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Abstract: This paper presents the state of the art in Structural Reliability Analysis (SRA) methods
with a view of identifying key applications of each method and its proposed variations, qualifying
characteristics, advantages, and limitations. Due to the increasing complexity and scale of modern
offshore jacket structures, it becomes increasingly necessary to propose an accurate and efficient
approach for the assessment of uncertainties in their material properties, geometric dimensions,
and operating environments. SRA, as a form of uncertainty analysis, has been demonstrated to
be a useful tool in the design of structures because it can directly quantify how uncertainty about
input parameters can affect structural performance. Herein, attention was focused specifically on
the probabilistic fracture mechanics approach because this accounts accurately for fatigue reliability
mostly encountered as being dominant in the design of such structures. The well-established analyti-
cal/approximate methods such as the First- and Second-Order Reliability Methods (FORM/SORM)
are widely used as they offer a good balance between accuracy and efficiency for realistic problems.
They are, however, inaccurate in cases of highly non-linear systems. As a result, they have been
modified using methods such as conjugate search direction approach, saddle point approximation,
subset simulation, evidence theory, etc. in order to improve accuracy. Initially, direct simulations
methods such as the Monte Carlo Simulation Method (MCS) with its various variance reduction
techniques such as the Importance Sampling (IS), Latin Hypercube Sampling (LHS), etc. are ideal
for structures having non-linear limit states but perform poorly for problems that calculate very low
probabilities of failure. Overall, each method has its own merits and limitation, with FORM/SORM
being the most commonly used, but recently, simulation methods have increasingly been used due to
continuous advances in computation powers. Other relevant methods include the Response Surface
Methods (RSM) and the Surrogate Models/Meta-models (SM/MM), which are advanced approxi-
mation methods and are ideal for structures with implicit limit state functions and high-reliability
indices. Combinations of advanced approximation methods and reliability analysis methods are also
found in literature as they can be suitable for complex, highly non-linear problems.

Keywords: probabilistic fracture mechanics; SRA; FORM; SORM; MCS; RSM

1. Introduction

Modern offshore jacket structures such as those supporting wind turbines are often
exposed to severe environmental conditions. Besides environmental impacts, failures
occurring will result in significant financial losses. This moves the point of focus toward
structural reliability assessment of such structures [1]. Most of the existing offshore wind
turbines (OWTs) use monopile foundations and are installed in water depths less than
50 m. However, for larger turbines in deeper waters, monopiles become very large and
increasingly uneconomical due to the difficulty of fabricating and installing such systems,
as well as the consideration of modal requirements. Space frame structures, such as jackets
derived from the petroleum industry, offer a lighter and yet stiff alternative to monopiles.
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Jackets can be cheaper in deep-water circumstances and, hence, they can contribute to
the offshore wind industry’s quest for the reduction of Levelized Cost of Energy (LCoE).
However, an effective design of these structures is resource-intensive, especially when
designing to withstand the wide set of dynamic loading mechanisms. Thus, research is
still required to improve the design and analysis of modern jacket-type support structures,
with due consideration of the requirement for manufacturing optimization if ever these
structures are to be mass produced [2–4].

Structural reliability (SR) can be defined as ‘the ability that a structure complies with
given requirements under specific conditions during its intended design life’ [4–7]. Suitable
SR levels will, therefore, avoid intolerable damage to a structure over a specified period
of time [8,9]. Use of probabilistic methods in structural design is increasing, and many
standards have made allowance for reliability analysis (RA) either in the calibration of
partial safety factors or in design and analysis [10]. ISO 2394 gives information on the
principles of reliability methods. Safety margins and factors in design are determined
considering T-D (Time-dependent) deterioration mechanisms [11] (see Figure 1). RA allows
for methods that analyze the service life variation of Failure Probability for specified
modes of failure, treating uncertainties systematically. The cause of structural failure is
the exceedance of limit state. When g(x) < 0 (Limit State Function) they are defined as
a failure domain, when g(x) > 0 a safe domain, and a failure surface when g(x) = 0.
Structural reliability analysis (SRA) revolves around modeling uncertainties emanating
from poor knowledge of design quantities, such as likelihood of events, variability, lack of
knowledge, degree of belief, inaccuracy, etc. [6]. These terms are considered basic variables
that consist of quantities of material properties and structural dimensions, yield stress, and
other limitations in ultimate response, operational conditions and degradation, loading
and environmental factors, etc. Uncertainties for SRA can be mainly grouped into two
categories: aleatory and epistemic [12]. Aleatory uncertainties are the unavoidable natural
randomness associated with an uncertain quantity [6]. Epistemic uncertainties result from
inadequate knowledge or information about a quantity. Since epistemic uncertainties
stem from inadequate knowledge, they can be minimized by gathering data for a longer
period, taking more measurements, or carrying out further tests, among others. The present
methodologies available for characterization of uncertainties can be classified into three
groups, namely: the non-probabilistic approach, the precise probability approach, and the
imprecise probability approach. Further information on these can be found in [13].

Reliability methods have four levels (levels I to IV) of classification, according to the
way that uncertainty is considered in the analysis [5]. Level I methods are deterministic
reliability methods, which only apply one characteristic value to define each uncertain vari-
able. Popular design standard formats, allowable stress, and load resistance belong to this
category. They can be applied in combination with more advanced, higher-order methods
in the case of calibration of partial safety factors, which can lead to their optimization [7].
Level II applies two values for the description of each random variable (e.g., the mean
and the variance) and a supplementary measure of the correlation between the variables
(e.g., covariance). Reliability can be interpreted geometrically as a relative distance from
the mean values of loads and their effects. In Level III, the joint probability distribution of
the sum of the uncertain variables is introduced, directly computing the POF (Probability
of Failure) for a performance function (PF). This category consists of the approximate
analytical methods, including the First- and Second-Order Reliability Methods, advanced
mathematical techniques such as numerical integration (NI), and simulation methods, such
as the Monte Carlo Simulation (MCS) and the Directional Sampling methods. Level IV
reliability methods introduce elements of target cost to the engineering principles, so as
to derive a technically feasible and, as such, an economically optimized solution. These
methods are the most advanced and can set a target reliability level, which is acceptable
such that Level III methods can be applied.
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Figure 1. Schematic representation of load process and degradation of resistance. See [11] for more
details. Reprinted with permission from [11]. Copyright 2020, Elsevier.

This paper aimed to present a state-of-the-art review of Level II and III reliability
methods, identifying key applications of each method, qualifying characteristics, advan-
tages and limitations. To the best of the authors’ knowledge, the work performed herein is
the first study to review research works conducted on the reliability/probabilistic assess-
ment/evaluation of structures focusing specifically on applicability to design of modern
offshore jacket structures against deformation and fatigue. The findings of this research
can provide invaluable insights to researchers about the method used for such analyses. In
order to identify relevant sources, a systematic review approach was followed, focusing
the search mainly on works published from 2005 to 2020, using predefined words and
combinations of words, which included “first-order reliability method” or “FORM” or
“second-order reliability method” or “SORM” or “Monte Carlo” or “probability of failure
(POF)” or “reliability index (RI)” or “safety” or “probabilistic safety” or “safety level” or
“reliability safety” or “stochastic” or “probabilistic” or “structural reliability” or “reliabil-
ity” and “analysis” or “assessment” or “evaluation”, etc. on Scopus, science direct, web
of science, ASME (American Society of Mechanical Engineers) digital collection, ASCE
(American Society of Civil Engineers) library, ICE (Institution of Civil Engineers)virtual
library, one petro, etc. Figure 2 illustrates a classification of the various SRA methods that
are presented in a structured form.
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Figure 2. Methods for Structural Reliability Analysis [7,8,14,15], LSF: Limit State Function.

2. Level III Analytical Structural Reliability Analysis Methods

The probability of failure (POF) of a structural element with regards to a single mode
of failure can be formally expressed as [16]:

Pf =
∫

g(x)≤0
fX(x)dx. (1)

The complexity in directly calculating the failure probability Pf from the integral
expressed in Equation (1) resulted in the establishment of approximate reliability meth-
ods. Such methods involve approximating the failure surface to some simple forms, e.g.,
hyperplane or quadratic surfaces at certain locations, referred to as design points. This
procedure is known as forward SRA. The method used for this computation algorithm is
a level II technique, whereby the multidimensional integral expressed in Equation (1) is
estimated after the operations: (1) The basic uncertain variables are transferred onto a set of
independent Gaussian random variables represented by the U vector. The transformation
operation is denoted by T such that U = T(X). (2) The LSF in the U space Z = g(u) is
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approximated to a linear or second-order (quadratic) function at the limit state surface,
which forms a hyperplane or a quadratic failure surface. Methods based on linear ap-
proximation are referred to as the “First-Order Reliability Methods (FORM)” and those
based on quadratic approximation are known as the “Second-Order Reliability Methods
(SORM)” [4,5].

2.1. First-Order Reliability Method (FORM)

Theoretical background about FORM can be found in [5,17]. In the FORM, the random
variables are represented by means and variances and assume normal distributions. The
reliability levels are measured based on the RI. Iterative correlation procedures are used to
predict the POF of a structural system or structure. In general, this involves an idealization
of the failure domain and it is usually assumed to be a basic representation of the joint
probability distribution of a variable. This method of RA is computationally efficient and
produces results with desired degree of accuracy (see Figure 3).
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The Mean Value FOSM (MVFOSM) simplifies the process of calculating the POF of an
LSF. Following this method, the LSF is estimated by the first-order Taylor series expansion
at the mean value point. In the Hasofer and Lind (HL) method, the RI is expressed as the
minimum geometrical distance of Most Probable failure Point (MPP) on the limit state
surface from the origin of a u-dimensional space. The HL RI method changes the expansion
point from the point of mean value to the MPP, thereby optimizing the approach. For
instance, once the PF is ascertained, the HL algorithm is employed in calculating the RI, β.
This recursive algorithm is summarized below [2,3,16,19].

(1) Define the PF for the corresponding LS, e.g., ultimate limit state (ULS), serviceability
limit state (SLS), fatigue limits state (FLS), etc.

(2) Let the mean value point be the initial design point, i.e., xi,k = µxi i = 1, 2, . . . , n, and
evaluate the gradients ∇g(Xk) of the LSF at this design point, where xi,k represents
the ith element in the vector Xk of the kth iteration and µxi is the mean value of the
ith element.
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(3) Compute the initial RI, β adopting the mean-value approach, i.e., β =
µg̃
σg̃

and its
direction cosine α.

β =
µg̃

σg̃
=

g(µX)[
∑n

i=1

(
∂g(µX)

∂xi

)2
·σ2

xi

] 1
2

(2)

αi = −

(
∂g(X∗)

∂xi

)
·σxi√

∑n
i=1

(
∂g(X∗)

∂xi
σxi

)2
(3)

(4) Calculate a new design point Xk and Uk function value, as well as gradients at this
new design point.

xi,k = µxi + βσxi αi (4)

ui,k =
xi,k − µxi

σxi

(5)

(5) Compute the RI β and direction cosine αi using Equations (4) and (5) respectively.

β =
g(U∗)−∑n

i=1
∂g(U)

∂xi
σxi u

∗
i√

∑n
i=1

(
∂g(U∗)

∂xi
σxi

)2
(6)

αi = −

(
∂g(X∗)

∂xi

)
·σxi√

∑n
i=1

(
∂g(X∗)

∂xi
σxi

)2
(7)

Iterate steps (4) to (5) until the values of the RI β converge. The failure probability Pf
can then be calculated from the following:

Pf = Φ(−β) = 1−Φ(β) (8)

where Φ(·) is the standard normal cumulative distribution function (CDF) given as

Φ(β) =
∫ β

−∞

1√
2π

e−(
1
2 )z

2
dz. (9)

The Hasofer Lind–Rackwitz Fiessler (HL–RF) method is an improvement to the HL
method such that its accuracy is close to level III method. This method is ideal for cases
of non-Gaussian variables, and it further enables information on the distribution of the
random variables to be incorporated (i.e., apart from the mean and standard deviation
included in the HL algorithm, information on distributions such as Weibull, Lognormal,
Normal, etc. of the random variables are also incorporated in the HL–RF (Hasofer Lind-
Rackwitz Fiessler) algorithm). This method involves transformation to the normalized
space, and an example is the application of the Rosenblatt transformation, a transformation
method for dependent non-normal design variables [5]. An alternative matrix procedure
for the HL–RF algorithm is presented in [16]. For the case of correlated random variables,
the HL–RF algorithm is modified by introducing a correlation matrix [ρ]. The correlation
matrix [ρ] is the matrix of correlation coefficients for the uncertain variables involved in
the LSF. Further information on this can be found in [4,5,20].

To enhance the precision of the original HL–RF method, specific modifications were
suggested in several sources. Keshtegar and Chakraborty [21] presented a conjugate search
direction approach that overcomes the unstable solutions resulting from periodic nature
and chaos for RA problems that involve highly non-linear PFs. In the study, two recursive
FORM schemes were examined based on the conjugate descent direction applying hybrid
self-adaptive conjugate (HSAC) and the self-adaptive conjugate (SAC) search directions for
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the estimation of RI. Keshtegar and Meng [22] developed a relaxed HL–RF (RHL–RF) based
on a relaxed factor, which is calculated dynamically by the second-order interpolation
between zero and one. They proposed a hybrid relaxed HL–RF (HRHL–RF) method
whereby the HL–RF and RHL–RF are implemented adaptively by using an angle criterion
to enhance the efficiency and robustness of the FORM formula. In [23], an efficient and
robust iterative algorithm, referred to as finite-based Armijo search direction (FAL) method,
was proposed for FORM-based SRA. To achieve the stabilization of the FORM algorithm, a
finite step size was developed applying the Armijo rule and sufficient descent condition.
The FAL is adjusted adaptively based on the information acquired from the recursive
algorithm at each iteration and Armijo rule.

According to [24], the HL–RF algorithm of the FORM has a drawback of the phe-
nomena of convergence failure, for example, chaos, periodic oscillation, and bifurcation
for some non-linear problems. The essential reasons for numerical instabilities due to
chaotic dynamics that include chaos and periodic oscillation common to recursive FORM
solutions were revealed. According to Keshtegar [25], the STM with chaos feedback control
is inefficient for both concave and convex reliability issues. The author proposed the STM
with chaotic conjugate search direction to enhance both the efficiency and robustness of
the FORM algorithm, by developing a chaos control factor based on a logistic map and
following a recursive procedure involving the RI and the logistic map to adaptively define a
transformation matrix. See Figure 4 for an illustration. Pedroso [26] presented a solution to
reliability problems using a parallel evolutionary algorithm with accuracy and repeatability
of results. The stochastic nature of evolutionary algorithms prevents it from generating
identical results. Consideration was given to an optimization problem resulting from the
FORM with an implicit LSF that can include a call to Finite Element Analysis (FEA). A
detailed explanation was given on a strategy to handle failure from the transformation of
random variables or from the finite element call during the evolution process.
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Shi et al. [27] investigated the efficiency of different SRA approaches with implicit LSF.
Response data sets determined via non-linear FEA are then applied in RA. They proposed
an efficient response variability method and RA method. The approach is a combination of
the Maximum Entropy Fitting Method (MEM) used to model the responses stochastically
and the FORM for RA.
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2.2. Second-Order Reliability Method (SORM)

Theoretical background on SORM can be found in [5,28]. RI estimates predicted
through FORM produce adequate results when the LSF is nearly linear close to the design
point and the LSS (Limit State Surface) has only one minimal distance point. For other
conditions, the POF predicted by FORM, using the RI β, may produce inaccurate and
unreliable results [5]. To overcome this drawback, second-order Taylor series expansions
(or other polynomials) may be introduced [28]. Where a second-order (parabolic) LSS is
attached to the non-linear LSF at the design point, it is then regarded as a SORM. According
to this approach, the LSF is represented in terms of two independent random functions,
whereby one is linear while the other is quadratic in the u-dimensional space.

According to [29], in the SORM, the LSF in arbitrarily distributed random variables
is approximated by a quadratic polynomial of standard normal variables where the fit-
ted quadratic polynomial is then applied in calculating the POF of the LS. Due to the
unavailability of a closed-form solution for the failure probability of a general quadratic
polynomial surface, a new SORM for RA using saddle point approximation (SPA) was
developed. In their study, a new SORM was presented where the failure probability was
derived directly from the fitted quadratic polynomial surface because parabolic approxima-
tion consideration was removed and the accompanying errors were eliminated [29]. In the
new SORM approach, first, a Nataf transformation to a standard normal u-space is carried
out. Then the design point is located and a quadratic fit at the design point is carried out,
after which the cumulant generating function (CGF) of the fitted quadratic polynomial
surface is analytically derived. Finally, the Probability Density Function (PDF), Cumulative
Density Function (CDF), and failure probability of the LS are established by applying SPA.

3. Level III (Direct) Reliability Methods

The POF of a structural element in relation to a single failure mode is derived from the
probability integration expression in Equation (1). Calculating this integration expects that
the LSS, g(x) = 0, and the joint PDF of X, fx(x), are known. The methods that calculate the
POF directly from this integration are known as Level III reliability methods, which are
perceived to be most accurate. The most common relevant level III methods are: (1) Monte
Carlo Methods (MC), (2) NI, (3) Analytical Integration (AI), (4) Surrogate Models (SMs),
and (5) Stochastic Finite Element Method (SFEM) [1,8,9]. Theoretical background on AI,
NI, and MCS can be found in [30].

Computation of the exact failure probability from Equation (1) by using analytical
and NIs involves approximations in the solution process and may become inefficient for
certain problems. This drawback can be overcome by applying the MCS technique, which
avoids the extra layer of approximation; however, it becomes inefficient when the LS needs
a continuous calculation procedure such as FEA [5,30], in which case it will be impractical.
The concept behind MCS is that the number of samples falling into the failure domain(

N f

)
is determined by sampling the basic random variables/vector X, each possessing

different probability distributions.
An effective sampling method is the Latin Hypercube sampling (LHS). LHS is a

method whereby multiple variables can be represented such that overlapping data sets
are avoided. First, the application divides each stochastic variable distribution in n, non-
overlapping intervals with equal probability. This involves associating the analysis point
derived from each data set by randomly selecting one value of each variable from each
interval. In comparison with the crude Monte Carlo (MC) sampling, this method yields
small variance in the response because of the homogeneous allocation of intervals on the
PDF [5].

Besides the LHS, other available variance reduction techniques include (1) Adaptive
Sampling, which updates sampling density dynamically as the simulation proceeds [5],
and (2) Conditional Expectation techniques, which consist of Axis-orthogonal Simulation
techniques for convex failure sets, and Directional Simulation for convex safe sets. The IS
(Importance Sampling) method is a derivation from the MCS whereby to achieve greater
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efficiency the simulation is biased; the sampling is basically carried out in the tail of
the distribution to ensure the occurrence of adequate simulation failures. An alternative
variance reduction technique is the subset sampling, where the failure event is expressed
as a sequence of partial failure events (subsets). In the design-point simulation method,
the MC sampling is applied around the design point. Initially, having approximated the
MPP in the u-dimensional space, MCS is used here instead of performing simulations in
the wider range of each distribution. In [31], it was reported that MCS is a powerful tool,
straightforward in implementation and capable of solving a wide range of SRA problems.
In the same study, neural networks were combined with MCS to address the issues of
low POF for highly reliable structures at low computational cost, and the validity of the
methodology was demonstrated.

Zhang et al. [32] considered SR when statistical parameters of distribution functions
could not be ascertained accurately as a result of epistemic uncertainties. Interval bounds
were used to model uncertainties in estimates constructed from confidence intervals. They
developed an interval MC method that combines the simulation process with the interval
analysis. Naess et al. [33] proposed a new MC-based method for approximating system
reliabilities, which aims to reduce the computational burden involved in the brute force
MCS methods for complicated systems. It harnesses the regularity of tail probabilities to
establish an approximation procedure for the calculation of far tail POFs based on the POFs
estimated from MCS at more moderate levels. Gaspar et al. [34] claimed the reliability of
complex structural systems could be predicted accurately by MCS. They proposed an MCS
method for evaluating system reliabilities, which aims to reduce the computational cost
associated with highly reliable structural systems. This method applied non-linear FEA
combined with response surface (RS) modeling.

Jahani et al. [35] presented SRA such that stochastic variables are modeled as fuzzy
random variables, and Interval MCS (IMC) combined with Interval Finite Element Method
(IFEM) was applied in approximating the POF. IMC-IFEM and Genetic Algorithm (GA)
were compared to ascertain the most efficient. It was concluded that the IMC-IFEM
provided higher efficiency compared to the GA method. Dai et al. [36] developed an IS
method based on support vector density estimation and adaptive Markov chain simulation.
According to the methodology, samples that can adaptively populate the importance region
by the adaptive metropolis algorithm were generated and IS density by support vector
density was constructed. In [37] directional simulation was merged with IS. This involves
defining a sampling function on the unit hyper-sphere, which samples random directions
aiming toward the MPP. Random directions are generated from the sampling function
(made adaptive by a closed-form rule to renew the sampling parameters) using spherical
coordinates. Zhang [38] developed a new interval IS method by applying the IS technique
to an imprecise probability. This methodology has the advantage that an expensive interval
analysis is not necessary. Recently, [3] reported the use of direct simulations applying the
LHS to predict POF of a complex frame-type structure in the presence of stochastic loads
based on studies previously conducted in [39].

According to [40], Subset Simulation (SS) is an adaptive simulation method, which
solves SRA problems having numerous random variables efficiently. In the study, a
novel approach for Markov Chain MC (MCMC) sampling was introduced in the standard
normal space. This developed two algorithm variants: a basic variant that is simpler
than existing formulations with equal efficiency and accuracy and a superior variant with
adaptive scaling. The accuracy of the SS method was reportedly improved. In [41], an
approach to SRA of deteriorating systems that accounts for stochastic dependence among
element deterioration was presented. Bayesian updating of the system deterioration model
was applied. The updated system reliability is then derived via coupling a probabilistic
structural model with the updated deterioration model. SS was reported as a robust
and efficient sampling-based scheme ideal for such analyses as solving the underlying
high-dimensional SR problems.
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4. Advanced Approximation Modeling Methods

RS method modeling is applied in deriving equation(s) to express one or more inde-
pendent variables in terms of a dependent variable. The fundamental idea is to replace the
true LSF by an approximation whose function values can be computed more easily [42].
RSM (Response Surface Model) and SM (Surrogate Modelling) methods are classifications
of approximation methods usually applied in modeling complex engineering systems.
RSM derives an analytical expression of the system (defined as polynomial equations)
while the latter enters the system data sets normally in a matrix closed form for post-
processing [43,44]. The expression derived from either category of methods can further be
incorporated with RA methods, such as FORM/SORM and MCS, and applied in multidis-
ciplinary optimization problems [1,45].

4.1. Response Surface Method

RSMs revolve around creating a polynomial closed-form approximation, ĝ(x), for the
exact LSF, g(x), which is usually recognized through an algorithmic procedure, via (1) a
few select deterministic analyses and (2) regression analysis of these results. Quadratic
functions are commonly employed in practice, as:

g(x) ≈ ĝ(x) = a0 +
N

∑
i=1

aixi +
N

∑
i=1

aiixi
2 +

N

∑
i=1

N

∑
j=1,j 6=i

aijxixj = VT(x)a (10)

where the coefficients aT =
{

a0, ai, aii, aij
}

are to be determined and the vector V(x) is
described as VT(x) =

{
1, xi, xi

2, xixj
}

. To develop the RS, a finite number of evaluations
of the LSF, for instance, by applying finite element runs, is needed. Then the RA can be
carried out analytically by means of the expression given by Equation (10). This approach
is especially desirable when simulation methods are used to determine reliability. The
unknown coefficients, aT =

{
a0, ai, aii, aij

}
, are determined via the least-square method.

Having identified a set of fitting points, {xk, k = 1, . . . , NF}, where NF denotes the number
of fitting points, referred to as the experimental design, the exact values yk = g

(
xk
)

are
calculated and the error is calculated as:

error(a) = ∑NF
k=1

(
yk −VT

(
xk
)
·a
)2

. (11)

The error expression is minimized with respect to the vector a to calculate the unknown
coefficients. After determining a response surface failure function from Equation (10), a
standard reliability technique is used to compute the POF [8,9].

According to [7], the response of a structure subjected to certain loading conditions
can be evaluated through FEA modeling. The work used a methodology, based on a
generalized SRSM (Stochastic Response Surface Method) for the SRA of an offshore jacket,
selected as a reference application. According to the methodology, FEA simulation results
were incorporated with numerical reliability techniques through multivariate (quadratic)
polynomial regression (MPR), so as to predict the reliability levels of components. This ap-
proach is particularly useful as it enables enhanced analysis of elements under a stochastic
perspective, accounting for design uncertainties efficiently [46]. In [2,3,47–49], the efficiency
of the SRSM for advanced RA of Offshore Wind Turbine (OWT) jacket support structures
was demonstrated. According to the authors, a parametric FEA model was developed,
and then stochastic FEA simulations were performed. The results obtained from the FEA
were post-processed through MPR in order to obtain the PFs expressed in terms of the
stochastic variables, and the RI was then computed through FORM. In the presence of
Structural Health Monitoring/Condition Monitoring (SHM/CM) data, the structure may
be reassessed and updated. The updated safety index gives vital information for deci-
sion making for the inspection and maintenance of OWT support structures. According
to [50], the SRSM is a technique employed for RA of complex structural systems with
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time-consuming, implicit, or computational costly LSFs. The collection of sample points,
the approximation of RS, and the estimation of the POF are the main aspects of the SRSM.
Sample points were selected close to the MPP and the actual LS surface (LSS). They used the
weighted regression technique to fit the RS, which enables the fitting points to be weighted
based on their distance from the failure surface. They analytically derived the cumulant
generating function (CGF) of the RS. The POF of the structural system was computed by
utilizing the Saddle point Approximation (SPA) method.

RSM is a popular method for RA, especially when the LSF is meant to be highly non-
linear or closed-form mechanical models to define complex structural systems that are not
available [6]. According to [51], the SRSM is used for RA of complex systems with low POF,
for which approximate methods are inaccurate and MCS is too computationally intensive.
The SRSM approximates by fitting the polynomial to a number of sampling points from
the LSF with a multidimensional quadratic polynomial. To address the problem related
to ill-conditioned systems and an approximated LS (which is very imprecise outside the
domain of the stochastic parameters) an algorithm using orthogonal polynomials was
proposed.

According to [52], RA of a jacket-type OWT support structure under extreme ocean
environment loads was performed. The use of the RSM methodology was demonstrated to
express the LSF and RI was calculated using the FORM. Rücker and Faber [53] presented
the RA of an OWT support structure building upon structural, loading, LS, and uncertainty
models comprising design, production, and erection data by applying the SFEM. An
algorithm that accounts for complexity in the individual models dictates an efficient
solution scheme for reliability. This consists of an adaptive RS and an IS-MC algorithm.
The RS algorithm is based on predetermined DoE (Design of Experiments), which facilitates
the adjustment of design parameters for an optimized prediction variance in the domain of
the design points.

4.2. Surrogate Models (SMs)

Theoretical background on SMs can be found in [54–56]. According to [55], SMs,
or meta-models (MM) or RSM [55,56], are used for time-consuming implicit LSFs in the
context of SRA. To reduce the computational burden of the direct MCS approach, the SMs
can be applied to estimate implicitly the LSFs involving FEA. Artificial neural network
(ANN), Kriging, adaptive Kriging, support vector regression (SVR), etc. are applied to
estimate the failure probability based on the prediction of the probabilistic model with
uncertainties [21].

According to [2], the SRA of a complex OWT support structure subjected to pitting-
corrosion fatigue was assessed based on the damage tolerance modeling approach. A
non-intrusive formulation incorporating ANN-SM and FORM was proposed to perform
the SRA of the crack propagation regime following a sequence of steps. Figure 5 depicts a
flowchart of a non-intrusive formulation for probabilistic fracture mechanics in the presence
of pitting-corrosion fatigue employing the stochastic parametric FEA.

4.2.1. Kriging Incorporated with FORM

Kriging or Gaussian process regression is a stochastic process where distribution is
defined over a basis function that can take any form, for example, a squared exponent
function. The methodology of earlier instances of Gaussian Process used for curve fitting is
as follows: After obtaining a predictive distribution, the regression is then applied over a
basis function that projects the input onto the feature space, using a Bayesian approach
to take a prior distribution and updating it to form a posterior distribution. The output
of the Gaussian Process is defined as the mean and covariance matrix. The covariance
matrix defines the smoothness and can be represented by the kernel function. Given a set
of independent variables, x, Gaussian process can be fully defined with a mean, m(x), and
a covariance, k(x, x′) [57].

F (x) ∼ GP
(
m(x), k

(
x, x′

))
(12)



Metals 2021, 11, 50 12 of 37

Gaspar et al. [55] proposed an adaptive kriging SM that applies a moderate number of
input basic random variables with active refinement, to overcome component RA problems
associated with non-linear computationally intensive implicit LSFs. The presented model
applies an adaptive, kriging-based, trust-region approach to search for the design point in
the standard normal space and calculates an initial POF based on the FORM and sensitivity
factors for the input stochastic variables. In the second stage, the initial estimate is then
verified or enhanced using MCS with IS based on Kriging SM defined recursively around
the MPP by employing an active refinement algorithm. In addition, they developed a
convergence criterion, which detects the stabilization of the POF approximation during the
active refinement process, per Figure 6.
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4.2.2. Kriging Incorporated with IS/SS

In [58], an efficient reliability method combining adaptive IS and KIM (Kriging Inter-
polation Method) based on active learning mechanism was presented. It was claimed that
the Kriging MM, adaptive IS, and active learning mechanism superiorities are inherited
and only enable evaluating the interested samples in actual PF. In [59], a modification
to an algorithm for the efficient estimation of small probabilities, combining FORM and
an adaptive Kriging-based IS strategy (AK-IS), was proposed. It was reported that the
modification overcomes an important limitation of the original AK-IS, providing the algo-
rithm with the flexibility to deal with multiple failure regions characterized by complex,
non-linear LS. In [60], the time-consuming task inherent in the SS and SM method when
the PF needs to be numerically evaluated was addressed by an active learning method
combining KIM and SS (AK-SS). It was asserted that the efficiency of the new method relies
upon the advantages of SS in evaluating small POFs and the KIM with active learning for
approximating the true PF.

4.2.3. Efficient Global Reliability Analysis (EGRA)

Bichon et al. [61] developed an efficient RA method known as the Efficient Global RA
(EGRA) that characterizes the LS across the domain of random variables accurately. The
technique begins by building a KIM from a small number of samples and then selecting
adaptively where to generate subsequent samples to enhance the accuracy of the model
near the LS. The KIM produced is then sampled by applying multimodal adaptive IS to
compute the reliability level of interest. Highly non-linear complex LS can be modeled
by locating multiple points on or around the LS, resulting in a more accurate probability
integration. Few numbers of true function evaluations are required to generate a quality
SM by concentrating the samples in the region where accuracy is essential.

4.2.4. Sequential Kriging Reliability Analysis (SKRA)

According to [54], the sequential Kriging reliability analysis (SKRA) method was pro-
posed for non-linear implicit PFs, which were computationally unaffordable and included
EGRA and AK-MCS. An adaptive sampling regions’ strategy was developed to avoid
selecting samples in the areas where the probability density is so low, thereby having an
insignificant impact on the results. The size of the sampling space was adapted based on
the POF approximated by the last recursion.

4.2.5. Support Vector Approach

Support vector machines (SVM) can be applied for regression, and when doing so
are called Support Vector Regression (SVR). SVMs work via linear domain division where
the division is made to be as large as possible. This can also be extended to higher-order
domains and be used for regression through the use of kernels. In this method, a support
vector is drawn such that the error is minimized by selecting a hyperplane that maximizes
the margin. For linear SVR, an approximation can be derived from [57]:

y =
N

∑
i=1

(αi − α∗i )xi, x + b (13)

where αi and α∗i are Lagrange multipliers, there are N training variables, and b is a real
number constant. For non-linear SVR, a kernel is applied to xi, x. For a Gaussian radial
basis function kernel this becomes:

K
(
xi, xj

)
= e(−

xi−x2
j

2σ2 ) (14)

where σ is a free parameter.
Support vector machines can be applied in either regression or classification form

and have been used in a wide range of applications where it was proven that it provides
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predictions with high fidelity and that hybrid method can enhance predictions. In other
applications, SVM gives a good performance, but also relatively quick training times
compared to other methods tested due to its simplicity.

According to [62], metamodeling has been widely adopted for RA to enhance compu-
tational efficiency. They developed an efficient reliability method that harnesses Adaptive
Support Vector Machine (ASVM) and the MCS. This applied a pool-based ASVM for the
construction of MM with the minimum number of training samples, whereby a learning
function was proposed to sequentially select informative training samples. Then the MCS
was used to calculate the POF based on the SVM classifier obtained. Dai et al. [63] presented
a multiwavelet linear programming SVR method for RA that mitigates the difficulties inher-
ent in the standard quadratic programming SVR, such as being computationally expensive
and possessing the inability to guarantee sufficient model sparsity. The method involves
developing a novel multiwavelet kernel by the construction of an autocorrelation function
of multiwavelets and uses this kernel in context of linear programming SVR for predicting
the LS.

4.2.6. Artificial Neural Network Approach

ANNs are established to be universal function approximators and have found ap-
plications in Structural Reliability Assessment (SRA) by several researchers [4,64]. The
neural structure of the brain has been employed in creating mathematical models defining
ANNs. ANNs establish a functional relationship between two spaces of data during a
learning process and replicate that connection during a recall process. According to [31],
ANNs can approximate highly non-linear functions accurately over the entire domain
with very high fidelity. Several studies [2,42,65] have also been carried out, proving the
precision and efficiency of the response surface method based on ANN in comparison with
the conventional response surface methods for reliability assessment.

Multilayer Perceptron Neural Networks use more than one layer of neurons: an input
layer, one or more hidden layers, and an output layer. The neurons have activation func-
tions to relate the input they receive to the output they send to the next layer. Furthermore,
there are weights between different neurons and biases that are trained iteratively, conven-
tionally using reinforcement learning via back propagation where the weights are adjusted
between each neuron depending on how accurate the prediction is to the desired result.
The model can be applied to an approximation problem by applying a suitable output layer
function and minimizing a cost function [57].

To address the extreme number of FEA required to achieve accuracy, a directional
approach was developed, which was reported to significantly improve efficiency. This
utilizes deterministic point sets to preserve the underlying joint probability distribution
of the random vector describing the structure and adopts neural networks to focus the
simulation efforts in the most crucial regions [66]. In [67], two adaptive stochastic search
algorithms are used to locate and trace an implicitly defined function to construct an SM
for RA. An ANN-SM was applied in the implementation, and it was claimed that the
method could, in principle, be applied with any form of SM. In both algorithms proposed,
the SM evolved continuously with sample selection and was used in the choice of new
samples such that convergence was achieved rapidly to an accurate representation of the
limit surface.

4.2.7. Radial Basis Function Approach

A typical Radial Basis Function (RBF) model is a form of a feed-forward neural
network composed of single neurons using RBF transfer functions. The result of this
approach is that a radial basis function fits a surface through the measured sample points.
The values between the sample points are calculated from functions based on the radial
distance from the original point. The equation for a multi-quadratic basis function is
expressed as [57]

ϕ(r) =
√

1 + (εr)2 (15)
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where ε is the shape parameter and r is the radius. The output is from the entire model,
whose basis function is a function of the Euclidian norm, which is effectively the radius,

s(x) =
n

∑
i=1

λi ϕ(x− xi) (16)

where s(x) is the output of the model and λi is the weight of the i-th node.
RBF nodes can be employed in a variety of models; however, they are usually applied

in a single-layer model with a single node for each sample point in the training set.
Bucher and Most [42] compared approximate response functions in terms of their

capacities to reduce computational costs in SRA. The RS approaches are based on poly-
nomial functions, radial basis functions (RBFs), and ANN. In the polynomial approach,
the higher-order polynomial shows severe oscillations, requiring too many support points,
and this drawback could be addressed via the application of smoothing techniques, e.g.,
the moving least-squares method (MLS). In the ANN method, the output is linked with
the input parameters via simple, flexible functions including linear, step, or sigmoid func-
tions that are combined by adjustable weights. The RBF approach also allows for flexible
adjustment of the interpolation scheme. The availability of interpolating functions that
can be augmented incrementally by allowing extra support points implies that it permits
approximation sequences to be provided, ensuring quick convergence of its reliability
estimates to the true value.

Zhang et al. [68] proposed an efficient RSM to evaluate structural reliability using
evidence theory in order to overcome the associated high computational cost. They de-
veloped a DoE technique whose key issue is the search of the important control points at
intersections of the LS and uncertainty domain. These points have a significant contribution
to the accuracy of the subsequent RS. Based on these, a highly precise RBF to the actual
LSS was introduced.

5. Probabilistic Fatigue and Fracture Mechanics Approaches

Since limit state design is a common trend in modern design, details of this will be
presented in this section [7]. The general design requirement is to provide structures with
sufficient safety margins taking into account all types of uncertainties having effects on
its integrity (i.e., load and capacity variability, modeling idealizations, etc.). Limit state
design can be defined simply as that the load/demand of a structural system should
under no circumstances exceed its resistance/capacity. For offshore and marine structures,
various limit states are prescribed in design standards that should be assessed within a
comprehensive design. According to the DNV (Det Norske Veritas) [69], the four main
types of limit states that should be considered are: (1) serviceability limit state (SLS):
deformation and vibration limit states; (2) ultimate limit state (ULS): buckling and stress
limit states; (3) fatigue limit state (FLS); and (4) accidental limit state (ALS).

Significant cyclic loads induced by wind and wave imposed on OWT support struc-
tures make their design to be generally dominated by FLS. The assessment of the FLS
is performed using two types of methods, i.e., the S-N (Stress-Number of Cycles) curve
method and fracture mechanics (FM) method. The S-N curve approach is based on experi-
mental fatigue-test data. This approach is commonly used in practice and well described
in standards for fatigue design of offshore structures [34,69]. Based on the S-N curve
approach, the number of loading cycles to failure, N, can be determined from [3]:

logN = A−mlog∆S (17)

where A and m represents the intercept and the slope of the S-N curve on the log-log plot,
respectively, and ∆S is the stress range. Design standards, such as the DNVGL-ST-0126
(Det Norske Veritas Germanischer Lloyd Standard), prescribe values for the intercept A
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and slope m in Equation (17). The Equation (17) can also be referred to as the Basquin’s
formulation. The PF of FRA, according to the S-N curve method, is given as [2]:

g f ,SN = logN − logN(t) (18)

where subscripts f and SN represent the FLS and S-N curve method, respectively, N is the
number of loading cycles to failure, as given by Equation (17), and N(t) is the expected
number of loading cycles during the given design life.

FM method is applied at the design stage of offshore structures, as this provides a
platform for predicting the fatigue life, and during the operational stage, to allow the
decision-making process strategies for inspection scheduling and repair. Common among
large and complex structures, such as offshore tubular structures, crack-like imperfections,
notches, or other forms of discontinuities exist. The basic concept of the FM approach
revolves around the characterization of the stress field in terms of a single parameter, ∆K,
which is known as the stress intensity factor (SIF) near the crack [5,30]. This parameter is a
function of both the stress S and crack size a.

The FM approach is based on the models created to predict the crack growth in a ma-
terial when variable loads are applied. The crack growth is a process not fully understood
at the atomic level. The engineering analysis of this is studied using relationships between
SIF and crack-growth rates. The Paris law can be expressed as

da
dN

= C(∆K)m (19)

where a is the crack length, N is the number of cycles, ∆K is the SIF range, and C and m
are material constants. State-of-the-art numerical and experimental research on bilinear
crack-growth law phenomena can be found in [70–79]. The safety margin for fatigue
reliability analysis based on LEFM (Linear Elastic Fracture Mechanics) is given by:

g f , FM =
∫ ac

ao

1
Y(a)m(√πa

)m da− C∆Sm(N(t)− No) (20)

where subscript f and FM represent the fatigue limit state and FM method, respectively; ao
is the initial crack depth (or the crack depth at time t0); ac denotes the critical crack depth;
Y(a) is the compliance function, which is related to crack depth a; m and C are Paris’ law
constants; N(t) is the total number of stress cycles in the time period [t0, t]; and No is the
initial number of stress cycles. The findings of the state-of-the-art-review studied herein
will be presented later in Section 7.

6. Other Methods and Applications
6.1. Stochastic Finite Element Method (SFEM)

Component reliability methods are based on a failure function g(ϑ) in the space of
basic random variables, which are collated in the vector θ (here θ is used for random
field instead of X to prevent confusion between spatial variation and random field). It
is easy to implement if g(ϑ) is explicitly defined or known. In practical cases, the failure
function is usually unavailable explicitly in the closed form, and the response is derived via
FEA. Several computational techniques may be employed for the RA with implicit failure
functions. The major techniques include Perturbation Techniques, Neumann expansion
solution, RS approach, and branch and bound techniques [8,9]. A state-of-the-art review
on SFEM is presented in [80].

The perturbation techniques are desirable owing to their efficiency in computation
times and accuracy. Theoretical background on perturbation method can be found in [8,9].
Li et al. [81] proposed a new class of hybrid perturbation-Galerkin methods to establish
the response function (surface) to overcome the major challenge in the RA of the complex
structure of being unable to find the response function from which the LS can be determined.
Single-variable and double-variable approximations are the main methods incorporating a
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combination of the perturbation technique and Bubnov–Gerlekin projection, where several
orders of summation terms of polynomial expansions are adopted as the Galerkin trial
functions or basis vectors.

Feng et al. [82] presented a robust stochastic-free vibration analysis for engineering
structures involving hybrid, yet spatially variant, uncertain system parameters. Both the
stochastic and non-stochastic representations of the spatial dependencies of the uncertain-
ties are simultaneously incorporated within the unified analysis as distinguished from the
conventional hybrid uncertain eigenvalue problem. It was asserted that the applicability
and effectiveness of the proposed computational framework were demonstrated by the
numerical investigations on various engineering structures.

In [83], a general FE (Finite Element)-based formulation was proposed for the assess-
ment of the mean and mean-square response of stochastic structural systems with material
properties defined by random fields governed by a flexibility-based formulation without
involving approximations. Integral expressions of closed form for the mean and mean-
square value of the displacement response of structures that are stochastic and statically
indeterminate was introduced. Two new quantities, variability response function (VRF)
and the mean response function (MRF) for the mean-square response and the uncertain
material properties, were modeled using the stochastic field spectral density function,
which can be referred to as integral expressions. Toward achieving an efficient and accurate
numerical evaluation of the VRF and MRF, a FEM-based fast MCS procedure (FEM-FMCS)
was introduced.

6.2. Reliability Analysis of Systems

System RA could be conducted directly or as a follow-up of a set of a single element
or mode analysis. The first option is through NI or MC methods. It may be viable, in
many cases, to begin with an analysis of individual components and process the outcomes
afterwards to compute the POF for the system, and it may be evident that the methods
of the series and parallel systems are capable of providing solutions to the combined
system problems. For complicated structural systems, applying the FORM/SORM and
MC techniques directly could either be too computationally expensive or the LSF could
be unavailable explicitly in the closed form. For realistic structures, then, the response
is obtained through a numerical technique such as FEA, whereby the derivatives are
unavailable and each evaluation of the implicit LSF is time demanding. A wide range of
computational procedures can be used for the RA with implicit failure functions in the form
of the Stochastic Finite Element Method (SFEM) [8,9]. Detailed explanation on Parallel
System can be found in [8,9,30].

In the series system, failure of the weakest link results in failure of the entire system.
Series systems are modeled commonly by assuming multiple failure modes of a component
or multiple failure paths of a structure. A detailed explanation of this can be found
in [8,9]. Gong and Zhou [84] evaluated the system reliability of series systems using a
proposed improved equivalent component approach. The FORM context was considered
for an analytical expression derived to estimate the unit normal vector related to the
equivalent component. Hence, the computational efficiency for establishing the correlation
coefficients between the equivalent component approach and the system is enhanced.
At each combining step, the two components with the utmost correlation coefficient are
combined in an adaptive combining process. The efficiency and accuracy of the enhanced
equivalent component approach were demonstrated for a series system with unequally
and equally correlated components.

Zhang et al. [85] described a framework for developing reliability-based system
resistance factors suitable for use with a Direct Design Method (DDM), which is a system-
based, design-by-advanced analysis approach. A design-by-inelastic analysis method
that relies on existing resistance factors originally developed from member reliability
considerations was implemented for minimum system reliability requirements [68].
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6.3. Time-Variant Reliability of Systems

Theoretical background on the transfer into T-V (Time-variant) system method and on
the outcrossing approach can be found in [8,9,30]. In many cases, reliability aspects are T-V,
for instance, some kind of degrading mechanism on the resistance side or fluctuating loads
may be the reason. In [11], T-D RA of aging structures was presented, wherein uncertainties
such as structural deterioration and non-stationarities in structural load process were taken
into account. It was claimed that the improved approximate method, which requires only
low-dimensional integration, reduces significantly the cost of assessing T-V reliability over
a service life extending to 50 years. In [86], a T-V reliability method was formulated as
a large-scale series system consisting of T-V response functions obtained by discretizing
T-V continuous response functions within the forecast time period. This is used instead of
analyzing outcrossing rates, which have a limitation of being inaccurate for low boundary
reliability with dependent outcrossing rates. In [87], an efficient cross-entropy-based
adaptive IS method was proposed to facilitate the wide application of stochastic process-
based T-V reliability methods in complex problems. The LHS with proper correlation
control is used to extend cross-entropy-based IS to T-V RA.

7. Critical Discussion

Various challenges, as well as their respective solutions, with respect to SRA methods
were identified and presented in Sections 2–6 in this study. This section collates and
discusses key aspects from the studies that stand out as particularly important. Tables 1–4
summarize the most popular SR methods and their capabilities and limitations [1,5,6,16,17,
19,22,28–30,55,64,80].

The developments over the last 40 years, with an emphasis on recent development in
the FORM and SORM, were reviewed in great detail by Breitung [17] and show that the
FORM and SORM are relevant and indispensable in the area of RA as applied to structural
engineering. This is in agreement with previous studies carried out by Rackwitz [28].
The well-practiced quantitative approaches to reliability-based risk analysis of analytical
nature, such as the concept of LS and FORM/SORM or MCS methods, are still common
practice [1]. The conventional SR methods, such as FORM/SORM and MCS, still remain
the de facto methods and serve as the basis for enhanced methods that overcome their
inherent limitations. Recent research [80] shows that the FORM is the most efficient
SRA method ahead of the SORM. The concepts underlining the intricate FORM/SORM
algorithms, including the application of numerical optimization methods that form the
basis of advancements already discussed in Section 2, are examined in depth and elucidated
below [17].

Having defined the LSF g(u1, . . . , un) in the u-dimensional Euclidean space, Equation
(7), the FORM aims to approximate the failure domain F = {u; g(u) < 0} by a halfspace
by replacing the LSF by a linear tangent hyper-plane at the point u∗. The LSS G =
{u; g(u) = 0} has the nearest geometric distance to the origin, which means that the PDF is
maximal there since it is proportional to −|u|2. The HL algorithm revolves around finding
a point u∗ for an LSF g(u) at the normal standard space such that

|u∗| = min
g(u)=0

|u| = min
g(u)≤0

|u|, (21)

i.e., with the shortest distance to the origin. Basically, this involves linearizing the LSF at
an initial point, calculating the design point for the linearized LSF, and then proceeding
recursively, always again linearizing until convergence is achieved.

Line-search and trust-region methods are common deterministic minimization ap-
proaches for differentiable functions [88]. In terms of saving computational costs, the
former is usually employed. In the line-search approach, to find the minimum of a function
f (x), a sequence xk of points, of which convergence toward a minimum is sought, can be
calculated iteratively via:

xk+1 = xk − αkH−1
k ∇ f (xk) (22)
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where xk is the iteration point at present, Hk a symmetric and positive definite matrix,
∇ f (xk) the gradient, and αk the step length.

The search direction H−1
k ∇ f (xk) is assumed as a direction such that the target function

decreases and αk in such a way that the decrease based on a certain criterion is sufficient.
Only a step length is chosen for a somehow sufficient decrease as no exact line search is
often made for αk—an inexact line search [88]. The inexact line search is carried out either
by finding the minimum value after polynomial approximation is made to the function on
the line or by calculating the function value for a decreasing sequence of step lengths until
attaining a sufficient decrease.

Hk is selected based on the information and storage space available. Newton methods,
where Hk = ∇2 f (xk), or quasi-Newton methods, where Hk is an approximation of the
Hessian, are applied if the information on second derivatives can be collected. However, if
this information is unavailable, steepest descent approaches, which use the n-dimensional
unity matrix Hk = In, or conjugate gradient approaches are applied. In the full Newton
approaches, knowledge about Hessian of the target function is required, which implies
that these are usually computationally costly for problems having high dimension.

It seems the steepest descent method, −∇ f (xk), should be the optimal search direction
choice. However, this approach does not possess optimal convergence characteristics [88]. This
has linear convergence speed and its application is usually discouraged according to literature.

A superior approach that makes use of only gradient information is the conjugate
gradient method [88]. Quasi-Newton methods involving reconstructing the Hessian from
the change in the gradients are more efficient. Calculation of second derivatives is avoided
here but storing the approximate n× n−matrix Hessian is required.

This sequence of steps is applied in modified form for finding constrained extrema.
The extrema of f (x) under g(x) are found under some regularity conditions under the
stationary Lagrangian function (L(x, λ) = f (x) + λg(x)) points with:

∇xL(x, λ) = 0
g(x) = 0

(23)

in such a way that determining these points involves altering the minimization algorithms.
In the SQP (sequential quadratic programming) method, the original problem is

replaced in each iteration step by a quadratic function in which its minimum under the
linearized constraint must be calculated, i.e.,

minxTAkx + bT
k x + c under g(xk) +∇g(xk)

T(x− xk) = 0, (24)

provided the original constraint condition g(x) = 0 is not violated by much and this
method predicts a direction whereby the target function f (x) is decreasing accurately. In
order to achieve this, a merit function M(x, C) in the direction given by p is minimized
via adjusting the step length. Depending on a parameter C, the merit function is that in
which its constrained minimum approximately coincides at least with the unconstrained
minimum of the target function for parameter C of sufficiently large magnitude.

Alternatively, the augmented Lagrangian method, which involves replacing the con-
strained optimization problem by a sequence of unconstrained optimization problems, can
be utilized. The Lagrangian L (x, λ) function is replaced by the minimized augmented La-
grangian L(x, λ, µ) = f (x) + λg(x) + µg(x)2 and then by adjusting the parameters λ and
µ. The unconstrained minima of L (x, λ, µ), given a large enough µ, are also the minima
of the constrained problem [88]. In order to determine the minimum of the augmented
Lagrangian, any approach for the unconstrained optimization can be applied.

In order to overcome the deficiencies of non-convergence encountered in running
the original HL–RF algorithm, several modifications were developed. These are critically
discussed below [17].

In exceptional cases, the HL–RF algorithm behaves like the Newton–Raphson method
with a unique feature of possessing quadratic convergence speed, assuming the algorithm



Metals 2021, 11, 50 20 of 37

starts on the connecting line of the origin with the beta point, such that the LSF gradient
at a point u on this line is parallel always to the position vector u. For example, in a
hyperparabolic LSF problem, having defined h(v) = g(v∇g(u)), then the iterative HL–RF
algorithm can be expressed as:

vn+1 = vn −
h(vn)

h′(vn)
. (25)

This is the 1D Newton–Raphson method used to find the zero of the function h(v)
characterized by quadratic convergence speed.

Since steepest descent procedure uses only local descent direction information and
due to its inability to establish more efficient search directions as quasi-Newton methods
via varying the search direction, problems of considerable starting point-beta point distance
may run a long time through valleys. In the case of steepest descent close to the MPP, the
problem is that the Lagrangian in the tangential space there is approximately equal to its
second-order Taylor series expansion L(u∗, λ∗) + (u− u∗)T∇2

uL(u∗, λ∗)(u− u∗)/2 at the
design point u∗ (wherein λ∗ is the Lagrange multiplier), where the gradient is vanishing.
Thus, these methods have slow convergence and zigzagging characteristics.

Conversely, these methods need only one evaluation of the LSF gradient at each
step and appear to be quite robust. Most studies performed in the last years proposing
improvements have failed to address the inherent challenges, such as convergence speed
in the original iteration scheme, because these approaches only apply not such a significant
step-length adjustment.

Most optimization schemes revolve around arriving at super-linear convergence rate,
such that

dn+1 ≈ γdα
n with 1< α ≤ 2 and γ >0, (26)

so as to avoid the slow linear convergence found in the steepest descent approach. In order to
achieve fast convergence and avoid zigzag circumstances, a better option might be to restrict in
the vicinity of beta point methods that aim at reconstructing the Hessian of the Lagrangian. It
was asserted in [2] that in SQP methods the approximating matrix for the Hessian is unreliable
and tends to become indefinite. This is because beta point Hessian can be indefinite there, as
it is not necessarily positively definite. In regular circumstances, assuming that the Hessian is
definitely positive, semi-definite only in the tangential space at the MPP is valid.

Reduced Hessian methods, which aim at reconstructing only the Hessian projected
onto the tangential space, seem to be more reliable [88]. Given that the constrained
minimum is regular, this projected matrix is positively definite. According to [17], it is
difficult to recommend which approach to use, as these variations are problem-specific.
Methods such as reduced Hessian, quasi-Newton, or conjugate gradients may have better
convergence characteristics close to the beta point but are less robust compared to the HL–
RF algorithm for problems with LSF that is not sufficiently smooth. Here, all approaches
discussed are variants of or associated with the SQP method. Alternative methods are the
augmented Lagrangian approaches but they seem to be inefficient for the beta point search.

Due to the volume of research, developments in the area of SRA are tending toward
the use of RS and SM/MM. The PF of most realistic engineering structures today are highly
non-linear and implicit (i.e., cannot be solved without the use of FEA) and, thus, analytical
methods are incapable of solving them efficiently. Also, the MCS cannot efficiently provide
accurate solution of LS with very low failure probabilities. Despite the fact that numerical
techniques, such as IS, LHS, and SS, have been developed to reduce computational costs,
this drawback, among others, still exists. There have been several alternative methods that
involve a combination of two or more reliability methods to overcome these drawbacks.
The RSM provides an efficient vehicle to combine the high-fidelity FEA modeling with
conventional SRA methods. SM SRA methods are ideal for cases requiring implicit PF
to be evaluated point-wise using FEM. The PCE (Polynomial Chaos Expansion) has been
used as a regression technique to model accurately the global behavior of computational
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models, while the KIM with high fidelity models local variations, owing to its interpolation
capabilities. Global methods, such as the Active Learning Reliability Method combining
Kriging and MCS (AK-MCS) and the EGRA [56], have been found to be very efficient, as
they give accurate results for implicit, time-consuming, unaffordable PFs, as demonstrated
in [14]. For the treatment of problems, such as complex geotechnical designs and those
involving high-frequency vibrations and of elastic stability, SFEM has been found to
be ideal as it accounts for spatially varying stochastic structural heterogeneity [80,83].
Numerous studies were carried out on reliability analysis in other related areas such as
in geotechnical engineering, fluid mechanics, rock engineering, etc. The scope of the
present study is limited to only reliability assessment with respect to metal offshore jacket
structures associated with structural engineering.

Applications of the T-D SRA for the design of modern metal structures such as those
deployed offshore (i.e., in environments characterized by highly stochastic loads and
resistance properties, thus necessitating the need for SRA to account for such uncertainties
systematically) include [2,3,44,47–49,89–94]. In [95], the fatigue reliability of fixed offshore
platforms was investigated by analyzing different failure scenarios. The analysis was
divided into a finite number of sub-scenarios in order to evaluate the occurrence probability
of a special scenario. The Palmgren–Miner’s rule and S-N curve were employed to estimate
the accumulated fatigue damages in the LSF. Extensive research has been carried out
in the area of probabilistic fracture mechanics approach to FRA, some of which include:
According to [96], to accurately evaluate the effect of an inspection and repair strategy of
structures subjected to degradation resulting from crack growth, application of FM models
are required to describe crack propagation. The reliability methods applied to account
for inherent uncertainties with respect to selecting an optimal tool for making the proper
decision, which enables a balance between design criteria, inspection, and repair plans,
include SN and FM formulations. These include a crack-growth formulation based on
bilinear crack-growth law, assuming both crack-growth law segments to be correlated and
non-correlated in the POF calculation. The FORM and SORM, as well as MCS, were used
to illustrate the effect of inspection in the updated reliabilities. It was reported that crack
initiation time, initial crack size, and the crack aspect ratio play significant roles in the
calibration of FM methods.

Dong et al. [91] investigated the fatigue reliability of welded multi-planar tubular
joints of the support structure of a fixed-jacket, offshore wind turbine in a water depth
of 70 m. The long-term statistical distribution of hot-spot stress ranges was fitted using a
two-parameter Weibull function by combining time-domain simulation for the inherent
environmental conditions (wind/sea states) in operational condition. The SN-Miner–
Palmgren approach-based fatigue design criteria were satisfied by normalizing the load
histories and, thus, the estimated safety levels refer to fatigue design of tubular joints
that meet design criteria. The FM analysis of crack growth was applied for the reliability
analysis. The hot-spot stress range was increased, assumed to be due to changes of the
nominal stress and stress concentration factors produced by thickness thinning (wastage)
effects of selected components with a general uniform corrosion model in order to account
for the corrosion-induced crack-growth rate. Also investigated were factors such as the
effects of geometry function and corrosion-induced material degradation on the reliability
evaluation. The influence of inspection and repair with and without considering corrosion
were investigated based on the quality of inspection in terms of probability of crack
detection curves. FM models were applied to describe crack propagation models, which
were calibrated based on SN-data since the initiation of cracks and their initial stages at
growth are subject to uncertainties that are hard to quantify. The FORM was applied in the
calculation of the RI at the welded joint, representing the failure-critical hot-spot location
where the most cumulative fatigue damage occurs.

According to [97], the FM approach is more complicated than the SN-curve design,
which increases the risk of gross errors. In [4,90], it was assumed that the errors due to the
complexity of the FM approach may be reduced as a result of using the ANSYS SMART
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Fracture© FEA facility. Hence, in their study, owing to the high fidelity of the FEA model,
it was assumed that this accounted for model uncertainties that may exist due to errors if
analytical calculations were to be used. The non-intrusive formulation used therein enables
an enhanced analysis, leading to more accurate results as it utilizes the 3D simulation
method, as established in [2,4].

In [4,90], SN-curve and FM approaches to fatigue reliability assessment were compared.
A non-intrusive stochastic framework that includes 3D parametric FEA model of OWT jacket
support structures was developed, taking account of soil–structure interactions. According to
the results revealed from the study, the structural reliability prediction produced following
the SN-curve method gave conservative results compared to those produced using the FM
approach at the start of the service life of the structure, but toward the end of the design
life, the results may be overly optimistic. Hence, the authors inferred from the foregoing
that it is ideal for applying the S-N curve approach during the design stage, while the FM
approach should be used as the structure approaches failure. Furthermore, other fatigue
reliability assessment exercises performed included estimating the maximum inspection time
for the support structure determined via updating the developed reliability framework with
structural health monitoring/condition monitoring (SHM/CM) data. Hence, the updated
reliability assessment provides valuable information for making decisions concerning the
inspection, maintenance, and repair (IMR) of OWT jacket support structures.

A subcategory under this, which is an area open to further investigations due to
the sparse amount of research, is the damage tolerance approach for probabilistic pitting-
corrosion fatigue life prediction performed by [2], wherein comprehensive mechanistic-
based probabilistic models for pitting-corrosion fatigue life prediction by including all
stages were presented, and the FORM was implemented with the proposed models. In [2], a
generic RA framework that combines parametric FEA modeling, RSM, and RA specifically
for complex OWT jacket-type support structures in the presence of highly stochastic
variables and taking into consideration, specifically, T-D phenomena such as fatigue as
well as degradation mechanisms such as corrosion was developed. Two ANNs were
trained to relate various stochastic variables for predicting the PF. The two ANNs were
employed in order to have an intermediate predictor for a stochastic variable, which is
more advantageous because of the added interpretability of results. An advantage of the
proposed methodology is that the first ANN architecture enabled a significant reduction in
the computational cost, which would have been required to simulate global behavior of
the support structure, thus allowing other global parameters to be incorporated [4].

Despite the high volume of research in this area, it has proven troublesome to establish
a model that adequately describes the growth of short cracks, particularly for corrosive
environments. Different uncertainties were reported in the two-stage crack-growth law
with the (lower) near-threshold segment having the largest variability. The larger variability
may be because the knuckle region is very close to the short-crack regime and, thus, the
inherent uncertainty of the ∆K threshold, whereby the material experiences no crack growth
below this. It is not clear how the material behaves around this region. Coupled with the
difficulty of carrying out measurements of such fatigue, growth rates in tests entails that
further research is required on this. It was suggested in [2,4] that one way to overcome this
drawback is by introducing effective initial flaw size (EIFS) concepts, which are alternative
solutions to the K-T (Kitagawa-Takahashi) diagram.

Several studies have been performed on applying GA in SRA and on sensitivity
analysis and design optimization, referred to as the stochastic/structural reliability sen-
sitivity analysis (SSA) and RBDO (Reliability-based Design Optimization), respectively.
The scope of this study was limited to only SRA methods, due to the myriads of research
performed in these areas (i.e., GA, SSA, and RBDO). It should be noted that this review
did not cover all the papers published on this subject, but attempted to present the main
techniques, with the intent of producing an important document, which serves as a guide
to designers/researchers on this subject.
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Table 1. Capabilities and limitations of the most common level III approximation structural reliability methods.

Method Capabilities Limitations

First Order Reliability
Method (FORM)

Mean Value First Order Second
Moment Reliability Method

• Simplest and least expensive reliability
method

• A simplistic technique used in
calculating reliability indices, using a
minimum representation of basic
variables

The applicability range of this method is diminished as a result of the
following reasons:

• Non-linearity or large variations may not be handled by this method
efficiently because linearization of the LSF about the mean values
may result in inaccurate results.

• The MVFOSM algorithm is dependent on different (mathematically
equivalent) formulations of the same problem; for both non-linear
and linear LSF expressions.

Hasofer and Lind Method

FORM approximation gives adequate
outcome when the function is nearly linear
close to the MPP, and the LSS has only one
minimal distance point.

• For cases where the LSS is characterized by irregular/large
curvatures (high non-linearity), the POF estimated by FORM, using
the RI β, may yield inaccurate and unreliable results.

• MVFOSM method is a straightforward procedure, while the HL
method needs several iterations to converge, especially for
non-linear problems

Hasofer and Lind-Rackwitz Fiessler
Method

Widely used approximate analytical method
since it provides a good balance between
efficiency and accuracy in realistic
engineering RA.

• It may yield unstable results, such as severe oscillations and chaotic
solutions for highly non-linear problems (gives non-convergence
problems).

• Cannot be used for implicit LS and also limited to only one
dominant failure mechanism

Second-Order Reliability Method

Ideal for cases where the LSS has large or
irregular curvatures (high non-linearity), the
POF estimated by FORM, using the RI β, can
produce inaccurate and unreliable results. By
introducing second-order Taylor series
expansions (or other polynomials), this
drawback may be overcome.

• It is basically a more time-consuming and complex process
• For highly non-linear PF with wide input data sets the estimated

FORM/SORM RI results may not be sufficiently precise as a result of
non-normal to normal transformations and multiple MPPs as well as
the application of only first/second-order terms to calculate the
original PFs.

• As a result of the parabolic approximation, there is an additional
error in such SORMs besides the quadratic approximation error.
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Table 2. Capabilities and limitations of the most common level III direct structural reliability methods.

Method Capabilities Limitations

Analytical Integration Ideal for simple failure surface

• Only possible for some special cases of limited practical
interest

• Due to rapidly increasing computational demands as the
number of dimension increases (the so-called ‘curse of
dimensionality’) it has not found great favor in reliability
computations.

Numerical Integration Standard routines are found in most computer systems Not always feasible, owing to the growth-off errors and excessive
computational times

Crude Monte Carlo Simulation Technique (MCS)
Most versatile, clear, and well understood exact method available
Requires no partial derivative of LSF; therefore, the method can
be used for implicit LSF.

• Computationally unaffordable/exorbitant for real
engineering problems (for very small POFs)

• Simplest MC approach for reliability problems but not the
most efficient

• It becomes inefficient when the LS needs a continuous
calculation procedure such as FEA, in which case it will be
impractical.
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Table 2. Cont.

Method Capabilities Limitations

Variance
Reduction
Techniques

MCS with Importance Sampling
Technique

• Reduce computational time compared to the crude MCS
• Has been demonstrated to be very robust and effective for a range

of possible LSF shapes.
• Increases the accuracy for the same number of runs

• IS distribution hv(·) may not be chosen well, such as
being too flat or being skewed

• Extremely concave LSFs may result in inefficient
sampling

• A maximum likelihood unique point x∗ may not be
identifiable:

• If fx(·) has a ‘flat’ contour region
• If the PF G(·) = 0 coincides with a contour of fx(·) in a

region of interest, or
• If the PF G(·) = 0 is non-smooth (e.g., Ripple-like) and

has a series of candidate locations for x∗

• There can be more than one point of local maximum
likelihood such as when fx(·) is not uni-modal

• The application of IS is sometimes referred to as an art
that must be applied with caution.

Adaptive Sampling

• Involves a prior analysis to locate the design point for problems of
high dimensionality in particular; a search algorithm with the
constraint that the point must lie along the LS would fix the
desirable location of hv(·). It is also possible to modify hv(·),
depending on the information being obtained during the search
process.

• Can be applied for multiple failure mechanisms and small
probabilities of failure.

Application of the directional sampling and adaptive
sampling is limited to a moderate number of random
variables
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Table 2. Cont.

Method Capabilities Limitations

Variance
Reduction
Techniques

Conditional
Expectation
Techniques

Directional
Simulation

• Has the advantage of simulation in polar coordinate standard
normal (y) space.

• Is recommended for convex safe sets
• Is applicable specifically to LSS which are nearly spherical (in

standard normal space y)
• The amount of sampling required usually is reduced considerably

compared to IS in Cartesian coordinates
• The special case of hyperspherical LS surface in standard normal

space, only one directional sample is required (to fix the radius)
and would give the exact result immediately.

The technique is not very efficient for one or a few planar LS.

Axis Orthogonal
Simulation
Technique

Is recommended for convex failure sets They typically require a large number of response function
evaluations, which makes them impractical if the response
function is expensive to evaluate.

Design Point Simulation Makes use of the FORM design point which makes it less cumbersome
in the search for the POF

Subset Simulation

• Efficiently deals with small failure probabilities
• Converts the simulation of a rare event into sequence simulation

of more frequent events.

• Additional complexity as it involves the use of Markov
Chain MCS Method.

• Inefficient for expensive PF.



Metals 2021, 11, 50 27 of 37

Table 3. Capabilities and limitations of the most common advanced approximation structural reliability methods.

Method Capabilities Limitations

Parallel System

A parallel system fails when all the links (potential failure
modes) fail. The most consistent function of the parallel system
is for modelling the sequential failure of components in a single
failure path leading to structural failure

Redundant members are introduced which introduces a
computationally intensive procedure

Series System Ideal for pipelines Failure of one component leads to failure of the system

Stochastic Finite
Element Method

Perturbation Method The perturbation techniques are desirable owing to their
efficiency in terms of computation times and accuracy Too mathematically intensive

Neumann Expansion Solution

• Can be referred to as a computational scheme to lessen the
amount of calculation time and to increase the efficiency of
standard techniques as FORM/SORM and MC

• Is adopted to prevent repeated inversion of the random
system-stiffness-matrix while undergoing the MC
simulation approach.

• The matrix ko has to be decomposed only once for all
samples in conjunction with the MCS. Due to this single
matrix decomposition, computing time can be significantly
reduced.

Determining the covariance matrix among all elements of the
fluctuation part of the stiffness matrix involves prohibitively
high computational effort.

Response Surface Method

• It is desirable when the simulation is used to determine
reliability results

• Ideal for implicit LSFs
• It is not restrained by the number of random variables
• It is simple to perform with high accuracy

• May sometimes be inefficient for highly non-linear failure
function

• Restricted to small dimensions of uncertainty space
• Inefficient for large complex structures
• If the initial point of choice in the RSM is unreasonable,

and the objective function is highly non-linear, then the
rate of convergence of the RSM is slow.

• Therefore, the RSM for SR estimation in a wide range of
applications has been limited.

Branch and Bound Method
Are useful for the elastic-plastic analysis of frame structures
where effects of plasticity like the formation of plastic hinges
give sharp changes in the stiffness behavior

Its application is limited
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Table 3. Cont.

Method Capabilities Limitations

Surrogate Mod-
els/Response

Surface
Model/Meta-

Models

Polynomial Regression Models The most widely used due to their simple formulations and
implementation

• Higher-order polynomials tend to show severe oscillations
• They sometimes face non-convergence issues for cases

with an increasing number of support points centered at
the mean value of the basic random variables

Approaches
Based on:

Radial Basis
Function

• SM has the advantage of been more affordable compare
with other exact methods

• Has the merit of defining failure conditions of structural
systems such that RA can be conducted with high fidelity.

• Have been validated to be the best interpolation methods
compared to others by using examples of different kinds of
scattered data.

Computationally efficient but at the expense of accuracy

Local
Interpolation

Model
(Polyhedra)

• These are highly flexible to local approximations and
should converge in the long run to the exact LSF.

• It is possible to construct approximation whose reliability
estimates converge fast to the true value, as a result of their
availability which can be augmented incrementally by
providing additional support points.

It is an approximate method

Artificial Neural
Network

• Possess the capability of describing failure conditions of
structural systems such that RA can be carried out with
high fidelity.

• They are flexible in nature and have the ability to capture
complex non-linear relationships between input and
output through appropriate learning.

• Have practical advantages over classical RSM due to their
superior mapping capabilities and the flexibility in the
functional form

• Overfitting could occur, whereby the number of hidden
nodes is too large for the number of training samples

• Have the main challenge of suitably choosing the learning
parameters that help restrain under or overfitting, as both
are equally disastrous.

Support vector
Machine

In comparison to ANNs, SVM employs the theory of
minimizing the structure risk to avoid the problems of excessive
study, calamity data, local minimum value etc.

Its implementation involves high computational efforts, and
sufficient model sparsity cannot be guaranteed.
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Table 3. Cont.

Method Capabilities Limitations

Surrogate Mod-
els/Response

Surface
Model/Meta-

Models

Approaches
Based on:

Moving Least
Squares

• The optimization problem of the overdetermined system
of equations can be solved by using the least-squares
approach.

• As a result of the approximate character of the classical
MLS method, the exact representation of support point
values cannot be achieved, which is a positive aspect.

• If the input data is noisy, it is owing to the fact that due to
the approximative character of the classical MLS method,
the support point values cannot be represented exactly.

• The application of this in the framework of RA this
property result in significant errors in the calculation of the
POF

Kriging Models

• Have more general approximation capability, i.e., predicts
highly accurate POF values compared to the polynomial
regression models

• Have important features that have been explored in the
context of SRA such as the interpolation capability, the
flexibility to estimate arbitrary functions with high
precision as well as being capable of providing a measure
of local uncertainty for the model predictions.

• Provides prediction uncertainty measure which has been
used in the development of effective adaptive SMs for SRA
with active refinement algorithms for the DoE.

Significantly more complex compared to polynomial regression
models
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Table 4. Capabilities and limitations of the other common structural reliability methods.

Method Capabilities Limitations

Stochastic
Expansion

Non-Intrusive Stochastic Response Surface
Method

• It is an extension of the conventional RSM, the PF of
structures are replaced with polynomials while the
traditional one employs polynomial sequences, and
the SRSM uses Polynomial Chaos.

• Describes uncertainties in a non-explicit way,
assuming the analysis code to be a “black box” such
that access to the analysis code will not be required.

• The mean square error is minimized by selecting the
collocation points and from high probability regions,
therefore, resulting in fewer function evaluations for
enhanced precision

• The method is applicable to the analysis of SR with
any distribution type

• Higher accuracy could be attained from the
higher-order RS function

It is widely used in chemical Engineering. Its application
in Structural Engineering is still burgeoning.

Intrusive Spectral Stochastic FEM Gives more reliable results

• Complicated and demands access to simulation
procedure

• Linear and non-linear SFEM is not yet practical if the
original random field is discretized into a high
dimensional random vector

Time variant reliability Methods

• In a lot of cases, reliability aspects are T-V. For
instance, some kind of degrading mechanism on the
resistance side or fluctuating loads may be the
reason.

• Fatigue and corrosion phenomenon are T-V

Practical application of T-V reliability methodology
appears rather limited, partially because only very few
computer codes are available
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8. Conclusions

This work presents the state of the art in methods used for structural reliability
analysis (SRA) based on a systematic review focusing mainly on literature from 2005 to
2020. The paper focused on presentations of methods and their variations, aiming to
qualify their advantages and limitations with applicability to design of metal offshore
jacket structures. Improvements to the fundamental analytical methods facing issues with
highly non-linear performance function (PF) structures were modified with conjugate
search direction approach, Saddle Point Approximation (SPA), the introduction of the
merit function, subset simulation (SS), and evidence theory, among others. To reduce the
computational burden of MCS, the approximation methods can be applied to estimate
implicitly or explicitly the limit state functions (LSFs) involving Finite Element Analysis
(FEA). Combinations of advanced approximation methods and RA methods are also found
in literature, as they can be suitable for complex, highly non-linear problems.

• The FORM was improved by the development of the conjugate search direction,
finite-based Armijo search direction method, Hybrid Relaxed HL–RF, stability trans-
formation method (STM) with chaos feedback control, STM with chaos feedback
control, and STM with chaotic conjugate search direction, among others. The combi-
nation of Maximum Entropy Fitting Method and the FORM was applied to problems
of implicit LSFs. The SORM is an improvement on the FORM, to provide solutions to
highly non-linear LSFs. A new SORM for RA was developed using the SAP in order
to overcome some of the issues inherent in the traditional SORM.

• The MCS method was improved by the development of interval MC method, which
combines simulation process with interval analysis, new MC-based methods involving
the use of brute force MCS methods for complicated structural systems, IMC-IFEM,
merging IS with directional simulation, etc. Improvements in variance reduction
techniques were achieved, such as the development of interval importance sampling
(IS) method, which applies the IS technique and imprecise probability, and the LHS-
based quasi-random polar sampling technique.

• The advanced approximation modeling methods include the well-established Re-
sponse Surface Models/Method (RSM) and the Surrogate Models (SM) as well as the
Stochastic RSM (SRSM). The SRSM is a model for the RA of complex systems with
low Probability of Failure (POF) for which approximate methods are inaccurate and
for which Monte Carlo Simulation (MCS) is too computationally intensive. The effi-
ciency of the RSMs developed for implicit LSFs studied herein include the Collocation
Based SRSM, novel SRSM combining FEA, MPR, and FORM/SORM, incorporating
the SRSM with Saddle point approximation (SPA), among others. Examples of SM
include the Kriging, Adaptive Kriging, EGRA, Support vector machines, ANN, RBF,
etc. These can be combined with conventional reliability methods for problems of
implicit LSFs. Kriging and Adaptive Kriging interpolation models were combined
with the FORM, Line sampling, IS, SS, MCS, etc.

• This study focused specifically on the probabilistic fatigue and fracture mechanics
approaches because the fatigue limit state in most cases is the design-driving crite-
rion for structural components of offshore jacket structures. Consequently, the SRA
of structures considering pitting-corrosion fatigue phenomenon was identified as
particularly of note and is recommended as an area open to further investigation.
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Abbreviations
AI Analytical integration
AK-IS active learning kriging with importance sampling
AK-MCS Active learning kriging with Monte Carlo simulation
ALM Active learning methods
ANN Artificial neural networks
ASCE American Society of Civil Engineers
ASME American Society of Mechanical Engineers
ASVM Adaptive support vector machine
BM Bending moment
CDF Cumulative density function
CGF Cumulant generating function
CM Computational models
CSRSM Collocation-based stochastic response surface method
DNV Det Norske Veritas
DoE Design of experiment
EGRA Efficient global reliability analysis
FAL Finite-based Armijo line search direction
FCG Fatigue crack growth
FEA Finite element analysis
FEM Finite element method
FLS Fatigue limit state
FM Fracture mechanics
FORM First-order reliability method
FR Fletcher and Reeves method
FRA Fatigue reliability analysis
GA Genetic algorithm
HL Hasofer and Lind method
HL–RF Hasofer Lind–Rackwitz Fiessler method
HRHL–RF Hybrid relaxed Hasofer Lind–Rackwitz Fiessler method
HSAC Hybrid self-adaptive conjugate
ICE Institution of Civil Engineers
IFEM Interval finite element method
IMC Interval Monte Carlo simulation
IS Importance sampling
ISKRA Improved sequential kriging reliability analysis
ISO International Organisation for Standardisation
KIM Kriging interpolation model
KL Karhunen–Leove expansion
LCoE Levelized cost of energy
LEFM Linear-elastic fracture mechanics
LHS Latin hypercube sampling
LIF Least improvement function
LS Limit state(s)
LSF Limit state function
LSS Limit state surface
MC Monte Carlo
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MCMC Markov Chain Monte Carlo
MCS Monte-Carlo simulation
MEM Maximum entropy fitting method
MFEM Multi-scale finite element method
MLS Moving least square
MM Meta-model(s)
MPP Most probable failure point
MPR Multivariate (quadratic) polynomial regression
MVFOSM Mean value first-order second moment method
NF Number of fitting points
NI Numerical integration
OWT Offshore wind turbine
PCE Polynomial chaos expansion
PC-Kriging Polynomial chaos-kriging
PDF Probability density function
PF Performance function
PLS Partial least squares
PMA Performance measure approach
POF Probability of failure
PSMFEM Perturbation-based stochastic multi-scale finite element method
RA Reliability analysis/assessment
RBF Radial basis function
RBO Reliability-based optimization
RHL–RF Relaxed Hasofer Lind–Rackwitz Fiessler method
RI Reliability index
RS Response surface
RSM Response surface method/model
SAC Self-adaptive conjugate
SFEM Stochastic finite element method
SGFEM Stochastic Galerkin FEM
SHM Structural health monitoring
SKRA Sequential kriging reliability Analysis
SLS Serviceability limit state
SM Surrogate modelling
SORM Second-Order reliability method
SPA Saddle point approximation
SR Structural reliability
SRA Structural reliability assessment
SRBDO System reliability-based design optimization
SRE Structural reliability evaluation
SRSM Stochastic response surface method
SS Subset simulation
SSFEM Spectral stochastic finite element Method
STM Stability Transformation Method
SVM Support vector machines
SVR Support vector regression
T-D Time-dependent
T-I Time-independent/time-invariant
T-V Time-variant
ULS Ultimate limit state
Nomenclature
hX(x) Density function
Pf POF
Xi Random variable
a0, a1, . . . , a16 Regression coefficients for a quadratic regression
fX(x) The joint PDF of the random variables X
gX(X), gu(x) Limit-state function
xi Realization of the random variable Xi
αi Direction cosine
µx Mean of random variables
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σx Standard deviation of random variables
Φ(·) Cumulative density function of the standard normal distribution
φ(·) Density function of standard normal distribution
I(·) Failure domain identifier
N Number of samples
Pr(·) Probability function
U Standard normal form of variables
V Vector

V
(

Pf

)
Target coefficient of variation of failure probability

X n-dimensional random vector
β Reliability/safety index
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