Incidence angle-dependent broadband chiral metamaterial for near-infrared light absorption
Fan, Junxing and Xiao, Dong and Lei, Ting and Yuan, Xiaocong (2020) Incidence angle-dependent broadband chiral metamaterial for near-infrared light absorption. Journal of the Optical Society of America B: Optical Physics, 37 (11). pp. 3422-3428. ISSN 0740-3224 (https://doi.org/10.1364/JOSAB.403623)
Preview |
Text.
Filename: Fan_etal_JOSAB_2020_Incidence_angle_dependent_broadband_chiral_metamaterial_for_near_infrared.pdf
Accepted Author Manuscript Download (859kB)| Preview |
Abstract
The ability to spin-selectively absorb circularly polarized light plays a critical role in various photonic devices. Here we propose and investigate a broadband chiral metamaterial composed of asymmetric split-ring resonators, showing a wide spin-selective absorption band from 950 to 1200 nm with pronounced circular dichroism up to 20°. We demonstrate that the broadband absorption spectra originate from induced dual chiral resonance modes. Meanwhile, the two different resonances can be adjusted independently, suggesting great flexibility of the designed chiral absorption band for different purposes. Also, the chiral-selective absorption performance is highly dependent on the oblique incident angle due to the extrinsic chirality. The chiral resonance modes can be either enhanced or destroyed under oblique incidence. Such angle-dependent broadband chiral metamaterials may find potential applications for spin-orbit communications, chiral detection, polarimetric imaging, and biosensors.
-
-
Item type: Article ID code: 75267 Dates: DateEvent1 November 2020Published18 September 2020AcceptedSubjects: Science > Physics Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 03 Feb 2021 11:21 Last modified: 22 Aug 2024 00:52 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/75267