written as

le =Vio +wa,j= Ui Uy +zur',j’ 6,- :6’:',0 +zgf,j’ ¢:¢0+Z¢j . (60)
j=1 J=1

j=1 J=1

In the solution process of the HAM, the 2 th order HAM deformation equations

can be written as

Vi = X toms =y Ry s W3 = oV ot =Py, Ry (61)
Wow = Lonlioms =Ty R o 33y = Zlly g =1 R, (62)
O = Xt = hequ e O = Xy = hastzm; ) (63)

B = LnPnt =14 Ry (64)

The corresponding boundary conditions are
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1 . : z .,
Wl,m (1) = 0: Wlm (__) = 0: WLm (0) = Z%Jﬂ (0): WLm (0) = _Wlm (0):

Mlm(l) 0 Hzm(_ ) 0 Hlm(O) 2,,;(0) ulm(O) Q,m(o)a
~ B

0 =0, 0,,(-) =0, 6,,(0)=50,,,(0). 6,(0)==-0,(0),
f

,(0) =0, Nbg,(~)+Ni6,,(~) =0,
where h’wh%,h g}_(i:l, 2) and % s are the HAM auxiliary parameters, which

provide us a simple way to adjust and control the convergence of the HAM analytical

approximations. Also, R, , ., R, ., R, (i=L2), R,, ., and %, . are defined,

respectively, as

_ " g2
RVI m WLm—l Kl l/yl,m—l »

_ " 2 2
Rly),m “VYoma— h KV m1»

m-1
+F(1-y,)—4GG, Z MY, Halu

j=0

R

ul=m lm -1 Lm-1>

m-1
Rym= Uy g+ W’ B,(1- 1,) - 41°G,G, Z N¥oma-j— thﬂi”z,m—l >
=0

m—
" r r
a.m glm 1+Br12”1,j”1=m—1—j >
=0

m—1

ng gzﬂm 1+sz¢ ‘92 m—1— ;+er Zm—l ;+Brzz”2 ,:“2 m-1—j >
Jj=0 j=0
" Nt "
R@":m = ¢m—l+ﬁez,m—l >
where
B 0, m<l, (66)
A = I, m>1.
The solutions of Eqs.(61)-(64) are expressed as
Wl,m = Wl‘ + mel,m—l + Cl,m + CE,mY-’ ? (6?)
WZ,m = WE‘ + mez,m—l + Clm + C4,mY> 2 (68)
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wy,, =1ty + Yoty +Cs, +C ¥ (69)
Uy, = u; + Xty T Cr o +Cg Y (70)
O =6, + 2,001+ Cyn + Cio Y (71)
6,,, =6+ 2,0, +Cpp,, +Cpo., Y, (72)

6, =0 + 281 +Cisn +CraY (73)

where

vi = [[7,,R, .d¥dY. y; = [[n, R, dYdY.

u = [[n,R, dYdY. u;=[[n,R, ,dYdY,

6, = [[ngRy ,dYdY. 6, = [[n,R, ,dYdY,

¢ =[[n,R,, d¥dY .

The integral constants C,,, (i=1,2,---14) in Eqs.(67)-(73) are determined by the
boundary conditions (65). Therefore, all solutions of the problem are obtained.

The initial guess ¥,(Y), u,(Y), 6,(Y) and ¢,(Y) should be chosen properly.
Based on the boundary conditions (27), (28), (34) and (52), the initial guess values in
the present study are chosen as follows

VoM =01 v, () =LY,

1=, Lthu
h(h+p)  h(h+p)

2
u, (1) =y2 DMy Ltha
: hh+ i) h(h+ )

Wk, (=5)  Sh+k,

u,,(¥Y)= Y’ +

h(1-5) - 5h+kf

9 Y - s 9 Y = >
(1) h+k, h+k, 201 S(h+k,) S(h+k,)
Bk (5 —1
4y =20 D
Nb 5(h+k,)

In the HAM solution procedure, the tegral terms Iﬂlum%:odY and

0
'[_M”z:owlody can be obtained using the initial guess values. Therefore, all the

solution series for the integral terms can be obtained from m=1,2,3,---.
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Fig.8 The nanoparticle volume fraction profiles for various values of ®(Y) in the case of ki=k2=1,
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Table I. The maximum error  E(m) for different x; inthe case of x, =1,Ha, = Ha, =1,
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Br,=Br,=1 and Nb=Nt=0.1.

E(m) i, =1

Order =1 =2 G =3 K =5 K =10
m=10 0.0391 0.0049 0.0064 0.3116 113.111
m=20 | 1.736x10° | 8.908x10° | 1.205x107° | 4.050x107 | 2.250x107°
m=30 | 6248x10”° | 1.358x10™" | 7.908x107™" | 6.312x107° | 3.683x107
m=40 | 6.351x10™7 | 4.957x107"® | 3.267x107" | 1.919x107” | 7.055x10°°
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Table II. The maximum error E(m) for different «, inthe case of x; =1,Ha, = Ha, =1,

Br,=Br,=1 and Nb=Nt=0.1.

E(m) K =1

Order i, =1 K, =2 K, =3 K, =5 K, =10
m=10 0.0391 3.671x107 0.0044 0.0079 531.073
m=20 | 1.736x10° | 1.966x107° | 1.469x10° | 4.438x10” | 8.150x10
m=30 | 6.248x10”° | 4219x107™" | 3.612x107° | 3.521x107° | 2.561x107
m=40 | 6351x1077 | 1.570x10™"7 | 9.436x107™"* | 2.516x10™" | 1.630x10°°
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