1 A Fast and Non-destructive Terahertz Dissolution Assay for Immediate Release Tablets

- Prince Bawuah¹, Daniel Markl^{2,3}, Alice Turner^{2,4}, Mike Evans⁵, Alessia Portieri⁵, Daniel
 Farrell⁵, Ralph Lucas⁶, Andrew Anderson⁷, Daniel J. Goodwin⁷ and J. Axel Zeitler^{*1}
- ⁴ ¹University of Cambridge, Department of Chemical Engineering and Biotechnology, UK
- ²University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences,
 Glasgow, UK
- 7 ³EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced
- 8 Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre,
 9 Glasgow, UK
- ⁴The CMAC National Facility, The EPSRC CMAC Future Manufacturing Research Hub, The
- 11 Technology and Innovation Centre, The University of Strathclyde, 99 George Street, Glasgow,
- 12 G1 1RD, UK
- 13 ⁵TeraView Limited, 1, Enterprise, Cambridge Research Park, CB25 9PD, Cambridge, UK
- 14 ⁶Huxley Bertram Engineering Ltd, 53 Pembroke Avenue, Waterbeach, Cambridge, UK
- ⁷GSK, David Jack Centre, Research and Development, Park Road, Ware, Hertfordshire, UK

16 Abstract

- 17 There is a clear need for a robust process analytical technology tool that can be used for on-
- 18 line/in-line prediction of dissolution and disintegration characteristics of pharmaceutical tablets
- 19 during manufacture. Tablet porosity is a reliable and fundamental critical quality attribute
- 20 which controls key mass transport mechanisms that govern disintegration and dissolution
- 21 behaviour. A measurement protocol was developed to measure the total porosity of a large
- 22 number of tablets in transmission without the need for any sample preparation. By using this
- 23 fast and non-destructive terahertz spectroscopy method it is possible to predict the
- disintegration and dissolution of drug from a tablet in less than a second per sample withoutthe need of a chemometric model. The validity of the terahertz porosity method was established
- 26 across a range of immediate release (IR) formulations of ibuprofen and indomethacin tablets
- 27 of varying geometries as well as with and without debossing. Excellent correlation was
- 28 observed between the measured terahertz porosity, dissolution characteristics (time to release
- 29 50% drug content) and disintegration time for all samples. These promising results and
- 30 considering the robustness of the terahertz method pave the way for a fully automated at-
- 31 line/on-line porosity sensor for real time release testing of IR tablets dissolution.
- 32
- Keywords: Terahertz spectroscopy, pharmaceutical tablet, porosity, disintegration,
 dissolution, real time release testing, process analytical technology

35 **1. Introduction**

36 In-vitro dissolution testing has long been used in the pharmaceutical industry as the benchmark 37 for the evaluation of the quality of pharmaceutical tablets and even though in-vitro/in-vivo

^{*} Corresponding author: Axel Zeitler

Email address: jaz22@cam.ac.uk

1 correlations are not commonly expected dissolution testing is still widely considered as an 2 important indicator of the release rate of drug. Traditional quality control methods (dissolution, 3 disintegration, and hardness/tensile strength) are resource intensive, time consuming and 4 destructive and only sample a relatively small proportion of drug product either through in-5 process control tests or batch-testing of the end-product. The need to improve product quality 6 whilst reducing the use of costly and destructive end-product testing methods was catalysed by 7 the Quality-by-Design (QbD) and Process Analytical Technology (PAT) initiatives ^{1,2}. Both 8 QbD and PAT resulted in the development and implementation of innovative methods that can 9 monitor process parameters during pharmaceutical development and manufacturing to ensure 10 the quality of the end product. The idea of ensuring the quality of in-process and the final product based on process data is the definition of the so-called real-time release testing (RTRT) 11 3,4. 12

13 To support the development of RTRT of pharmaceutical tablets, research groups have made use of fast and non-destructive dissolution-prediction methods based on near infrared (NIR)⁵⁻ 14 ⁸ and Raman ⁷ spectroscopic techniques in combination with the use of process variables such 15 as blender speed, feed frame speed, and compaction force followed by performing multivariate 16 17 regressions (chemometric analyses)⁵. Other NIR methods have capitalised on the detection of strain ⁶ and chemical information of disintegrants ⁹ for predicting dissolution performance of 18 tablets. Alternative methods that employ the use of magnetic resonance imaging techniques as 19 20 well as different kinds of mathematical modelling methods to predict the dissolution of given 21 drug substances from tablets and also to study the effect of process parameters on the 22 dissolution profile of a drug from a tablet have been reported ^{10–15}. However, the use of the above methods to reliably predict the dissolution profiles is still challenging. This is due to the 23 24 inability of these methods to directly probe and quantify the bulk physical properties of tablets, 25 e.g. porosity, that directly govern mass transport mechanisms in a tablet during its 26 disintegration and subsequent drug release ^{16,17}.

27 In the case of immediate release (IR) tablets, the disintegration and the drug release processes are tightly linked and the International Conference on Harmonization (ICH) Tripartite 28 Guideline Q6A ¹⁸ has extensively discussed cases where disintegration testing may be 29 30 employed as a substitute for dissolution testing. Studies that seek to establish correlation 31 between the dissolution of a drug from a tablet and the overall tablet disintegration have been reported in the literature ¹⁹⁻²¹. An extensive review on tablet's disintegration mechanism and 32 33 measurement techniques by Markl and Zeitler further provides more insight into how tablet 34 disintegration is a necessary requirement for release and dissolution of the drug from IR tablets 35 and hence the need for methods that can reliably quantify the disintegration rate of tablets ²². 36 It has been established in the pharmaceutical sciences community that tablet disintegration is 37 impacted by several factors, starting from the physical properties of the tablets (porosity, 38 surface morphology and particle size), solvent penetration/wicking, swelling and strain 39 recovery ^{22–25}.

40 Building on the influence of the physical properties of tablets, it is a known fact that porosity 41 plays a major role in disintegration performance of IR tablets ²⁶. In terms of the influence of 1 porosity on the release and dissolution of drug from a tablet, Hattori and Otsuka ²⁷ have

2 reiterated that the rate at which water penetrates a tablet significantly depends on the porosity.

In related studies, Delalonde and Ruiz ²⁸ have shown the interplay between dissolution kinetics
 of drug and porosity whereas Riippi et al., ²⁹ have initially reported on a promising correlation

5 between porosity and dissolution rate of erythromycin acistrate from tablet samples in the late

6 1990s.

7 Despite the clear observed dependence of the release and dissolution behaviour of drug on the 8 total porosity of an IR tablet, from the regulatory point of view, the measurement of tablet 9 porosity has not been a popular method for checking the quality of IR tablets in the industry. This may be due partly to the relatively time-consuming and destructive nature of existing 10 conventional porosity measurement methods like mercury or helium porosimetry ^{16,29,30}. The 11 quest to develop fast and non-destructive methods to measure the porosity therefore triggered 12 13 researchers like Shah et al.⁷ to employ NIR and Raman spectroscopy to predict the porosity of 14 tablets. Yet, these methods typically only probe surface properties and rely on the use of chemometric models. Given the surface measurement, the results may not necessarily represent 15 16 the bulk tablet property. To overcome the above limitations, terahertz time-domain 17 spectroscopy (THz-TDS) has been developed in transmission to directly measure the porosity of tablets ^{31–33} without chemometric analysis. The terahertz porosity method has the advantage 18 that it is fast (under a second), non-destructive, non-invasive and requires no sample 19 20 preparation. A recent tutorial by Bawuah et al. ³⁴ has systematically outlined the steps involved 21 in the terahertz porosity measurement method.

By bearing in mind the direct influence of drug release rate of a tablet by its porosity as well as the ability to quickly and accurately measure porosity by THz-TDS, a previous work by Markl et al. ¹⁷ has established a strong correlation between the measured terahertz effective refractive index/porosity and the drug dissolution characteristics of IR tablets. Based on the observed promising correlation, the researchers proposed the development of a robust at-line or in-line terahertz-based sensor to monitor disintegration and hence the drug dissolution performance of tablets during manufacture ¹⁷.

This study demonstrates the use of terahertz technology to predict the drug dissolution outcomes from directly compressed IR tablets with different levels of complexity. The validity and robustness of the terahertz-based porosity measurement method was tested by probing a wide range of samples comprised of simple placebo biconvex round tablets, complex flat-faced and biconvex tablets containing active pharmaceutical ingredients (APIs), i.e., ibuprofen or indomethacin, with and without debossing.

35 **2. Materials and Methods**

36 **2.1. Materials**

Two APIs, ibuprofen (BLD Pharmatech, Shanghai, China) and indomethacin (Sigma-Aldrich
Company Ltd., Gillingham, UK), were each formulated as IR tablets with dose strengths of 1%
w/w and 10% w/w for each respective API. The formulations for each API at both doses

1 composed of common excipients, microcrystalline cellulose (MCC) (Avicel PH-102, FMC 2 Europe NV, Brussels, Belgium), lactose anhydrous (Supertab21AN, DFE pharma, Goch, 3 Germany), croscarmellose sodium (CCS) (DuPont Nutrition, Wilmington DE, USA), and 4 magnesium stearate (Fisher Scientific, Fair Lawn NJ, USA). Table 1 gives the %w/w of the 5 components used at the two dose strengths, i.e., 1% w/w API formulations (F1) and 10% w/w 6 API formulations (F2). The proportion of microcrystalline cellulose and lactose anhydrous, 7 serving as diluents and binders, were kept constant in all formulations. Magnesium stearate 8 and croscarmellose sodium were added to respectively serve as a lubricant and a disintegrant. 9 In total, four formulations were prepared, i.e., F1-Ibup, F1-Indo, F2-Ibup and F2-Indo, where 10 the abbreviations Ibup and Indo indicate the two APIs ibuprofen and indomethacin, 11 respectively.

Materials	F1		F2	
	%w/w	Quantity (g)	%w/w	Quantity (g)
Microcrystalline cellulose	43.2	86.4	39.1	78.2
Lactose anhydrous	51.8	103.6	46.9	93.8
Croscarmellose sodium	3.0	6.0	3.0	6.0
Magnesium stearate	1.0	2.0	1.0	2.0
API (Ibuprofen/Indomethacin)	1.0	2.0	10.0	20.0
Total	100.0	200.0	100.0	200.0

12 **Table 1:** Material composition of the two dose strengths, F1 and F2 formulations, used in the

13 direct compaction of all the tablets.

14 **2.2. Methods**

15 **2.2.1.** Tablet Compaction

The powder formulations were blended using a Turbula T2F Mixer (Willy A. Bachofen AG, Switzerland). During the blending step, all the materials except magnesium stearate were continuously mixed together for 10 mins followed by the addition of the magnesium stearate and further mixing for an extra 1 min. In all, the blending process lasted for 11 mins at a speed of 32 rpm.

Five batches, i.e., based on 5 different porosity levels spanning the range of about 2 - 24%, of biconvex round tablets were directly compressed using a compaction simulator (HB50, Huxley Bertram Engineering Ltd, UK). The compaction simulator was configured to mimic an industrial scale tablet press (Fette 2090) with a maximum compression speed of 60 rpm. All the tablets were compressed at a targeted weight of 400 mg with varying thicknesses in order to achieve the required porosity levels. Fifteen tablets per batch were compressed and each tablet was collected and stored in a labelled plastic bag.

- 28 To test the robustness of the terahertz method similar (with same compression parameters)
- 29 batches of biconvex tablets with debossing "TPI" inscribed on one side were compressed from
- 30 the same formulations (see Table S1 in the supplementary information). Only debossed tablets
- 31 were used for both APIs' F2 formulations.

1 The nominal porosity ($f_{nominal}$) of the batches, as given by Eq. (1), was measured several days 2 after the compaction, but just before the terahertz measurements were conducted, to allow for 3 possible post-compaction mechanical relaxation of the tablets.

4
$$f_{\text{nominal}} = 1 - \frac{\rho_{\text{tablet}}}{\rho_{\text{true}}},$$
 (1)

5 where the tablet density, ρ_{tablet} , was calculated from the weight (W) and physical dimensions, i.e., height (H) and diameter (d). The true density, ρ_{true} , of the four F1 and F2 formulations was 6 7 measured using a helium pycnometer (Multipycnometer MVP-1; Quantachrome Corporation, 8 New York, NY). The height and diameter of all the tablets were measured using a micrometre 9 (Sealey Digital External Micrometer 0 – 25 mm; Rapid Electronics Limited, Colchester, UK) 10 and their weights were measured with an analytical balance (Fisher Scientific, Illkirch-11 Graffenstaden, France). Table 2 gives the batch-average of the measured physical parameters 12 at the two dose strengths (F1 and F2) of both the ibuprofen and indomethacin biconvex tablets 13 without debossing.

14 **2.2.2.** Terahertz Time-Domain Spectroscopy

15 Terahertz time-domain measurements of all the batches were acquired using a TeraPulse 4000 16 (TeraView Ltd., Cambridge, UK). A fast-scanning method (SpectralSeries) with overall 17 acquisition time of ≈ 1 s was used. With an acquisition rate of 15 Hz, 20 waveforms were 18 acquired and averaged. The sample compartment of the THz-TDS was continuously purged 19 with nitrogen gas throughout the measurements to minimize the impact of water vapour on the 20 measured THz signal. In this study using a given placebo biconvex tablets with a similar excipient composition as the current formulations, we have shown that it is possible to 21 22 accurately measure the porosity of tablets by reducing the acquisition time to about one eighth 23 of a second (0.12 s). Section 2 of the supplementary information gives detailed information 24 about the formulation, physical dimensions, and results of the used placebo tablets.

25 A typical routine undertaken during the terahertz transmission measurements is to acquire 26 reference measurement, i.e., conducting the measurement with an empty (nitrogen gas) 27 compartment, followed by the sample measurements (Fig.1). The effective refractive index, 28 $n_{\rm eff}$, of the tablets was measured using the frequency-domain (FD) material parameter 29 extraction approach ³⁴. The FD method requires the conversion of the acquired time domain 30 (TD) signals into complex FD signals via a fast Fourier transform (FFT). The frequency 31 dependent effective refractive index of the tablets was extracted from the phase information by 32 firstly normalising the obtained sample spectrum with the reference spectrum and secondly, 33 going through a standard phase retrieval routine as discussed in ³⁵. Further detailed description on how to estimate the optical constants of materials using THz-TDS has been extensively 34 reported in the literature $^{36-40}$. Once the phase difference (θ) has been accurately determined, 35 36 the effective refractive index $(n_{\rm eff})$ was estimated as

37
$$n_{\rm eff}(v) = \frac{c\theta}{2\pi v H} + 1, \qquad (2)$$

- 1 where v is the frequency of the terahertz radiation, H is the tablet thickness, and c is the speed
- of light in vacuum. In cases where it is possible to measure the back reflection, or second echo
 of the terahertz pulse, the thickness of the tablets could be directly derived from the terahertz
- of the terahertz pulse, the thickness of the tablets could be directly derived from the terahertz
 measurement itself. However, for the majority of the drug products this is unlikely to be the
- case given the relatively thick structures of typical tablets which would require relatively long
- 6 (optical) time-delay lines in the spectrometer. In addition, even though the tablet matrix does
- 7 not absorb terahertz radiation very strongly compared to other spectral ranges the absorption
- 8 from the tablet may nevertheless be too high to reliably detect the second echo reflection signal
- 9 after the terahertz pulse has propagated three times through the entire thickness of the tablet. It
- 10 is not inconceivable that future improvements in instrumentation, for example by using very
- 11 high intensity pulses of terahertz radiation, could make this possible.

12

27

Fig. 1. Sample and reference terahertz pulse measurements. *H* indicate the thickness of thetablet.

15 2.2.3. Zero-Porosity Refractive Index Measurements

The zero-porosity refractive indices (also known as intrinsic refractive indices) of all the F1 16 and F2 formulations, i.e., the refractive index of only the solid material of the tablets, were 17 measured using 5 batches of flat-faced round non-debossed tablets compressed from each 18 19 formulation, i.e., F1-Ibup, F1-Indo, F2-Ibup and F2-Indo. Table S5 of the supplementary 20 information gives the detailed description of the measured parameters of the flat-faced round 21 tablets used for the material characterisation experiments. Flat-faced tablets were used to 22 ensure the accurate determination of the intrinsic refractive index of the formulations given the 23 relatively simple and homogenous nature of flat-faced tablets compared to biconvex tablets. 24 Once the accurate intrinsic refractive indices of the formulations are known, the porosity of 25 batches of tablets with different geometries compressed from these formulations can be measured by the terahertz method. 26

2.2.4. Disintegration Testing

The disintegration testing was performed on 6 tablets per batch on the F1- and F2-based biconvex tablets without debossing (see Table 2). The performed disintegration testing complies with the requirements of the current United States Pharmacopeia (USP) chapter 701 41 , and the European Pharmacopeia (EP) standard 2.9.1 42 , using a standard disintegration tester (DT50, SOTAX AG, Switzerland). The DT50, with a mechanical agitation rate of 30 \pm 1 strokes per minute, allows the testing of 6 tablets per test and comes with a basket that accommodates 6 tubes and 6 disks. The disks, with their conducting elements, are used to automatically detect the endpoint of the disintegration process, which reduces the variability of the measurement. Water (\approx 1000 mL preheated to 37 °C) was used as the immersion fluid during the experiment.

6 2.2.5. Dissolution Testing

Samples were run by USP II paddle method using an ALS ADT8 dissolution bath coupled with
 an ALS SP700 UV spectrometer (Automated Lab Systems, Wokingham, Berkshire, U.K.). The
 ibuprofen tablets were run in pH 7.2 phosphate buffer as required by the British Pharmacopoeia
 ⁴³ whereas the indomethacin tablets were run in pH 6.2 phosphate buffer to meet the standard
 requirements of United State of America Pharmacopoeia ⁴⁴.

Initially a calibration curve was produced for each drug in the relevant media. Due to the low aqueous solubility of both drugs, 1 mg/mL stock solutions were prepared in methanol before diluting with their respective buffers to produce standards of 50, 25, 10, 5 and 2.5 μg mL⁻¹. Both drugs were initially spectrum tested using the UV spectrometer. Ibuprofen was observed to have an absorption maximum at 222 nm and indomethacin was found to exhibit an absorption maximum at 265 nm, based on a path length of 10 mm. Analysis was carried out using the ALS software UV Win.

19

20 A dissolution method was developed and carried out using the ALS software IDIS. Samples 21 were run in 900 mL of buffer each with a paddle speed of 50 rpm at $37^{\circ}C \pm 0.5^{\circ}C$. Utilising an 22 autosampler, all samples were taken at intervals of 80 s until the dissolution profile was found 23 to level off and remain constant. As the system is a closed loop there was no need for 24 replacement media to be utilised. The dissolution testing was performed on the F1 and F2 25 biconvex tablets without debossing (see Tables 2). Additional information regarding the 26 dissolution experiments is given in section 4 of the supplementary information. We used 6 27 tablets of each batch and the averaged results for the whole dissolution profile for each batch 28 is shown in Fig. S5 of the supplementary information.

29 **2.2.6.** Hardness Testing

For the hardness testing, sets of biconvex tablets with the same process conditions as those of Table 2 were again produced from the same F1 and F2 formulations (see Table 3). These sets were without debossing and all the tablets were crushed using a Kraemer Elektronik Hardness Tester HC 6.2 (Kraemer Elektronik GmbH, Darmstadt, Germany). The obtained tablet hardness, i.e. the maximum diametral crushing force, *F*, of the batches as given in Table 3 was further converted to tensile strength, $\sigma_{\rm T}$, according the expression developed by Pitt et al. for cylindrical convex-faced compacts ^{45,46} shown as

37
$$\sigma_{\rm T} = \frac{10F}{\pi d^2 \left(2.84 \frac{H}{d} - 0.126 \frac{H}{L} + 3.15 \frac{L}{d} + 0.01 \right)},\tag{3}$$

1 where d, H and L are the diameter, thickness, and cylindrical length of the biconvex tablets

2 respectively.

3 3. Results and Discussion

The batch-average of the measured physical parameters of both the ibuprofen and 4 5 indomethacin biconvex tablets used for the disintegration and dissolution experiments are given Table 2. The averaged parameters for similar sets of tablets used for the hardness testing 6 experiments are also given by Table 3. All tablets in the Tables 2 & 3 were compressed from 7 8 the same F1 and F2 formulations respectively.

Formulation	Batch	H(mm)	<i>d</i> (mm)	W(mg)	$f_{ m nominal}$ (%)
F1-Ibup	B1	4.572	10.055	399.6±4.0	2.85±0.13
	B2	4.712	10.056	400.6±4.0	6.35±0.54
	B3	4.932	10.074	394.5±3.0	13.28 ± 0.56
	B4	5.204	10.090	398.5±3.0	18.41 ± 0.61
	B5	5.418	10.098	402.3±4.0	21.77±0.62
F1-Indo	B1	4.582	10.044	403.7±2.0	1.60±0.13
	B2	4.733	10.047	402.6±2.0	5.95 ± 0.29
	B3	4.959	10.055	403.7±2.0	11.30 ± 0.33
	B4	5.229	10.066	405.1±1.0	16.93 ± 0.12
	B5	5.459	10.073	$404.4{\pm}1.0$	21.53±0.24
F2-Ibup	B1	4.678	10.057	396.5±3.0	3.50±0.20
	B2	4.878	10.061	$397.2{\pm}2.0$	8.48 ± 0.21
	B3	5.060	10.067	396.9 ± 2.0	12.80 ± 0.33
	B4	5.276	10.083	396.7±2.0	17.54 ± 0.48
	В5	5.528	10.089	409.0 ± 3.0	19.90 ± 0.57
F2-Indo	B1	4.570	10.047	395.6±2.0	2.32±0.15
	B2	4.828	10.048	405.5±2.0	6.80±0.27
	B3	4.961	10.052	397.8±5.0	11.76±0.77
	B4	5.199	10.064	396.3±3.0	17.32 ± 0.51
	В5	5.403	10.069	397.7±2.0	21.01±0.36

9 Table 2: The measured averaged parameters of the five batches of biconvex tablets compressed

10 from the F1 and F2 formulations. Each batch composed of 15 tablets without debossing. The

measured true densities of the formulations were, $\rho_{\text{true}}(\text{F1-Ibup}) = 1.485 \text{ g cm}^{-3}$, $\rho_{\text{true}}(\text{F1-Indo})$ 11

= 1.479 g cm⁻³, ρ_{true} (F2-Ibup) = 1.439 g cm⁻³, and ρ_{true} (F2-Indo) = 1.465 g cm⁻³. 12

Formulation	Batch	H(mm)	<i>d</i> (mm)	W (mg)	fnominal (%)	Hardness (N)
F1-Ibup	B1	4.665	10.073	403.9±2.0	4.58±0.15	170.9±4.1
	B2	4.731	10.076	402.0±3.0	6.78 ± 0.32	143.0±4.8
	B3	4.970	10.089	404.2±4.0	12.20 ± 0.65	93.1±5.7
	B4	5.217	10.107	399.1±4.0	$18.74 {\pm} 0.68$	52.4±4.5
	B5	5.427	10.123	396.6±2.0	23.35 ± 0.48	30.0±2.3
F1-Indo	B1	4.580	10.058	398.2±3.0	3.08±0.21	276.6±8.6
	B2	4.763	10.063	404.4±3.0	6.54 ± 0.47	209.0±8.1
	B3	4.968	10.075	398.1±3.0	13.01±0.54	125.0±6.4

	B4	5.235	10.086	400.1 ± 2.0	18.33 ± 0.45	77.6±3.9
	B5	5.476	10.094	401.9±3.0	22.58 ± 0.47	52.2±3.0
F2-Ibup	B1	4.685	10.065	396.0±3.0	3.92 ± 0.20	185.7±6.6
	B2	4.869	10.069	403.1±4.0	$7.00{\pm}0.45$	139.8±6.7
	B3	5.034	10.079	399.2±3.0	11.88 ± 0.58	90.9±6.0
	B4	5.309	10.104	395.6±4.0	18.66 ± 0.68	45.1±3.8
	B5	5.520	10.112	396.6±6.0	22.45 ± 1.06	31.3±3.7
F2-Indo	B1	4.639	10.059	403.7±2.0	2.43 ± 0.18	247.9±8.5
	B2	4.797	10.068	399.9±2.0	7.59 ± 0.25	143.3±4.0
	B3	5.009	10.076	399.4±3.0	12.80 ± 0.54	89.7±5.0
	B4	5.275	10.091	403.1±4.0	17.77±0.71	53.6±5.1
	B5	5.517	10.110	394.9±4.0	24.05 ± 0.76	24.8 ± 2.8

1 **Table 3:** The measured averaged parameters of the five batches of biconvex tablets compressed

2 from the F1 and F2 formulations and used for the hardness experiments. 10 non-debossed

3 biconvex tablets were compressed per batch.

4 **3.1. Zero-Porosity Refractive Index Measurements**

5 In this study, prior to the measurement of the zero-porosity refractive index of the formulation,

6 the effective refractive index spectra of the flat-faced tablets were extracted via the FD data 7 analysis (Fig. 2). A single-valued effective refractive index was obtained for each tablet by

8 selecting and averaging the refractive indices within a range of frequency (see the shaded

9 portion in Figs. 2 (a) and (c)). The selected effective refractive indices (Figs. 2 (b) and (d))

10 were then used for measuring the zero-porosity refractive index of the formulation via the

11 anisotropic Bruggeman model ³¹. The values of the measured zero-porosity refractive index,

12 n_{solid} , for the four different formulations are listed in Table 4.

13 The criteria for choosing the frequency(ies) from which the effective refractive indices were

14 selected strongly depended on the instrument characteristics as well as the dispersion properties

15 of the materials involved as we have discussed previously 34 .

1

Fig. 2. Effective refractive index of the F1-Ibup (a, b) and F2-Ibup (c, d) flat-faced round tablets. The frequency range, where the refractive index was selected, is indicated by the shaded portions in (a) and (c). (b) and (c) show an excellent linear correlation between the effective refractive index and the nominal porosity with a coefficient of correlation of $R^2 = 0.999$, root mean square error of RMSE = 0.0024 and R² = 0.999, RMSE = 0.0017 for the F1-Ibup and F2-Ibup, respectively. Similar results obtained for the F1-Indo and F2-Indo flat-faced round tablets are shown in Fig. S3 in the supplementary information.

9 The effective refractive index values used for the measurement of the zero-porosity refractive 10 index of the formulation as well as terahertz porosity measurements for all the batches were 11 selected and averaged using the frequency range of 0.4 - 0.8 THz. This range, as shown by the 12 rectangular shaded portion in Fig. 2, possessed negligible dispersion for all the batches. 13 Additionally, the selected frequency range lies within the range of 0.3 - 0.9 THz, where the

14 current THz instrument exhibits its maximum signal-to-noise ratio.

Formulation	n _{solid}
F1-Ibup	1.839
F1-Indo	1.846
F2-Ibup	1.810
F2-Indo	1.824

15 **Table 4:** The measured zero-porosity refractive indices, n_{solid} , of the four formulations.

3.2. Terahertz Porosity Measurements

- 2 The terahertz porosity, f_{THz} , of the biconvex tablets was determined using the AB-EMA ³¹ with
- 3 the extracted effective refractive indices (see Fig. S1 in the supplementary information) and
- 4 the zero-porosity refractive indices of the formulations obtained from the flat-faced tablets
- 5 (Table 4). Despite the use of relatively high terahertz absorbing APIs, Fig. 3 shows excellent
- 6 linear correlations between the measured terahertz porosity, f_{THz} , and the nominal porosity, 7 $f_{nominal}$. The promising results obtained for the debossed tablets (Fig. 3 (e) & (f)) in comparison
- 8 with non-debossed counterparts (Fig.3 (c) & (d)) demonstrates the robustness of the terahertz
- 9 porosity measurement method. In other words, the presence of debossing, as typically found
- 10 on most commercial tablets, has negligible impact on the measured terahertz porosity.

11 To further buttress the robustness of the terahertz porosity measurement method, excellent 12 correlations between f_{THz} and f_{nominal} were obtained for the flat-faced tablets (see Fig. S4 in the 13 supplementary information), the placebo tablets (Fig. S2 in the supplementary information) 14 and the non-debossed biconvex tablets (Table 3 and in Fig. S6 in the supplementary 15 information). Based on the excellent results of both flat-faced and biconvex tablets in 16 conjunction with the relatively long Rayleigh range of the used terahertz beam as we have 17 extensively discussed in ³⁴, we can infer that curvature, lensing effect and thickness of the 18 tablets have negligible impact on the measured porosity.

- 19 Adding to the above merits, the results obtained from the placebo tablets (Fig. S2 in the
- 20 supplementary information) have proven the possibility of even scaling the acquisition time
- 21 down to one eighth of a second. An acquisition time of 0.12 s means we can realise an at-
- 22 line/on-line terahertz sensor that can measure up to 30,000 tablets per hour.

1

Fig. 3. The excellent linear correlation between the measured terahertz porosity, f_{THz} , and the nominal porosity, $f_{nominal}$. (a) & (b) represent non-debossed biconvex tablets containing 1% ibuprofen (F1-Ibup) and 1% indomethacin (F1-Indo) respectively. (c) & (d) are the respective data for the 10% ibuprofen (F2-Ibup) and 10% indomethacin (F2-Indo) tablets without debossing, whereas (e) & (f) are the results for the debossed tablets compressed from F2-Ibup and F2-Indo formulations respectively. The obtained averaged fitting parameters for all batches are: slope ≈ 1 , $R^2 \approx 1$ and $RMSE \approx 0.03\%$.

9 **3.3.** Correlation between Terahertz Porosity and Disintegration

10 Disintegration testing was performed on biconvex tablets compressed from F1 and F2 API 11 formulations without debossing (Table 2). A polynomial curve fitting model was used to

- 1 correlate the disintegration time with the measured terahertz porosity (Fig. 4). The excellent
- 2 correlations between disintegration time and terahertz porosity manifest the direct influence of
- 3
 - porosity on tablet disintegration.

4

Fig. 4. The correlation between the disintegration time and the measured terahertz porosity, $f_{\text{THz.}}$ (a) & (b) represent non-debossed biconvex tablets containing 1% ibuprofen (F1-Ibup) and 1% indomethacin (F1-Indo) respectively. (c) & (d) are the respective data for the 10% ibuprofen (F2-Ibup) and 10% indomethacin (F2-Indo) tablets without debossing. Second order polynomial data fitting was performed and the averaged fitting parameters that were obtained for all sets tablet were $R^2 \approx 0.99$ and $RMSE \approx 0.2$ min.

11 **3.4. Correlation between Terahertz Porosity and Dissolution**

12 The dissolution testing was performed on 6 tablets per batch from the same sets used for 13 disintegration testing (Table 2). The mean dissolution time at 50% of the drug release of the 14 tablets was extracted from the complete dissolution profiles (see Fig. S5 in the supplementary information) and plotted against the terahertz porosity (Fig. 5). Aside from the seemingly 15 16 scattering in the data of the indomethacin tablets (Fig. 5 (b) & (c)), a generally good correlation 17 can be observed between dissolution time and the measured terahertz porosity. Although ibuprofen appears to dissolve faster from the tablets than indomethacin, porosity is again and 18 19 unsurprisingly seen to play a major role in the tablet dissolution kinetics.

Fig. 5. Correlation between the dissolution time at 50% release of the drug and the terahertz porosity, f_{THz} . (a) & (b) represent biconvex tablets containing 1% ibuprofen and 1% indomethacin respectively whereas (c) & (d) are the respective data for the 10% ibuprofen and 10% indomethacin tablets without debossing. Second order polynomial data fitting was performed and the averaged fitting parameters that were obtained for ibuprofen tablets were R^2 ≈ 0.95 and $RMSE \approx 0.7$ min, whereas $R^2 \approx 0.90$ and $RMSE \approx 1.5$ min were obtained for the indomethacin tablets.

1

9 Generally, high tablet porosities allow fast liquid penetration/wicking rate, which then quickly exposes the disintegrant to the penetrating solvent and thus culminating in an increased 10 swelling rate and the final breakdown of the tablet ²². However, this is not always the case for 11 12 certain types of disintegrants at very high tablet porosity levels (e.g., for rapidly disintegrating 13 or dissolving tablets). The swelling of disintegrant like CCS has been reported to be accompanied by gel formation that can significantly prolong the disintegration time ²⁶. The 14 presence of gel can occlude the pores and hence delay the liquid uptake rate. A similar 15 16 phenomenon is observed in this study (see Fig. 5(d)), which explains our choice to use a 17 polynomial regression method. The polynomial equation is used strictly as a regression method and is not thought to afford further physical insight, but it can capture a minimum in dissolution 18 19 time over the experimental porosity range, to determine the relation between 20 dissolution/disintegration and porosity (see Figs. 4 and 5). In as much as the current analyses 21 place much emphases on the influence of porosity, we are very much aware of the significant 22 role played by other factors such as hydrophilicity (contact angle), wetting time and water

- 1 absorption ratio on the dissolution/disintegration time of especially orodispersible tablets (ODTs) 26,47,48
- 2
- 3 It should be clarified at this point that, although the dissolution behaviour of a given drug substance significantly depends on its solubility properties, the rate at which the tablet 4
- 5 disintegrates also plays a significant role by exposing the drug particles to the dissolution
- 6 medium. The relative short disintegration times of the ibuprofen tablets compared to that of the
- 7 indomethacin tablets (see Fig. 4) partly explains the trend in dissolution rates of ibuprofen and
- 8 indomethacin observed in Fig. 5. Other contributing factors to the observed dissolution
- 9 behaviours of the two APIs may include material attribute like particle size distribution and the
- 10 different PH values of the dissolution media.

11 3.5. Correlation between Terahertz Porosity and Tensile Strength

12 Despite our previous study that has revealed that hardness does not always correlate with the porosity (especially for granulated samples) ¹⁷, the current samples have shown excellent 13 14 correlation between the tensile strength and terahertz-based porosity values (Fig. 6). The 15 samples used in this study were directly compressed without any upstream processing of the 16 powder blends (e.g. granulation).

18 Fig. 6. The correlation between the tensile strength, $\sigma_{\rm T}$, and the measured terahertz porosity, 19 f_{THz} . (a) & (b) represent non-debossed biconvex tablets containing 1% ibuprofen (F1-Ibup) and 20 1% indomethacin (F1-Indo) respectively. (c) & (d) are the respective data for the 10% 21 ibuprofen (F2-Ibup) and 10% indomethacin (F2-Indo) tablets without debossing. The averaged fitting parameters that were obtained using the Ryshkewitch-Duckworth Equation ^{49–51} of all 22 sets of tablet were $R^2 \approx 0.99$ and $RMSE \approx 0.014$ MPa. 23

1 To summarise the above results, it is observed that the ibuprofen-based tablets tend to 2 disintegrate and dissolve faster than the indomethacin tablets, which is unsurprisingly 3 consistent with their respective tensile strength data. The seemingly scattering observed in some of the results may have been emanated from experimental inconsistencies. For example, 4 5 during the disintegration testing, there were occasions when a disk got stuck on a tablet restricting the movement of the tablet during the up and down strokes. Such situations cause a 6 7 delay in the overall disintegration time of that particular tablet due to limited exposure of the 8 concerned tablet to the immersion liquid. Finally, the use of a simple polynomial curve fitting 9 described the relationship between the porosity and the disintegration time as well as 10 dissolution data well for all the tested batches tablets.

11 **4.** Conclusions

12 This study demonstrated the robustness of a fast and non-destructive terahertz porosity 13 measurement method that can predict drug release properties (disintegration time and 14 dissolution) of pharmaceutical tablets. By using THz-TDS, the porosity of different kinds of

15 tablets was directly measured in a fast manner (≤ 1 s). The various kinds of tablets used were

- 16 composed of either ibuprofen or indomethacin under two dose strengths, 1% and 10%. All the
- 17 tablets were formulated with commonly used excipients (microcrystalline cellulose, lactose
- 18 anhydrous, croscarmellose sodium, and magnesium stearate).
- 19 The excellent linear correlation observed between the terahertz porosity and the nominal 20 porosity has manifested the robustness of the terahertz approach for tablet porosity
- 21 measurement even for tablets containing high absorbing APIs, embossing and of different
- 22 geometries. Moreover, the observed promising correlations of the terahertz porosity with
- 23 dissolution, disintegration and hardness/tensile strength demonstrate the ability of using the
- 24 terahertz porosity method for RTRT of tablet dissolution.
- 25 Despite the non-destructive nature of the THz method, it still faces some challenges given the
- 26 use of porosity as the only parameter to predict the release and dissolution properties of a drug
- 27 from tablets. Hence this method is suitable for rapidly disintegration tablets containing highly
- 28 soluble APIs. Future studies with the aim of developing a universal method should consider
- 29 other properties like swelling and liquid ingress mechanisms ⁴⁸, the pore shape and structure ¹⁶
- 30 as well as the solubility and dissolution properties of the API. A detailed discussion on the
- 31 terahertz porosity method has been highlighted in recent review by Lu et al ⁵².

32 Acknowledgements

33 The research received financial support from Innovate UK (ref: 104196).

34 **REFERENCES**

- Industry G for. Guidance for Industry PAT A Framework for Innovative
 Pharmaceutical Development, Manufacuring, and Quality Assurance. *FDA Off Doc*.
 2004;(September):16. doi:http://www.fda.gov/CDER/guidance/6419fnl.pdf
- Schlindwein WS, Gibson M. *Pharmaceutical Quality by Design: A Practical Approach.*; 2017. doi:10.1002/9781118895238
- 40 3. European Medicines Agency. Guideline on Real Time Release Testing
- 41 EMA/CHMP/QWP/811210/2009-Rev1. Comm Med Prod Hum Use.

1		2012;44(March):1-10. https://www.ema.europa.eu/en/documents/scientific-
2		guideline/guideline-real-time-release-testing-formerly-guideline-parametric-release-
3		revision-1 en.pdf. Accessed October 12, 2019.
4	4.	Markl D, Warman M, Dumarey M, et al. Review of Real-Time Release Testing of
5		Pharmaceutical Tablets: State-of-the Art, Challenges and Future Perspective. Int J
6		<i>Pharm</i> . April 2020:119353. doi:10.1016/j.jipharm.2020.119353
7	5.	Pawar P. Wang Y. Kevvan G. Callegari G. Cuitino A. Muzzio F. Enabling real time
8	•	release testing by NIR prediction of dissolution of tablets made by continuous direct
9		compression (CDC). Int J Pharm. 2016:512(1):96-107.
10		doi:10.1016/i.jipharm.2016.08.033
11	6.	Hernandez E. Pawar P. Keyvan G. et al. Prediction of dissolution profiles by non-
12	0.	destructive near infrared spectroscopy in tablets subjected to different levels of strain.
13		<i>J Pharm Biomed Anal.</i> 2016:117:568-576. doi:10.1016/j.jpba.2015.10.012
14	7.	Shah RB. Tawakkul MA. Khan MA. Process analytical technology: Chemometric
15	,.	analysis of raman and near infra-red spectroscopic data for predicting physical
16		properties of extended release matrix tablets. J Pharm Sci. 2007:96(5):1356-1365.
17		doi:10.1002/ins.20931
18	8.	Freitas MP. Sabadin A. Silva LM. et al. Prediction of drug dissolution profiles from
19	0.	tablets using NIR diffuse reflectance spectroscopy: A rapid and nondestructive
20		method. J Pharm Biomed Anal. 2005;39(1-2):17-21. doi:10.1016/j.jpba.2005.03.023
21	9.	Yekpe K. Abatzoglou N. Bataille B. et al. Predicting the dissolution behavior of
22		pharmaceutical tablets with NIR chemical imaging. Int J Pharm. 2015:486(1-2):242-
23		251. doi:10.1016/i.ijpharm.2015.03.060
24	10.	Nott KP. Magnetic resonance imaging of tablet dissolution. <i>Eur J Pharm Biopharm</i> .
25		2010;74(1):78-83. doi:10.1016/j.ejpb.2009.07.003
26	11.	Mikac U, Demsar A, Demsar F, Serša I. A study of tablet dissolution by magnetic
27		resonance electric current density imaging. J Magn Reson. 2007;185(1):103-109.
28		doi:10.1016/j.jmr.2006.12.002
29	12.	Dumarey M, Goodwin DJ, Davison C. Multivariate modelling to study the effect of
30		the manufacturing process on the complete tablet dissolution profile. Int J Pharm.
31		2015;486(1-2):112-120. doi:10.1016/j.ijpharm.2015.03.040
32	13.	Kimber JA, Kazarian SG, Štěpánek F. Microstructure-based mathematical modelling
33		and spectroscopic imaging of tablet dissolution. Comput Chem Eng. 2011;35(7):1328-
34		1339. doi:10.1016/j.compchemeng.2010.07.008
35	14.	Kimber JA, Kazarian SG, Štěpánek F. Modelling of pharmaceutical tablet swelling
36		and dissolution using discrete element method. Chem Eng Sci. 2012;69(1):394-403.
37		doi:10.1016/j.ces.2011.10.066
38	15.	Nagy B, Petra D, Galata DL, et al. Application of artificial neural networks for Process
39		Analytical Technology-based dissolution testing. Int J Pharm. 2019;567(March).
40		doi:10.1016/j.ijpharm.2019.118464
41	16.	Markl D, Strobel A, Schlossnikl R, et al. Characterisation of Pore Structures of
42		Pharmaceutical Tablets: A Review. Int J Pharm. 2018;538(1-2):188-214.
43		doi:https://doi.org/10.1016/j.ijpharm.2018.01.017
44	17.	Markl D, Sauerwein J, Goodwin DJ, Van Den Ban S, Zeitler JA, Zeitler & JA. Non-
45		destructive Determination of Disintegration Time and Dissolution in Immediate
46		Release Tablets by Terahertz Transmission Measurements. Pharm Res.
47		2017;34(5):1012-1022. doi:10.1007/s11095-017-2108-4
48	18.	ICH Harmonised Tripartite Guideline, Q6A Specifications: Test Procedures and
49		Acceptance Criteria for New Drug Substances and New Drug Products: Chemical
50		Substances FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-

	documents/q6a-specifications-test-procedures-and-acceptance-criteria-new-drug-
	substances-and-new-drug-products. Published 1999. Accessed October 19, 2019.
19.	Nickerson B, Kong A, Gerst P, Kao S. Correlation of dissolution and disintegration
	results for an immediate-release tablet. J Pharm Biomed Anal. 2018;150:333-340.
	doi:10.1016/j.jpba.2017.12.017
20.	Grube A, Gerlitzki C, Brendel M. Dissolution or disintegration-substitution of
	dissolution by disintegration testing for a fixed dose combination product. Drug Dev
	Ind Pharm. 2019;45(1):130-138. doi:10.1080/03639045.2018.1526184
21.	Wilson D, Wren S, Reynolds G. Linking dissolution to disintegration in immediate
	release tablets using image analysis and a population balance modelling approach.
	Pharm Res. 2012;29(1):198-208. doi:10.1007/s11095-011-0535-1
22.	Markl D, Zeitler JA. A Review of Disintegration Mechanisms and Measurement
	Techniques. <i>Pharm Res.</i> 2017:34(5):890-917. doi:10.1007/s11095-017-2129-z
23.	Shah U. Augsburger L. Evaluation of the functional equivalence of crospovidone NF
	from different sources. I. Physical characterization. <i>Pharm Dev Technol.</i> 2001:6(1):39-
	51. doi:10.1081/PDT-100000012
24.	Desai PM, Liew CV, Heng PWS, Review of Disintegrants and the Disintegration
	Phenomena <i>J Pharm Sci.</i> 2016:105(9):2545-2555. doi:10.1016/J.XPHS.2015.12.019
25	Yassin S. Su K. Lin H. Gladden LF. Zeitler JA. Diffusion and swelling measurements
20.	in pharmaceutical powder compacts using terahertz pulsed imaging. J Pharm Sci.
	2015:104(5):1658-1667 doi:10.1002/ins.24376
26	Bi YX, Sunada H. Yonezawa Y. Danio K. Evaluation of rapidly disintegrating tablets
20.	prepared by a direct compression method. <i>Drug Dev Ind Pharm</i> , 1999:25(5):571-581.
	doi:10.1081/DDC-100102211
27.	Hattori Y. Otsuka M. NIR spectroscopic study of the dissolution process in
27.	pharmaceutical tablets. Vib Spectrosc. 2011:57(2):275-281.
	doi:10.1016/i vibspec.2011.09.003
28.	Delalonde M. Ruiz T. Dissolution of pharmaceutical tablets: The influence of
20.	penetration and drainage of interstitial fluids Chem Eng Process Process Intensif
	2008:47(3):370-376. doi:10.1016/i.cep.2007.01.003
29	Rippi M. Ylimusi I. Niskanen T. Kiesvaara I. Dependence between dissolution rate
27.	and porosity of compressed erythromycin acistrate tablets. <i>Eur J Pharm Biopharm</i> .
	1998:46(2):169-175, doi:10.1016/S0939-6411(98)00003-4
30.	Ridgway C. Bawuah P. Markl D. et al. On the role of API in determining porosity.
20.	nore structure and bulk modulus of the skeletal material in pharmaceutical tablets
	formed with MCC excipient. Int J Pharm. 2017:526(1):321-331.
	doi:10.1016/i.jipharm.2017.04.038
31.	Markl D. Wang P. Ridgway C. et al. Characterization of the Pore Structure of
511	Functionalized Calcium Carbonate Tablets by Terahertz Time-Domain Spectroscopy
	and X-Ray Computed Microtomography. <i>Journal of Pharmaceutical Sciences</i> .
	http://www.sciencedirect.com/science/article/nii/S0022354917301430_Published
	2017 Accessed July 5 2017
32	Bawuah P. Pierotic Mendia A. Silfsten P. et al. Detection of porosity of
52.	pharmaceutical compacts by terahertz radiation transmission and light reflection
	measurement techniques Int J Pharm 2014:465(1-2):70–76
	doi:10.1016/i.jipharm.2014.02.011
33	Bawijah P. Fryasti T. Tan N. Zeitler IA. Ketolainen I. Peinonen K-F. Noninvasive
55.	but and i, Er aut i, run i, Er and in, Redolation i, reporter R. E. Rollin as to
	porosity measurement of biconvex tablets using teranertz bulses. Int J Pharm
	2016;509(1-2):439-443. doi:10.1016/J.IJPHARM.2016.06.023
	 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.

1		Pharmaceutical Tablets: a Tutorial. J Infrared, Millimeter, Terahertz Waves. January
2		2020:1-20. doi:10.1007/s10762-019-00659-0
3	35.	Jepsen PU. Phase Retrieval in Terahertz Time-Domain Measurements: a "how to"
4		Tutorial. J Infrared, Millimeter, Terahertz Waves. 2019;40(4):395-411.
5		doi:10.1007/s10762-019-00578-0
6	36.	Dorney TD, Baraniuk RG, Mittleman DM. Material parameter estimation with
7		terahertz time-domain spectroscopy. J Opt Soc Am A-Opt Image Sci Vis.
8		2001;18(7):1562-1571. doi:10.1364/JOSAA.18.001562
9	37.	Jepsen PU, Cooke DG, Koch M. Terahertz spectroscopy and imaging - Modern
10		techniques and applications. Laser Photon Rev. 2011;5(1):124-166.
11		doi:10.1002/lpor.201000011
12	38.	Withayachumnankul W, Naftaly M. Fundamentals of Measurement in Terahertz Time-
13		Domain Spectroscopy. J Infrared, Millimeter, Terahertz Waves. 2014;35(8):610-637.
14		doi:10.1007/s10762-013-0042-z
15	39.	Scheller M. Data Extraction from Terahertz Time Domain Spectroscopy
16		Measurements. J Infrared, Millimeter, Terahertz Waves. 2014;35(8):638-648.
17		doi:10.1007/s10762-014-0053-4
18	40.	Singh SP, Akhter Z, Akhtar MJ. Calibration Independent Estimation of Optical
19		Constants Using Terahertz Time-Domain Spectroscopy. <i>Microw Opt Technol Lett</i> .
20		2015:57(8):1861-1864. doi:10.1002/mop
21	41.	United States Pharmacopeia. Disintegration.
22		https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/april-
23		2019-m99460.pdf. Accessed February 9, 2020.
24	42.	European Pharmacopoeia 5.0. Pharmaceutical technical procedures.
25		http://uspbpep.com/ep50/2.9.1. disintegration of tablets and capsules.pdf. Accessed
26		February 9, 2020.
27	43.	British Pharmacopoeia Commission. British Pharmacopoeia 2020: Volume III -
28		Formulated Preparations: Specific Monographs. 2020.
29		https://www.pharmacopoeia.com/downloads/bp/2020/. Accessed February 26, 2020.
30	44.	United States Pharmacopoeia 2017. Revision Bulletin. 2017. https://www.usp.org/.
31		Accessed February 26, 2020.
32	45.	Pitt KG, Heasley MG. Determination of the tensile strength of elongated tablets.
33		Powder Technol. 2013;238:169-175. doi:10.1016/i.powtec.2011.12.060
34	46.	Pitt KG, Newton JM, Stanley P. Tensile fracture of doubly-convex cylindrical discs
35		under diametral loading. J Mater Sci. 1988:23(8):2723-2728.
36		doi:10.1007/BF00547442
37	47.	Pabari RM, Ramtoola Z, Effect of a disintegration mechanism on wetting, water
38		absorption, and disintegration time of orodispersible tablets. J Young Pharm.
39		2012:4(3):157-163. doi:10.4103/0975-1483.100021
40	48	Al-Sharabi M Markl D Mudley T et al Simultaneous investigation of the liquid
41	101	transport and swelling performance during tablet disintegration <i>Int J Pharm</i>
42		2020:584 doi:10.1016/j.jipharm 2020.119380
43	49	Wu CY Best SM Bentham AC Hancock BC Bonfield W A simple predictive model
44		for the tensile strength of binary tablets <i>Eur J Pharm Sci</i> 2005:25(2-3):331-336
45		doi:10.1016/i.eins.2005.03.004
46	50	Duckworth W Discussion of Ryshkewitch Paper by Winston Duckworth <i>J Am</i>
47	200	Ceram Soc. 1953:36(2):68-68. doi:10.1111/j.1151-2916.1953.th12838.x
48	51	Ryshkewitch E. Compression Strength of Porous Sintered Alumina and Zirconia. 9th
49	<i>v</i> 11	Communication to Ceramography J Am Ceram Soc 1953:36(2):65-68
50		doi:10.1111/j.1151-2916.1953.tb12837.x
-		J

- 52. Lu X, Sun H, Chang T, Zhang J, Cui HL. Terahertz detection of porosity and porous 1 2 3 4 5 microstructure in pharmaceutical tablets: A review. Int J Pharm. 2020;591:378-5173. doi:10.1016/j.ijpharm.2020.120006