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Abstract We study the defense-intrusion game, in which
a single attacker robot tries to reach a stationary tar-
get that is protected by two defender robots. We focus

on the “synchronous intercept problem”, where both
robots have to reach the attacker robot synchronous-
ly to intercept it. Assume that the attacker robot has

the control policy which is based on attraction to the
target and repulsion from the defenders, two kinds of
synchronous intercept strategies are proposed for the

defense-intrusion game, introduced here as Attacker-
oriented andNeutral-position-oriented. Theoretical anal-
ysis and simulation results show that: (1) The two s-

trategies are able to generate different synchronous in-
tercept patterns: contact intercept pattern and stable
non-contact intercept pattern, respectively. (2) The con-

tact intercept pattern allows the defender robots to in-
tercept the attacker robot in finite time, while the stable
non-contact intercept pattern generates a periodic at-

tractor that prevents the attack robot from reaching the
target for infinite time. There is potential to apply the
insights obtained into defense-intrusion in real system-

s, including aircraft escort and the defense of military
targets or territorial boundaries.
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1 Introduction

Pursuit-evasion phenomena is widely observed in na-
ture, an example of which is the interaction between

coyotes, elk and wolves in Yellowstone National Park
(Ripple and Larsen, 2000; Gese, 2001). Studying this
phenomena provides an insight into natural interaction-

s, such as prey escape strategies (Breakwell, 1975; Bhat-
tacharya et al, 2011, 2014; Yang et al, 2014; Zha et al,
2016; Zhang et al, 2019), collective behavior (Neill and

Cullen, 1974; Siegfried and Underhill, 1975; Bertram,
1978), catching efficiency for predators (Iwama and Sato,
2012; Saito et al, 2016; Masuko et al, 2017; Janosov

et al, 2017) and the optimal number of predators for
predation success (Kamimura and Ohira, 2010; Vicsek,
2010). But this approach can also provide elegant solu-

tions for artificial systems, including the design of tar-
get trapping by autonomous robots (Antonelli et al,
2007; Huang et al, 2013; Peng et al, 2016; Zhang et al,

2018).

A distinct but similar problem is that of defense-
intrusion, another interesting interaction that is wide-

ly observed in the animal world (e.g., a lioness tries
to protect her cubs against a predator or predators.)
and in artificial systems (e.g., a group of guard robot-

s try to protect the base against the intruders). It is
important to note that this class of games are different
from pursuit-evasion games. The main difference is that

one set of players must not only consider the other set
of players, but also the target (Zhou et al, 2018). The
Target-Attacker-Defender (TAD) game (Boyell, 1976)

is a game that simulates this defense-intrusion inter-
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action, where there are three different robots - Target,

Attacker, and Defender. In this game the attacker robot
aims to capture the target robot, while avoiding being
caught by the defender robot. The defender robot tries

to defend the target robot, while avoiding being de-
stroyed by the attacker robot but is also tasked with
trying to capture the attacker robot at an opportune

moment.

We extend the TAD game with respect to synchronous

intercept. Two homogeneous autonomous robots are re-
garded as the defenders, they aim to reach and capture
the attacker robot synchronously, if either of the two

defender robots reach (attack) the attacker robot in-
dependently then it is destroyed. The motivation for
this extension is the scenario where a single defender

robot is insufficient to capture, or compel the attack-
er robot to abandon its invasion. In this situation, the
defender robots need a collective intercept strategy to

achieve their objectives. This scenario is seen in nature
when the prey is often weaker than the predator but
can overcome their attacker when acting collectively. A

similar scenario can be envisioned for guard drones that
can only stop a well defended attacking vehicle if they
intercept synchronously. Our motivation is similar to

the work in Bopardikar and Suri (2014), where a spe-
cial pursuit-evasion game is referred to as k-capture. In
this k-capture game, the pursuers and the evader move

with the same maximum speed, and at least k pursuers
must simultaneously reach the evader’s location to cap-
ture it.

Our objective in this paper is to study the inter-
cept strategies for the defender robots, as they attempt

a synchronous intercept mission based on the assump-
tion that the attacker robot has the attraction to the
target and repulsion from the defenders. We say that

the synchronous intercept mission is accomplished, if
the attacker robot is caught/destroyed by the defend-
er robots synchronously in finite time, or the attacker

robot is prevented from reaching the target for infinite
time.

In particular, our paper makes three main contribu-
tions. First, we provide an effective formulation of the
synchronous intercept in the defense-intrusion game,

where the defender robots need to intercept the attack-
er robot synchronously. Second, the Attacker-oriented
and Neutral-position-oriented intercept strategies are

addressed for the defender robots to accomplish this
synchronous intercept mission. These strategies task
the defender robots with reaching either the attacker

robot or a dynamic neutral position between the at-
tacker robot and the target, respectively, while keeping
a synchronous motion. Finally, we derive the feasible

area for initially distributing defender robots so that

they can accomplish a contact or a stable non-contact

intercept and analyze the effectiveness and noise toler-
ance for each intercept strategy. The proposed strate-
gies are of interest and can be extended for real in-

tercept missions, such as territorial boundary defense
with multiple autonomous robots, and aircraft escort
with multiple autonomous vehicles.

2 Related work

The defense-intrusion game can be traced back to the
pursuit-evasion game. Pursuer and evader in nature
usually correspond to predator and prey, respectively.

In an artificial world, they may be robotic vehicles. The
solution of the single pursuer, single evader game is de-
termined by construction of Apollonius circles which

determine the dominance areas. For further definition-
s and basic notions, see Littlewood (1986); Basar and
Olsder (1999).

An important subset of pursuit-evasion games is the
two pursuers, single evader games. The objective of the
pursuers is that at least one of them point-captures the

evader, whereas the objective of the evader is to avoid
or delay capture as long as possible. In this case, the
time-optimal evading strategy (Makkapati et al, 2018)

and conditions under which pursuit can be completed
in the game (Bhattacharya and Hutchinson, 2008) were
investigated. A particular pursuit-evasion game, where

a faster evader attempts to pass the gap between two
pursuers was addressed (Hagedorn and Breakwell, 1976;
Zha et al, 2016). The authors considered the conditions

under which the evader or pursuers can win the game,
as well as a barrier that separates the state space in-
to disjoint parts associated with each player’s winning

region. A three-player lifeline game was considered, in
which a single evader is tasked with reaching a lifeline
prior to capture (Zhang and Zha, 2018). They provid-

ed a resultant force method for the evader to balance
the trade-off between reaching the lifeline and avoiding
capture, as well as an escape zone for the evader.

The study of multiplayer pursuit-evasion games has
been revitalized in recent years owing to the growing
interest in general multi-agent system. In the multiple

pursuers, single evader games, most of the literatures
consider the conditions under which the pursuers can
capture the evader, involving the minimum number and

initial spatial distribution required as well as the coop-
erative strategies of the pursuers (Kopparty and Rav-
ishankar, 2005; Turetsky, 2008; Oyler et al, 2016; Chen

et al, 2016a; Zhou et al, 2016). For example, Alexander
et al (2009) used simple tools from geometric convexity
to obtain a necessary and sufficient condition for even-

tual capture in equal-speed discrete-time multi-pursuer
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capture games on convex Euclidean domains of arbi-

trary dimension and shape. Kothari et al (2014) pro-
posed a simple capturing strategy for holonomic sys-
tems based on the idea of minimizing safe-reachable

areas. Oyler et al (2016) provided the dominance re-
gions in the presence and absence of obstacles. Zhou
et al (2016) presented a decentralized control scheme

for cooperative pursuit of a single evader based on min-
imizing the area of the generalized Voronoi partition
of the evader in bounded, simply-connected planar do-

mains.

In the single pursuer, multiple evaders games, Zhou

et al (2012) presented an open-loop approach which
provides guaranteed survival time of the evader team
for all initial conditions, without the limitation that the

pursuer must capture the evaders in a specific sequence.
The open-loop approach is also used to a tracking game
(Takei et al, 2014). A gradient-based approach under

this open-loop formulation in the presence of a faster
pursuer, a pursuer with uncertain position and evaders
with limited turning rates were further studied in their

later work (Liu et al, 2013a,b, 2014).

The multiple pursuers, multiple evaders games, also

well known as group chase and escape are widely ob-
served in nature. Kamimura and Ohira (2010) proposed
a lattice model, in which the pursuers approach the n-

earest evader, while the evader tries to escape from be-
ing caught by the nearest pursuers on a two-dimensional
lattice with periodic boundary conditions. By means of

statistical methods, they found that there exists an op-
timal number of pursuers for a given number of evad-
er to minimize the cost of catching all evaders. Since

then, many modified versions of the group chase and
escape model were proposed. The literatures contain
a large body of work on how to enhance the catch-

ing efficiency, such as adding interaction among pur-
suers (keep enough space among pursuers) (Saito et al,
2016), adding lazy or fast pursuers (Iwama and Sato,

2012; Masuko et al, 2017), and using a collective chas-
ing strategy (Janosov et al, 2017). The literatures also
contain the study of aggregation in group chase and

escape. The literatures show that the aggregation be-
havior can benefit the survivability of evaders owing to
many eyes effect (Siegfried and Underhill, 1975), con-

fusion and dilution effect (Neill and Cullen, 1974), and
unity effect (Bertram, 1978).

An important variant of pursuit evasion game is
defense intrusion game. The Target-Attacker-Defender
(TAD) game (Boyell, 1976) is a such game that sim-

ulates a defense-intrusion interaction. Because of the
nature of this problem, many different types of coopera-
tion mechanisms in the target-defender team have been

developed (Wang and Li, 2015; Zha et al, 2016; Shishika

and Kumar, 2018; Liang et al, 2019; Pachter et al, 2019;

Garcia et al, 2019; Sun et al, 2019). Liang et al (2019)
constructed a barrier that separates the whole space
into the winning region of the attacker robot and the

winning region of the target-defender team by means
of Apollonius circles. Shishika and Kumar (2018) con-
sidered a variant of TAD game termed the Perimeter-

defense problem, where multiple defender robots defend
a region’s perimeter from attacker robots. The defend-
er robots employed a decomposition method based on

assignment (i.e., each defender robot is assigned to a
unique attacker robot) as the team strategy. Most of
the aforementioned studies focus on the optimal strate-

gies and conditions for a team to dominate the game
using a differential game approach. Another well known
multi-player defense-intrusion interaction is reach-avoid

game, where the attacking team attempts to reach a
certain target location while the defenders aim to cap-
ture the attackers to prevent the attacking team from
reaching its goal (Chen et al, 2014a,b, 2016b; Zhou et al,

2018).

Other literatures related to defense-intrusion game
usually impose some specific scenarios. For example,

Pan et al (2012) studied a particular defense-intrusion
game with multiple pursuers, a single evader and a s-
ingle defender, played in a convex domain with an ex-

it through which the evader may escape. Another un-
conventional defense-intrusion game is referred to as
Cooperative-Confinement-Escape (CCE) game, in which

the defenders are moving on the circle with attempt to
prevent possible escape of a single evader who is initial-
ly located inside the circle (Li, 2016b,a; Ramana and

Kothari, 2017). The defense-intrusion game is also seen
in multi-robot systems. Martin et al (2010) considered
a multi-robot system with three different robots. The

predator robot aims to capture the prey robot, while the
defender robot protects the prey robot from the preda-
tor robot, but is also tasked with guiding the prey robot

to the nest in a finite time. A reinforcement learning set-
up is presented to find an optimal policy to control the
defender robot in its role of protecting the prey against

the predator robot.

The remaining of this paper is arranged as follows:
Section 3 describes the scenario of the synchronous in-

tercept problem and two typical intercept patterns. Sec-
tion 4 describes the motion dynamics of the defender
robots and attacker robot. Section 5 proposes two kind-

s of synchronous intercept strategies corresponding to
two typical intercept patterns. The simulation results
and analysis are presented in Section 6. Finally, Sec-

tion 7 concludes the paper with a brief summary.
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Attacker
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Fig. 1 (a) Illustration of the synchronous intercept problem
with two defender robots. (b) Successful synchronous inter-
ception. (c) Failed synchronous interception.

3 Problem Statement

3.1 Scenario of the synchronous intercept problem

Consider two homogeneous defender robots and a s-

ingle attacker robot in the 2-dimensional obstacle-free
Euclidean space, with positions of pi(t) ∈ R2 (i = 1, 2)
and pa(t) ∈ R2, and maximum speeds of vd and va,

respectively. The defender robots attempt to protect a
stationary target p0 against the attacker robot by a syn-
chronous intercept, while the attacker robot attempts

to reach/attack the target with avoidance to the de-
fender robots, as illustrated in Fig. 1(a). The attacker
robot can be caught/destroyed only when it is attacked

by both defender robots synchronously (Fig. 1(b)), if
either of the two defender robots reach the attacker
robot independently, then it is destroyed by the attacker

robot, leading to a failing intercept mission (Fig. 1(c)).
No collision avoidance is considered in this paper. Let
R be the relative distance from the target to the at-
tacker robot. The results of synchronous intercept can

be represented as:

Definition 1 Synchronous intercept is failed if there

exists t∗ such that R(t∗) ≤ δ, where δ > 0 is a small
constant, denoting the size of attack area (security tol-
erance).

This definition presents that a failed synchronous inter-
cept means the attacker robot reaches the target before
it is caught by the defender robots.

Definition 2 Synchronous intercept is successful if there

exists t∗ such that
2∑

i=1

φi(t
∗) = 2, or R(t) > δ holds

for all t ≥ 0, where φi(t) denotes a Boolean function.
φi(t) = 1 means the defender robot i reaches the attack-

er robot at time t, otherwise, φi(t) = 0.

This definition presents that a successful synchronous
intercept can be achieved by a synchronous attack or

synchronous defense.
For synchronous attack, we give two constraints:

synchronization constraint and shortest time constrain-

t.

Definition 3 Synchronization constraint is met if
2∑

i=1

φi(t
∗) = 2 where t∗ is the capture time.

The synchronization constraint requires that both de-
fender robots must reach the attacker robot synchronous-

ly.

Definition 4 Shortest time constraint is met if v2(t) =
vd at each movement, where v2(t) denotes the speed of

the further defender (the defender robot 2 is assumed to
be the further defender throughout the paper).

The shortest time constraint requires that the further

defender robot must approach the attacker robot at its
maximum speed.

3.2 Two intercept patterns

According to definition 2, a successful synchronous in-

tercept can be achieved by synchronous attack or syn-
chronous defense. Due to this fact, two intercept pat-
terns: contact intercept pattern and non-contact in-

tercept pattern can be designed with regards to syn-
chronous attack and synchronous defense, respectively.

The contact intercept pattern mainly focus on the

synchronous attack behavior in the synchronous inter-
cept problem, where the defender robots attempt to
reach/attack the attacker robot synchronously in fi-

nite time. This contact intercept pattern is observed in
the animal kingdom. For example, hyenas display syn-
chronous behavior both when hunting their prey and

when performing anti-attack maneuvers on predators.
Contact intercept patterns can also be applied to arti-
ficial systems. Missile interception is one such example,

where the approaching missile must be destroyed before
reaching a protected area.

The non-contact intercept pattern mainly focuses on

synchronous defense behavior in the synchronous inter-
cept problem. This behavior sees the defender robots
prevent the intrusion indefinitely, so that the attacker

robot can never reach/attack the target. It is worth not-
ing that the defender robots are also unable to destroy
the attacker robot. In the animal kingdom, a lioness dis-

plays a non-contact intercept pattern when attempting
to protect her cubs against a predator or predators,
where the primary objective of the lioness is to keep

the attacker away from its cubs. In artificial system, de-
struction of every suspected attacker may be excessive
or risky, especially if misidentification as an attacker is

possible. For example, the goal may be to protect a sen-
sitive area from being disturbed, therefore expelling a
suspected attacker would be a more reasonable measure

than destroying them.
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Our goal is to design synchronous intercept strate-

gies for the two intercept patterns, such that the defend-
er robots can perform the synchronous intercept mission
according to practical needs. The proposed approach is

not considering collision avoidance.

4 The model

Assume that the instantaneous positions of the play-

ers are known to all agents. The attacker robot is an
intelligent agent with the ability to execute defender
avoidance (the attacker robot is assumed to move with

a constant velocity on a straight path to the target as in
Shishika and Paley (2019)). When vd < va, the attack-
er robot can always win the game by combining this

advantage with defender avoidance to reach the target.
Therefore, we consider only the case of vd ≥ va, and
use γ = vd/va to denote the speed ratio, hence γ ≥ 1.

4.1 The attacker robot

The position and velocity of the attacker robot are up-
dated as:

pa(t+∆t) = pa(t) + va(t)∆t (1)

va(t) = vad̂a(t) (2)

where va is a scalar denoting the speed of the attacker
robot, d̂a(t) is a unit vector denoting the desired di-
rection in the next step, ∆t is the length of one time

step. The driving forces are simulated by a virtual at-
tractive force from the target and a virtual repulsive
force from each defender robot, the maneuvering mode

of the attacker robot is given as

da = −kr

2∑
i=1

1

∥pi − pa∥α
p̂ia + ka

1

∥p0 − pa∥α
p̂0a (3)

where ∥pi−pa∥ and ∥p0−pa∥ are distances from pa to

pi and pa to p0 respectively. α ≥ 0 is the exponent of
distance, adjusting the effect of distance on the corre-
sponding driving force, e.g. α = 0 means the attrac-

tive/repulsive force is distance-independent. p̂ia and
p̂0a are unit vectors from pa to pi and pa to p0 respec-
tively. kr > 0 and ka > 0 are the repulsive and attrac-

tive coefficients, respectively. ka/kr describes the trade-
off between approaching the target and avoiding the
defender robots, where together with α these variables

determine the attacker’s invasion strategy. For exam-
ple, when ka/kr → ∞ (i.e. kr → 0), the attacker robot
attacks the target directly without attempting to avoid

any defender robots; when ka/kr → 0 (i.e. ka → 0), the

attacker robot attempts to escape from the defender

robots with no attraction to the target. Unless other-
wise stated, both repulsion and attraction increase as
the distance between agents is reduced (α = 1). There-

fore, the nearest defender robot has the most influence
over the attacker’s behaviour and the closer the attack-
er robot is to the target the greater the attractive force.

4.2 The defender robot

The position and velocity of each defender robot are

updated as

pi(t+∆t) = pi(t) + vi(t)∆t (4)

vi(t) =
p*i(t+∆t)− pi(t)

∆t
(5)

where vi(t) is the control of defender robot i. p*i(t+∆t)
is the expected position that can be obtained via the in-
tercept strategy described by optimization formulation

as

min fi(p*i(t+∆t),pi(t),pa(t),p0), i = 1, 2

w.r.t. p*i = [p∗ix, p
∗
iy]

s.t. vi(t) ≤ vd

(6)

where vd is the maximum speed of the defender robot

(two defender robots are assumed to have the same
maximum speed).

The intercept strategy functions f consider the cur-

rent positions of the target, the attacker robot and the
defender robots. The specific form of the function is
dependent on the two intercept patterns, which are de-

tailed with the optimization formulation in the next
section.

5 Intercept Strategy

In this section, we first illustrate why an intercept strat-
egy is beneficial in the synchronous intercept problem

by analyzing the efficiency of two reference strategies.
Two attacker-oriented strategies for the synchronous
attack mission with regards to contact intercept pattern

are then proposed, following by four versions of neutral-
position-oriented strategies with regards to non-contact
intercept pattern.

5.1 Why intercept strategy is needed

The Selfish strategy was introduced in Kamimura and
Ohira (2010), where each defender robot makes a max-
imal advance towards the attacker robot during each

movement, see Fig. 2(a). This strategy reduces each
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Fig. 2 (a) Selfish strategy. (b) Cone strategy. (c) Parallel strategy. (d) Aggregation strategy. The defense-intrusion game
should be dynamic for both defender and intruder robots. For clarity, here the intercept strategies are presented with changing
positions of the defender robots and stationary intruder robot.

defender’s distance to the attacker independently, but

it does not ensure that both defender robots reach the
attacker robot synchronously and so cannot guarantee
the synchronization constraint.

Selfish strategy

min fi = ∥p*i(t+∆t)− pa(t)∥2, i = 1, 2
w.r.t. p*i = [p∗ix, p

∗
iy]

s.t. vi(t) ≤ vd

(7)

The Cone strategy, proposed in Bopardikar and Suri

(2014), is regarded as another reference strategy, in
which each defender robot tries to minimize the dis-
tance from the attacker robot subject to the constraint

that both defender robots are the same distance from
the attacker robot, see Fig. 2(b) (one can refer to Bopar-
dikar and Suri (2014) for a more precise expression for

the new locations in a Cone move). The synchroniza-
tion constraint can be guaranteed but the shortest time
constraint cannot, as it does not ensure that the further

defender robot maximally advances towards the attack-
er robot during each movement.

Cone strategy

min fi = ∥p*i(t+∆t)− pa(t)∥2
+(∥p*i(t+∆t)− pa(t)∥ − ∥pj(t)− pa(t)∥)2

w.r.t. p*i = [p∗ix, p
∗
iy]

s.t. vi(t) ≤ vd, i, j = 1, 2, i ̸= j

(8)

The synchronization constraint and shortest time

constraint are not simultaneously satisfied by the above

two strategies, which results in a sub-optimal synchronous

intercept mission. Therefore, more efficient intercept s-
trategies for the synchronous intercept mission shall be
proposed.

5.2 Attacker-oriented strategy

Attacker-oriented strategy is defined as an attack behav-

ior that the defender robots aim to destroy the attack-
er robot by reaching the position of the attacker robot
synchronously. We propose two Attacker-oriented inter-

cept strategies with the constraints of synchronization
and shortest time so that the defender robots rapidly
approach the attacker robot while maintaining synchro-

nization.

The Parallel strategy shall be described first, in

which each defender robot tries to reach the attacker
robot as early as possible while keeping parallel with
the other one, as illustrated in Fig. 2(c). In other word-

s, the further defender robot approaches the attacker
robot at its maximum speed, while the closer defender
robot reduce its speed in proportion to the proximity to

the attacker robot. A parallel movement then appears
from the exist of velocity difference.

Parallel strategy

min fi = ∥p*i(t+∆t)− pa(t)∥2
w.r.t. p*i = [p∗ix, p

∗
iy]

s.t. vi(t) = vd ·min{ ∥pi(t)−pa(t)∥
∥p2(t)−pa(t)∥

, 1}, i = 1, 2

(9)



Synchronous intercept strategies for a robotic defense-intrusion game with two defenders 7

The constraints of synchronization and shortest time

can be guaranteed by using this strategy. The shortest
time is ensured by allowing the further defender robot
to advance maximally towards the attacker robot dur-

ing each movement. The synchronization constraint is
ensured by the closer defender robot, to the attacker
robot, maintaining a parallel advance.

The second strategy is Aggregation, in which the
defender robots aggregate first and then approach the
attacker robot together, as illustrated in Fig. 2(d). Be-

fore the aggregation, the constraint h1 ensures that the
meeting point is located at the segment between the
further defender robot and the attacker robot, and the

constraint h2 ensures that the distances from each de-
fender robot to the meeting point are equal.

Aggregation strategy

Before aggregation

min fi = ∥p*i(t+∆t)− pm(t)∥2,
w.r.t. p*i = [p∗ix, p

∗
iy]

s.t. h1 : pm ∈ p2pa

h2 : ∥pi − pm∥ = ∥p2 − pm∥
vi(t) = vd, i = 1, 2

(10)

After aggregation

min fi = ∥p*i(t+∆t)− pa(t)∥2
w.r.t. p*i = [p∗ix, p

∗
iy]

s.t. vi(t) = vd, i = 1, 2

(11)

where pm is the meeting point. The constraints of syn-

chronization and shortest time can also be guaranteed
by using this strategy. The synchronization constraint
is ensured by the aggregation behavior and the short-

est time constraint is ensured by allowing the further
defender robot to advance at its maximum velocity to-
wards the attacker robot during each movement.

We further discuss how to get the meeting point pm

for arbitrary initial positions of the defenders. Assume

that the attacker robot, the closer defender robot and
the further defender robot are initially placed at coor-
dinates pa(0, 0), p1(x, y) and p2(R, 0) respectively (see

Fig. 3).

Assume the meeting point is pm(z, 0). The con-
straint h2 in Eq. (10) can be described as

R− z =
√

(x− z)2 + y2 (12)

from which, we have

z =
R2 − (x2 + y2)

2(R− x)
(13)

Since the robot 1 is the closer defender, thus x2 +
y2 ≤ R2. From this point, we can get 0 ≤ z ≤ R from

Eq. (13), which means there must be a meeting point

p
p p

p

p

Target

Attacker

Defender

(0,0)
a
p 0p2(R,0)p

1(x, y)p

(z,0)
m
p

p

y

x

Fig. 3 Illustration of how to get the meeting point.

that is located at the segment between p2 and pa for
arbitrary initial positions of the defenders. For example,

(1) when x = 0, y = R, pm(0, 0); (2) when x = 0, y = 0,
pm(R/2, 0); (3) when x = R, y = 0, pm(R, 0).

5.3 Neutral-position-oriented strategy

Neutral-position-oriented strategy is defined as a de-

fense behavior that the defender robots aim to prevent
the target from reaching the target infinitely. Capitaliz-
ing on the knowledge of the attacker’s intends to reach

the target, the defender robots can approach a neu-
tral position between the attacker robot and the target,
so that the attack and defense behaviors can both be

considered. From this idea, we propose another group
of intercept strategies referred to as Neutral-position-
oriented strategies that generate a non-contact inter-

cept pattern. The neutral position pm is obtained by

pm(t) = (1− λ(t))p0 + λ(t)pa(t) (14)

λ(t) =
1

n

n∑
i=1

(
∥pi(t)− pa(t)∥
∥pi(0)− pa(0)∥

) (15)

where n is the number of defender robots (n = 2 in
this paper). λ ∈ [0, 1] is the transferred parameter, de-

termining the defender’s expected position between the
target and the attacker robot. When λ → 0, pm(t) →
p0 and the Neutral-position-oriented strategy degener-

ates into a defense-only intercept strategy; When λ →
1, pm(t) → pa and the Neutral-position-oriented strat-
egy degenerates into an attack-only intercept strategy

(i.e. Attacker-oriented strategy). Since λ increases from
0 to 1 with the defense-intrusion process, the expected
neutral position will transfer from p0 to pa continuous-

ly, as illustrated in Fig. 4.

The approaching position pa can be replaced with
the Neutral Position (NP) pm for the Attacker-oriented

strategies, described previously. The NP versions of these
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m
p

Target

Attacker0
p

a
p

Defender

2
p

1
p

0 1

Neutral position

Fig. 4 Illustration of Neutral-position-oriented strategy.

strategies are known as the Selfish-NP, Cone-NP, Parallel-

NP and Aggregation-NP strategy. For example, Selfish-
NP strategy can be written as:

min fi = ∥p*i(t+∆t)− pm(t)∥2, i = 1, 2
w.r.t. p*i = [p∗ix, p

∗
iy]

s.t. vi(t) ≤ vd

(16)

The neutral position pm is always located at the

segment between the target and the attacker robot, this
should facilitate defensive behavior. However, this does
not ensure that defender robots synchronously catch

the attacker robot, but rather improves their ability to
prevent the attacker robot from reaching the target for
infinite time.

6 Results

Without loss of generality, the target is a stationary
point at the origin and the attacker robot is initially

placed at (100,0). Unless otherwise stated, the following
parameter values are δ = 0.1, α = 1 and ka/kr = 10.

6.1 Feasible area of initial distribution

Definition 5 The area is defined as feasible area if the
defender robots which are initially located in this area
can lead to a successful contact intercept pattern or sta-

ble non-contact intercept pattern.

In this section, we investigate the feasible area cor-

responding to the Attacker-oriented strategy and the
Neutral-position-oriented strategy.

6.1.1 Attacker-oriented strategy

By using the Attacker-oriented strategy, for γ > 1, a
feasible area of initial distribution exists, where the de-
fender robots can accomplish the contact intercept if

initially deployed inside the area. The relative distance
d from the attacker robot to the farthest defender robot,
and the line-of-sight angle θ (see Fig. 5) can be derived

as follows:

ḋ = −vacos(θ)− vd, d(t0) = d0 (17)

ap

2
p

1
p

dv

av

d

0
p

Target

Defender 

Attacker

iv

Fig. 5 Illustration of relative distance and line-of-sight angle.

θ̇ =
1

d
vasin(θ), θ(t0) = θ0 (18)

According to the definition of successful intercept, a

general synchronous attack should take place before the
attacker robot reaches the target. The critical condition
for a successful intercept is that the synchronous attack

event happens just as the attacker robot arrives at the
target position, which can be characterized by

d(t∗) ≤ δ (19)

t∗ =
R0 − δ

va
(20)

where δ > 0 is a small constant, denoting the size of
attack area (security tolerance), R0 is the initial dis-

tance from the attacker robot to the target, va is the
maximum speed of the attacker robot and t∗ denotes
the shortest time for the attacker robot to reach the

target. The initial distribution of the farthest defender
robot is described by (d0, θ0), which satisfies the criti-
cal condition that then determines the feasible area. As

the feasible area is merely determined by the farthest
defender, we can obtain the similar feasible area when
the number of defender robots is greater than 2.

There is no analytical solution for the differential

equations Eq. (17) and Eq. (18), with numerical solu-
tions obtained using MATLAB. The feasible area, as-
sociated with the intercept trace, is shown in Fig. 6(a).

The “ellipse” boundary separates the state space into
two disjoint areas: feasible area and infeasible area for
initial defender deployment.

There is no analytical solution for the “semi-minor
axis” of the feasible area. However, we can analytically

derive the “semi-major axis” of the boundary by de-
ploying the attacker, target and defender robot in a
line, see Fig. 7(a). In this case, the critical condition is

that the attacker robot reaches (or nearly reaches) the
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Fig. 6 The feasible area of initial distribution by using
Attacker-oriented strategy. (a) γ = 1.5, L = 150, ka/kr = 10.
(b) γ = 1, L = 100, ka/kr = 10. The attacker robot is ini-
tially placed at (100,0), marked with a red triangle.

ap
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p
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0
R 2

p
0
p

ap

Fig. 7 (a) The collinear distribution of defender, target and
attacker. (b) The critical condition. p2 is the further defender
robot.

target when the repulsive force is equal to the attrac-
tive force, see Fig. 7(b). The critical condition can be
characterized as

n
kr
dα

=
ka
δα

(21)

where kr and ka are repulsion and attraction coeffi-

cients, respectively. α is the distance exponent, describ-
ing the effect of distance on the corresponding driving
force. From Eq. (21), we can get

d = α

√
nkr
ka

δ (22)

(b) Be trapped (c) Pass the gap(a) Be expelled away

Defender

Target

Attacker

Fig. 8 Three cases under the symmetrical distribution.

The “semi-major axis” of the boundary can then be
obtained as

L = ( α

√
nkr
ka

δ − δ) + vd(
R0 − δ

va
) (23)

where R0 is the initial distance between the attacker
robot and the target, and R0−δ

va
is the time that the

attacker robot spent on reaching the equilibrium point.
If the parameter δ is infinitely small, then the “semi-
major axis” is merely determined by γ and R0 as

L = γR0 (24)

For γ = 1, a feasible area exists with a special con-
straint, in which the defender robots must be deployed

symmetrically about the line between the target and
the attacker robot inside the feasible area. This special
distribution constraint can be explained as follows. In

most situations, the attacker robot cannot be caught by
the defender robots when they have the same maximum
velocity, due to the attacker’s capture avoidance behav-

ior. But by deploying the defender robots symmetrical-
ly, the attacker robot is either expelled, trapped, or able
to pass through a gap and reach the target, as detailed

in Fig. 8. If we consider the situations where the at-
tacker robot is expelled away or trapped as successful
cases, then we can get the feasible area with a symmet-

rical distribution constraint. This feasible area is shown
in Fig. 6(b), where it can be seen that a strategy with a
bigger ka/kr ratio requires a more narrow feasible area

to be successful.
The capture time upper bound is obtained when the

defender robots are deployed on the boundary of the

feasible area, while the defender robots insider the feasi-
ble area can synchronously capture the attacker within
a shorter time. For all situations of boundary distribu-

tion of defender robots, we can get the same capture
time upper bound as

t∗max =
L

vd
=

R0

va
(25)

where L = γR0, and the parameter δ is assumed to be

infinitely small.
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Fig. 9 The feasible area of initial distribution by using Neutral-position-oriented strategy. (a) vd = 1.5va, L = 150, ka/kr = 10.
(b) vd = va, L = 100, ka/kr = 10. The attacker robot is initially placed at (100,0), marked with a red triangle.
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Fig. 10 Verification of feasible area and stable non-contact intercept pattern. (a) Both Parallel-NP strategy and Aggregation-
NP strategy cannot generate the stable non-contact intercept pattern if the defender robots are initially placed outside the
feasible area. (b)-(e) If the defender robots are initially placed insider the feasible area, the stable non-contact intercept pattern
occurs regardless of which Neutral-position-oriented strategy is used. (f) For the special case of γ = 1, even the Selfish-NP
strategy can generate a stable non-contact intercept pattern.

6.1.2 Neutral-position-oriented strategy

By using the Neutral-position-oriented strategy, for γ ≥
1, a feasible area of initial defender distribution exists
for a stable non-contact pattern (there is no symmetri-
cal distribution constraint for the situation of γ = 1, we

will elaborate on this point later). There is no analytical
solution for the feasible area, the numerical solutions
are again obtained via MATLAB. The feasible area,

using Neutral-position-oriented strategy, is compared

with the corresponding feasible area with the Attacker-
oriented strategy as shown in Fig. 9 (throughout the pa-
per the solid black-colored lines correspond to the feasi-

ble area for Attacker-oriented strategy and blue-colored
lines correspond to Neutral-position-oriented strategy).
The results show that, for both γ > 1 and γ = 1 situ-

ations, the Neutral-position-oriented strategy allows a
larger feasible area than that of the Attacker-oriented
strategy. This larger area is a result of the neutral po-
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sition being closer to the defender robots, for any given

scenario, than the position of the attacker robot.
By using the Neutral-position-oriented strategy, the

system generates a stable periodic attractor, i.e. a sta-

ble non-contact intercept pattern. Fig. 10(a) shows that
if the defender robots are initially placed outside of
the feasible area, the Neutral-position-oriented strat-

egy cannot generate a stable non-contact intercept pat-
tern. Fig. 10(b)-(f) shows that if the defender robots
are initially placed inside the feasible area, then any

Neutral-position-oriented strategy can generate the pe-
riodic attractor. The results also show that the stable
motion radii of the defender and the attacker robots are

strategy independent, when given the same initial dis-
tribution. The mechanism behind this can be explained
as follows.

The stable non-contact intercept pattern can be char-
acterized by

ka
1

Rα
= nkr

1

dα
(26)

(1− λ)R = r (27)

λ =
d

n

n∑
i=1

1

di
(28)

where r > 0 and R > r > 0 denote the stable motion

radii of the defender and attacker robots respective-
ly. d is the stable distance between the defender robot
and the attacker robot (d = R − r). α is the distance

exponent, describing the effect of distance on the corre-
sponding driving forces. di is the initial distance from
the defender robot i to the attacker robot. Eq. (26) is

derived from Eq. (3), and it holds since attractive and
repulsive forces are balanced in the stable state. Eq.
(27) is derived from Eq. (14), and it holds since the fi-

nal neutral position is located at the defender’s circle.
Eq. (28) is derived from Eq. (15), and it holds since the
distance between the defender robot and the attacker

robot is a constant in the stable state, see Fig. 11.
Substitute Eq. (28) to Eq. (27), we get

R =
n∑n

i=1
1
di

(29)

Substitute Eq. (29) to Eq. (26), we get

d =
n∑n

i=1
1
di

α

√
nkr
ka

(30)

As d = R− r, we then have

r =
n∑n

i=1
1
di

(1− α

√
nkr
ka

) (31)

It is found that the stable motion radius of the at-

tacker robot is not affected by invasion strategies. It is
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Fig. 11 Illustration of the stable non-contact intercept pat-
tern (periodic attractor).

Defender

Target

Attacker

Fig. 12 Illustration of the asymmetrical distribution when
using the Neutral-position-oriented strategy.

merely determined by the initial distribution and the

number of defender robots. The stable motion radius of
the defender robot is determined by many factors. As
special cases, (1) when nkr = ka, then r = 0, it means

the non-contact intercept pattern is generated with all
defender robots being located at the target; (2) when
kr → 0, then r → R, it means the stable motion ra-

dius of the defender robot increases as kr decreases, but
no more than the stable motion radius of the attacker
robot.

Fig. 10(f) also shows that the symmetrical distribu-
tion of defender robots is not necessary for the situa-
tion of γ = 1 when using the Neutral-position-oriented

strategy. Here we discuss why the defender robots do
not have to be symmetrical. When using the Neutral-
position-oriented strategy, the defender robots try to

reach a neutral position between the target and the at-
tacker robot, rather than the attacker robot. Hence, for
both the symmetrical and asymmetrical distribution, a

meeting point always appears on the path from the at-
tacker robot to the target, as illustrated in Fig. 12. A
stable non-contact intercept pattern is then generated

for any γ ≥ 1 in feasible area.
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Table 1 The statistical results of synchronous intercept, us-
ing Attacker-oriented strategies, where the strategy success
and game duration are reported as (ρ, τ , τmax).

Strategy γ = 1.5 γ = 1

Selfish (0, 51, 56) (0, 121, 123)
Cone (1, 61, 71) (0, 122, 124)

Parallel (1, 55, 63) (0, 123, 126)
Aggregation (1, 54, 61) (0, 121, 124)

6.2 Efficiency of the proposed intercept strategy

For the synchronous intercept problem, the success rate
ρ, the average intercept time τ and the worst case in-
tercept time τmax are defined as

ρ =
Nsuc

Ntot
(32)

τ =

∑Ntot

i=1 t∗i
Ntot

(33)

τmax = t∗max (34)

where Nsuc is the number of successful cases out of Ntot

runs. t∗i is the intercept time for each simulation and
t∗max is the worst case intercept time out of Ntot runs.
Now we use Monte Carlo simulations to investigate the

efficiency of different intercept strategies. The defender
robots are initially placed inside a circle, centered on
the target, with a radius of 20 (this is a feasible area

for all the following simulations) and the attacker robot
is initially placed at (100,0).

The results are obtained by 1000 simulations (Ntot =
1000). Tab. 1 shows the results of synchronous intercep-
t by using the Attacker-oriented strategy. For γ = 1.5,

the results show that the Selfish strategy cannot ensure
a successful intercept (ρ = 0), while the other three
strategies can ensure a successful intercept (ρ = 1).

Compared to the proposed Parallel strategy and Ag-
gregation strategy, Cone strategy needs more time, τ
and τmax to achieve the synchronous intercept mission,

which is consistent with the statement that the shortest
time constraint cannot be guaranteed by this strategy.
For γ = 1, the synchronous intercept mission cannot

be accomplished regardless of which Attacker-oriented
strategy is used, because the defender robots are not
deployed in a symmetrical distribution.

Tab. 2 shows the results of the synchronous intercep-
t game, using Neutral-position-oriented strategy. For

both γ = 1.5 and γ = 1, every Neutral-position-oriented
strategy can ensure a successful defense (ρ = 1) with
defense time τ = τmax = 1000 (the longest simulation

time is set by 1000 timesteps). Actually a stable state

Table 2 The statistical results of synchronous defense, us-
ing Neutral-position-oriented strategies, where the strategy
success and game duration are reported as (ρ, τ , τmax).

Strategy γ = 1.5 γ = 1

Selfish-NP (1, 1000, 1000) (1, 1000, 1000)
Cone-NP (1, 1000, 1000) (1, 1000, 1000)

Parallel-NP (1, 1000, 1000 ) (1, 1000, 1000)
Aggregation-NP (1, 1000, 1000 ) (1, 1000, 1000)

(the stable non-contact intercept pattern) occurs dur-
ing each simulation, where the defender robots and at-

tacker robot orbit the target at the same angular speed
with the paths forming two concentric circles.

6.3 Effect of noise

To evaluate the performance of the proposed intercep-
t strategies in real systems, noise is introduced as an

external disturbance. Assume that the external distur-
bance affects the moving direction of the defender robot-
s. The effect of external disturbance, Rη[vi(t)], is simu-

lated as a rotational disturbance that alters the desired
direction of the defender robot using a random angle
with a uniform distribution in the interval [−ηπ, ηπ],

where η ∈ [0, 1] is the noise strength.
The intercept results, for different noise strength-

s, are shown in Fig. 13. The results presented show

that the Selfish strategy can barely accomplish the syn-
chronous intercept mission, regardless of noise strength.
The other three Attacker-oriented strategies have a good

tolerance for noise until η < 0.3, after which the defend-
er robots lose their ability to accomplish synchronous
intercept quickly, see Fig. 13(a). For γ = 1, the defender

robots can barely accomplish the defense mission, even
in the absence of noise, therefore the curve of success
rate changing with noise strength in this case is omit-

ted. Fig. 13(b) shows that by using Neutral-position-
oriented strategy, if the defender robots have a speed
advantage over the attacker robot (γ = 1.5), then they

have a better tolerance for noise (η ≤ 0.4 for γ = 1.5
and η ≤ 0.1 for γ = 1). Fig. 14 illustrates two successful
intercept patterns when noise is present.

In order to further investigate the influence of the
speed ratio γ in the presence of noise, we define the
maximum tolerable noise η∗ as the largest value the

defender robots can cope with before they lose their a-
bility to accomplish a synchronous intercept. From 1000
simulations for each speed ratio, we make the minimum

noise strength when a failed synchronous intercept ap-
pears as the maximum tolerable noise. Fig. 15 shows
that the maximum tolerable noise for both Attacker-

oriented strategy and Neutral-position-oriented strate-
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Fig. 13 The success rate ρ under different noise strengthes η. (a) The success rate by using Attacker-oriented strategy under
different noise strengthes. (b) The success rate by using Neutral-position-oriented strategy under different noise strengthes.
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Fig. 14 Illustration of synchronous intercept patterns when noise is present. (a) A contact intercept pattern is generated by
using Parallel strategy when noise is present (γ = 2, η = 0.3). (b) A stable non-contact intercept pattern is generated by using
Parallel-NP strategy when noise is present (γ = 2, η = 0.4).

gy increases monotonically as the speed ratio increas-

es (speed advantage over the attacker) with saturation
reached at η∗ = 0.6. Another result is that the Neutral-
position-oriented strategy has a better maximum toler-

able noise than that of the Attacker-oriented strategy,
reaching the same saturation point at a lower speed
ratio.

7 Conclusion

In this paper, the so-called “synchronous intercept prob-

lem” with two defender robots and one attacker robot
is introduced. The attacker robot is assumed to have
attraction to the target and repulsion from the defend-

ers, while the two defender robots try to protect this
target from the attacker robot. The synchronous in-
tercept requires that both defender robots reach the

attacker’s location synchronously, otherwise either of

1 1.5 2 2.5 3
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0.3

0.4
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0.7
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η
∗

 

 

Attacker−oriented strategy
Neutral−position−oriented strategy

Fig. 15 Illustration of maximum tolerable noise as a function
of speed ratio.

two defender robots arriving individually will get de-
stroyed by the attacker robot. In order to accomplish
this synchronous intercept mission, Attacker-oriented

and Neutral-position-oriented intercept strategies are
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proposed. These strategies generate the contact inter-

cept pattern and the stable non-contact intercept pat-
tern, respectively. The contact intercept pattern allows
the defender robots to synchronously reach the attack-

er robot in finite time. The stable non-contact inter-
cept pattern is a periodic attractor, where the defender
robots and the attacker robot orbit around the target

with the same angular speed on two concentric circles
in infinite time. Both intercept strategies need the de-
fender robots to be deployed inside a feasible area.

Synchronous intercept is a special requirement in
defense-intrusion game. This special case demands the
defender robots to co-ordinate their activities. Accord-

ing to practical needs, contact intercept pattern and
non-contact intercept pattern are generated by the pro-
posed Attacker-oriented and Neutral-position-oriented

intercept strategies, respectively. The Attacker-oriented
intercept strategy is a synchronous attack-only inter-
cept strategy, it applies to the scenario where the at-

tacker robot has to be destroyed before it reaches the
target. One of the main limits of this strategy is that,
when the defender robots have the same mobility as the
attacker robot, they have to be deployed symmetrical-

ly in the feasible area. The Neutral-position-oriented s-
trategy is a more flexible intercept strategy, as it consid-
ers both the synchronous attack and defense behaviors.

It has a larger feasible area and a better tolerance for
noise than the Attacker-oriented strategy. Besides the
scenario that the attacker robot has to be destroyed, it

also applies to the scenario where preventing a suspect-
ed attacker robot from reaching the target would be
a more reasonable measure than destroying them. The

trade-off between attack and defense behaviors can be
flexibly adjusted by the parameter λ, hence many po-
tential intercept strategies can be designed by varying

λ.
The results of the synchronous intercept strategies

are provided with the case of two defenders. In ongo-

ing and future work, we are extending the model to a
general multi-defender case. The farthest defender in
multi-defender case can use the control policy of the

further defender in two-defender case, while the closer
defenders can use the similar control policy as the clos-
er defender in two-defender case. The scalability of the

proposed algorithms is to be tested by numerical sim-
ulations and a real robotic platform with consideration
of collision avoidance.
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