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ABSTRACT

We report systematic studies of laser-driven proton beams produced with micrometer-thick solid targets made of aluminum and plastic,
respectively. Distinct effects of the target materials are found on the total charge, cutoff energy, and beam spot of protons in the experiments, and
these are described well by two-dimensional particle-in-cell simulations incorporating intrinsic material properties. It is found that with a laser
intensity of 83 1019W/cm2, target normal sheath acceleration is the dominantmechanism for both types of target. For a plastic target, the higher
charge and cutoff energy of the protons are due to the greater energy coupling efficiencies from the intense laser beams, and the larger divergence
angle of the protons is due to the deflection of hot electrons during transport in the targets. We also find that the energy loss of hot electrons in
targets of different thickness has a significant effect on the proton cutoff energy. The consistent results obtained here further narrow the gap
between simulations and experiments.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0014854

In the last few decades, laser-driven proton acceleration1–4 has
been widely explored because of its potential applications5–10 in
medicine, materials processing, radiography, and high-energy-
density physics. The beams produced by this technique often ex-
hibit unique properties, such as high brightness, short duration, and
low emittance. One of the most well-established and robust
mechanisms for proton acceleration is target normal sheath ac-
celeration (TNSA).1 In this mechanism, protons are accelerated
from the rear of the target by a strong sheath electric field (of the
order of teravolts per meter, TV/m) generated by the expansion
of highly energetic electrons originally produced in front of the
target and then transported through it. There have been extensive

investigations of suitable target materials for proton acceleration in
recent years. For example, it has been experimentally demonstrated
that proton beams from thin solid plastic targets have higher cutoff
energy and charge than those generated from aluminum targets
when irradiated by laser pulses with intensities of ∼1018 W/cm2.11

To explain the experimental results, an analytical model with given
material properties has been established, and this has suggested that
the proton acceleration can be enhanced by a resistively induced
electric field in front of the plastic target.11–13 Transport of hot
electrons within the plastic target is thereby significantly inhibited
and filamented, and this induces nonuniformity of the profile of the
protons. This has been experimentally observed14,15 and then
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confirmed by a particle-in-cell (PIC) code16 based on a hierarchical
N-body tree algorithm.

Previous research has been successful in explaining some aspects
of the proton acceleration, such as why a proton beam from a plastic
target has either higher energy or a nonuniform spot. However, to
fully understand the effect of the material properties of the target on
proton acceleration, materials with realistic densities need to be
considered. Furthermore, simulations should also include ionization
dynamics,17,18 collision dynamics,19,20 degenerate plasma states,21,22

and collective electromagnetic fields,23–25 but the required simulation
capabilities have not been available. Recently, a new PIC code named
LAPINS, short for “Laser Plasma Interaction for Solid”, has been
developed that is based on a high-order implicit numerical scheme26

and takes advantage of newly developed ionization27,28 and collision29

dynamics models.
The ionization models incorporated into the LAPINS code

include both field27 and impact ionizations. Field ionization usually
dominates in laser plasma interactions, and impact ionization28

dominates in beam plasma interactions. For solid-density plasmas,
as electron–ion recombination cannot be ignored, electron–ion
recombination is also taken into account in the code. Also for solid-
density plasmas, as these are usually partially ionized, the collision
model29 should contain both elastic and inelastic collisions, and, for
the latter, it should take into account ionization and excitation of
bound electrons. In the code, electron–electron, electron–ion, and
ion–ion interactions are modeled via the Monte Carlo technique.
At low temperatures, the collisionmodel also takes into account the
effects of degeneracy30. In this approach, degenerate particles obey
Fermi–Dirac statistics, and nondegenerate particles follow typical
Maxwell–Boltzmann statistics. The equations of motion of both
degenerate and nondegenerate particles are governed by long-
range collective electromagnetic fields and close particle–particle
collisions. In particular, Boltzmann–Uehling–Uhlenbeck colli-
sions ensure that evolution of degenerate particles is enforced by
the Pauli exclusion principle. To suppress or avoid numerical
noises, as ionization will significantly increase the plasma (free-
electron) density, in the code, a fourth-order spatial difference
scheme is combined with an implicit scheme for temporal stepping
in solving electromagnetic fields. This new scheme26 can completely
remove numerical self-heating and significantly reduce the simulation
burden by using coarse simulation grids when simulating solid-density
plasmas. This code enables us to calculate coupled atomic and plasma
processes for intense laser–solid interaction in amore realistic way than
previous codes.Within the simulations, the ionization charge state and
conductivity (or resistivity) of the target can self-consistently evolve in a
precisemanner according to the local plasma and electromagnetic field
conditions. Different types of materials (single or alloys), such as
aluminum and plastics, can now be modeled, with account taken of
their intrinsic atomic properties.

In this paper, the effects of targetmaterials on laser-driven proton
acceleration are investigated, with solid targets of aluminumand plastic
of varying thickness being taken as examples. Experimental mea-
surements indicate that the total charges and cutoff energies of the
protons from plastic targets are significantly higher than those from
aluminum targets, and that the proton beams from plastic targets have
larger beam spots than those from aluminum targets. Moreover, for
both plastic and aluminum targets, there exists an optimum target

thickness that provides the highest proton cutoff energy, with the cutoff
energy decreasing at greater thicknesses. These findings are modeled
well by the newly developed PIC simulation code.

The experiments were performed at the Laboratory for Compact
Laser PlasmaAccelerator (CLAPA) at PekingUniversity. An f/3.5 off-
axis parabolic (OAP) mirror was used to focus the 30 fs duration and
800 nmwavelength pulses to a full-width at half-maximum (FWHM)
focal spot of diameter 5 μm, containing 30% of the total laser energy
(about 1.8 J), and corresponding to an intensity of ∼8.33 1019 W/cm2.
The p-polarized pulses were incident onto different targets
(aluminum or plastic) with various thicknesses at 30° with respect
to the target normal. A cross-polarized wave (XPW)31 filter was
introduced to enhance the intensity contrast to a ratio of 10−10 at 40
ps prior to the peak laser intensity.32 Figure 1(a) is a schematic of
the experimental setup. A Thomson parabola spectrometer (TPS)
was located at 140 mm at the back of the target, with an entrance
pinhole of 200μm, corresponding to an acceptance solid angle of 1.6μsr,
and this was used to record the proton spectra. A multichannel plate
with a phosphor screen and a 16-bit electron-multiplying charge-
coupled device were used to image the parabolic ion traces. In addi-
tion, energy-resolved spatial distributions of proton beams were
recorded by an attached radiochromic file (RCF) stack33 placed 40 mm
behind the target.

Figure 1(b) shows the proton cutoff energy as a function of target
thickness for fixed laser parameters and target material. The values of
the cutoff energies are obtained by averaging over the five best shots
for each target with the same thickness, and the error bar is the
standard deviation of these five shots. Figure 1(c) shows the optimum
proton spectra obtained for the two types of targets. As can be seen,
the aluminum target has an optimum thickness of 2.5 μm.On the one
hand, targets below this thickness are easily broken or distorted by the
laser pre-pulse, and the main part of the laser pulse might interact
with an under-dense plasma.34,35 The dominant acceleration
mechanism would then no longer be TNSA. On the other hand, for
targets above the optimum thickness, the cutoff energy is reduced. A
similar trend is found for plastic targets, although the exact value of
the optimum thickness has yet to be found owing to a gap (between
2 μm and 8 μm) in the thicknesses that are available with current
target fabrication techniques. Nevertheless, for a large range of target
thicknesses, the cutoff energies from plastic targets are always much
higher than those from aluminum. The optimum cutoff energies are
9.5MeV and 13.5MeV for aluminum and plastic targets, respectively,
as can bee seen from Fig. 1(c). It should also be noted that the total
charge of the protons from a plastic target is significantly higher than
that from an aluminum one, with a 2.9-fold increase in terms of the
total energy [the integral of the spectra in Fig. 1(c)]. Furthermore, in
Figs. 1(d)–1(i), energy-resolved spatial distributions of protons are
presented for 2.5 μm aluminum and 1.2 μm plastic targets. It can be
seen that the beam spots are larger for the plastic target. From a
consideration of all the above experimental data, we can draw the
following conclusions:

1. The total charges and cutoff energies from plastic targets are higher
than those from aluminum targets.

2. The beam spots of the proton beams from plastic targets are larger
than those from aluminum targets.
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Greater total charges and cutoff energies from plastic targets have
been observed in previous experiments,11,12 and the larger spot sizes
are also consistent with previous observations,14–16 but to date there
have been no interpretations that have succeeded in explaining every
single aspect of the beam generation process.

To analyze the experiments, we carried out numerical sim-
ulations with the PIC code LAPINS.36–38 Even with the improved
laser contrast obtained with the XPW, we still needed to deal
carefully with the pre-plasma expansion caused by the picosecond
pre-pulse.39 The expansion caused by this pre-pulse was calculated
using radiation hydrodynamics simulations (not shown here).
These simulations showed that for both aluminum and plastic
targets, similar pre-plasmas with a sharp gradient of ∼0.1 μm
followed by a smooth gradient of ∼10 μm were formed. In the
following PIC simulation, the target was modeled as a uniform slab
with the pre-plasma. To determine the effects of material
properties, aluminum (density 2.7 g/cm3) and plastic (density
1.186 g/cm3 with C:H:O � 5:8:2) targets of the same thickness
(several micrometers) and the same fixed pre-plasmas were con-
sidered. The simulations were carried out in a Z–Y Cartesian ge-
ometry. The size of the box was chosen as Z (50 μm) 3 Y (60 μm),
divided into a 2500 3 3000 uniform grid. Contamination was
modeled as a hydrogen layer of thickness 0.3 μm and density
1021/cm3 on the back side for both aluminum and plastic targets.
The initial temperature of the solid targets was chosen as room
temperature. The initial ionization degreewas set atZ� 3 for aluminum
and Z � 0 for plastic. Then, the ionization was fully determined by field
ionization, collision ionization, and recombination. The p-polarized
laser pulse irradiated the target at a fixed angle of 30° with respect to the
target normal. The laser pulse had a predefined profile of the form
exp(−r2/r20)sin2(πt/2τ0), with r0 � 3λ0 and τ0 � 5T0, where T0 is the
laser cycle. The central wavelength of the laser was 0.8 μm and the
normalized amplitudea� eE/meω0c� 8,whereω0� 2π/T0. In theZ and

Y directions, absorbing boundary conditions were applied for both the
particles and the laser field.

Figure 2 shows the temporal evolution of energy (transfer) into
the simulation box, including laser energy entering (black), elec-
tromagnetic field energy (red), electron kinetic energy (green), and
ion kinetic energy (blue), denoted by Epyt, Eem, Eele, and Eion, re-
spectively. From their time evolution, we can obtain further insights
into the whole of the laser–solid interaction process. The laser energy
entering the simulation box is calculated by integrating the Poynting
flux on the left boundary over time. Epyt first increases and then
reaches a constant value at t � 25 fs, when the whole laser pulse has
been entirely injected into the simulation box. Then, until t � 75 fs, we
find that there is strong energy transfer from the electromagnetic
energy Eem to the electron kinetic energy Eele and then to the ion

FIG. 1. (a) Experimental setup. (b) Variation of the proton cutoff energy with target thickness. The diamond symbols represent the averages of the five best shots in the experiments,
and the triangles represent the results of the PIC simulations. (c) Optimum energy spectra of protons from aluminum and plastic targets detected by the Thomson spectrometer.
Solid lines represent experimental results and dashed lines PIC simulations. (d), (f), (g) and (e), (h), (i) Energy-resolved spatial distributions of proton beams detected by the RCF
stack for the 2.5 μm aluminum and 1.2 μm plastic targets, respectively. The white dashed circles indicate the positions of protons with a deflection angle of 14°.

FIG. 2. Energy (transfer) as a function of time. Data are shown for laser energy
entering the simulation box (black), electromagnetic energy (red), electron kinetic
energy (green), and ion kinetic energy (blue). The results from plastic targets
(dashed lines) are compared with those from aluminum targets (solid lines). Here,
the thickness is 1.2 μm for both aluminum and plastic targets.
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kinetic energy Eion, which we refer to in short as the laser plasma
interaction stage in front of the target. During this stage, the efficiency
of coupling of the energy from the laser to plastic is significantly
higher than that to aluminum. At t � 75 fs, Epyt starts to decrease,
meaning that the reflected laser pulse is leaving the simulation box.
The more rapid drop in Epyt shows that the reflection ratio of alu-
minum is significantly higher than that of plastic. After t � 100 fs,
when the main body of the laser pulse has been reflected back, we can
still notice a gradual energy transfer from electrons to ions, which is
referred to as the thermal expansion stage and TNSA.

In Fig. 3, the electromagnetic energy densities are presented for
both aluminum and plastic targets with thicknesses of 1.2 μm. The
snapshot is taken at t � 53 fs, which is a typical time within the laser
plasma interaction window (from t � 25 fs to t � 75 fs). It appears that
the penetration depth within the plastic is larger than that within the
aluminum. Deeper penetration will significantly enhance the effi-
ciency of energy transfer from laser to plasma through various
mechanisms,40–42 typically including a J 3 B mechanism, vacuum
heating, and direct laser acceleration. A possible reason for the greater
penetration depth is the lower electron density for fully ionized plastic
than for aluminum.

Figure 4 presents the kinetic energy densities of electrons, in-
dicating the transport process of hot electrons within the solids.
Although breakdownof plasticmight occur as a result of the pre-pulse
(currently beyond the capabilities of radiation hydrodynamics sim-
ulations), as an initial insulator, the resistivity of a plastic target is very
large compared with that of an aluminum target. According to Ohm’s
law E � ηJe, where η is the resistivity of the bulk target and Je is the
current density of electrons, an intense resistive electric field will
inhibit the transport of hot electrons. As shown in Fig. 4, when
compared with aluminum targets [Figs. 4(a) and 4(b)], the inhibition
and deflection of hot electron transport in plastic targets [Figs. 4(c)
and 4(d)] leads to a larger hot electron spot. The inhibition also
appears in Fig. 5, where the magnitude of the electric field is shown
as a function of time and position. The electric field is along
the normal direction of the back-side surface, starting at z� 17 μmand
y � 0 μm. As can be seen, the peak value of the electric field appears at
t � 105 fs for an aluminum target and t � 115 fs for a plastic target.

Furthermore, we find that the electric field of a plastic target lasts for a
long time when compared with that of an aluminum target. As
revealed in Fig. 4, this is due to the higher energy coupling efficiency
from laser to plastic than to aluminum. Moreover, we find that the
electron energy density is significantly decreased during transport in
both aluminum and plastic targets. This is due to deposition and
energy losses of hot electrons during transport, caused by the intense
resistive electric fields.With further increase in the target thickness, as
the energy losses of hot electrons increase, the proton cutoff energies
accordingly decrease. In Figs. 6(a) and 6(b), the magnitude of the
electric field is shown as a function of time and position for aluminum
targets of thickness 2 μm and 8 μm, respectively. Electron recircu-
lation is not significant under the conditions considered here, al-
though in general it could be important for high-contrast multi-
picosecond laser pulses.43 Here, the acceleration is dominated by the
very first electron bunch, and the transport of electrons and energy

FIG. 3. Electromagnetic energy densities for (a) aluminum and (b) plastic targets at
t � 53 fs (i.e., 20T0). The solid lines indicate the initial positions of the solid targets,
and the dashed lines mark the fronts of the pre-plasma. The thickness is 1.2 μm for
both targets.

FIG. 4. Electron kinetic energy distributions for (a) and (b) aluminum and (c) and (d)
plastic targets, both with thickness 8 μm, at t � 53 fs (i.e., 20T0) and t � 80 fs (i.e.,
30T0).

FIG. 5. Magnitude of the electric field as a function of time and position for (a)
aluminum and (b) plastic targets, both with thickness 8 μm. As indicated by the
dashed line in Fig. 4, the electric field is along the normal direction of the back-side
surface, starting at z � 17 μm and y � 0 μm.
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loss in the solid is key to understanding why the accelerating field
decreases with increasing thickness (Fig. 1).

In Fig. 7, the spatial and angular energy distributions of protons
for aluminum and plastic targets are presented at 320 fs, the end of the
simulation, when acceleration reaches saturation. From a comparison
with Figs. 1(b) and 1(c), it can be seen that there is remarkable
agreement between simulation and experiment for both energies and
beam spots. The larger beam spots from the plastic target are also
reflected in the diverging angular distributions, as shown in Figs. 7(c)
and 7(d). This is because, as shown in Fig. 4, divergent transport of hot
electrons will lead to larger spatial spots of the accelerated proton
beams, since these are accelerated mainly by the expansion of hot
electrons on the back side of the target. It should be noted from our
simulation at a laser intensity of 8 3 1019 W/cm2 that the energetic
protons come from the rear contamination at the back surface for
both types of target. This differs from what was found in previous
work11–13 with an order-of-magnitude lower laser intensity and a
thicker target, in which it was assumed that protons are accelerated by

the resistive electric field in plastic targets. Our research indicates that
the energy conversion efficiency determined by the target material
properties is the key parameter.

To summarize, we have reported experimental and numerical
simulation investigations of laser-driven proton accelerationwith two
solidmaterial targets: aluminumas a typical conductor andplastic as a
typical insulator. The target material has been found to have sig-
nificant effects on the total charge, cutoff energy, and beam spot of the
protons. Generally, a plastic target produces proton beams with
higher charge, higher cutoff energy, and larger beam spot than an
aluminum target of the same thickness under the same laser con-
ditions. Two-dimensional PIC simulations give a good description of
the effects of the target material on the laser-driven acceleration of
protons by including both ionization dynamics and collision dy-
namics. The results of the work reported here suggest that the use of
laser–solid interactionmodels instead of pure laser plasma interaction
in the simulation should give a closer match to experimental ob-
servations. Furthermore, this study of material effects on proton
acceleration is also closely relevant to the creation of warm dense
matter by intense laser pulses. The different proton beam charac-
teristics obtained with different targets may be used as a diagnostic
tool for warm and hot dense matter created by intense lasers.
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