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Abstract. Computational Fluid Dynamics (CFD) offers numerical modeling investigating the 
performance that can be used other than or in tandem with experimental investigation. In order 
to offer meaningful results, the grid sensitivity test or Grid Convergence Index are usually 
carried out to ensure the solutions converging. This paper presents both grid sensitivity test 
results and the GCI calculation of a same numerical model exercised to investigate the 
performance of a tidal turbine, the Hydro-Spinna, with different P/D ratio. The CGI calculation 
presented the fine grid relative error to be 2.34% for the power coefficient and 2.28% for the 
thrust coefficient at their optimal TSR respectively. It was found that turbine with lowest P/D 
ratio has the highest power and thrust coefficient as well as TSR operational range. The turbine 
with P/D = 0.43 gives a power coefficient of 0.32 at the optimal TSR of 2.25. 

1. Introduction 

1.1. Introduction 
The development in renewable energy specifically tidal energy is steadily progressing with aim to 
increase the contribution of renewable energy resources. Added with the critical issue of climate 
change, the research and development of tidal energy technologies are definitely welcome. The 
European Marine Energy Centre (EMEC) [1] in Scotland offers a hub for the development of tidal and 
wave energy technologies with different prototypes deployed in real sea conditions. In addition, the 
potential of new tidal energy technologies can also be investigated with a smaller scaled model in 
laboratory facilities such as cavitation tunnels and towing tanks. Investigation using Computational 
Fluid Dynamics can also be performed offering a vast platform for investigation especially during the 
early stage of design.  

The Hydro-Spinna is a tidal turbine designed by Michael Gilbert and developed at Newcastle 
University. The Hydro-Spinna turbine extends in the axial direction as illustrated in Figure 1 making 
the turbine more three dimensional than a typical horizontal axis turbine. In order to assess the power 
potential of the turbine, the influence of the pitch length on the turbine performance needs to be 
assessed first. Wen [2] calculated that a lower P/D produced higher power using Blade Element 
Momentum Theory (BEMT) with the assumption that the turbine is a thin actuator disc. In order to 
investigate this, a numerical model was developed to predict the power and thrust coefficients of the 
turbine. 

1.2. Hydro-Spinna Turbine 
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The Hydro-Spinna turbine is a novel horizontal axis tidal turbine presenting a helicoidal blade 
spiraling around the main axis as shown in Figure 1. The blades possess a cardioidal shape as 
illustrated in [3]. The HS500 is a 500 mm diameter model of the Hydro-Spinna turbines with cardioid 
shaped leading and trailing edge. The extended description and detailed geometry of the Hydro-Spinna 
HS500 model can be found in [3, 4]. The key parameters of the three turbines investigated are given 
below in Table 1.  
 

 
Figure 1. The Hydro-Spinna turbine parameters 

 
Table 1. The turbine parameters with different P/D ratio 

Pitch to Diameter 
Ratio, P/D 

Diameter, D 
(mm) 

Pitch, P 
(mm) 

Pitch Angle at Root 
Section, β (Deg) 

Hub Diameter, 
DH (mm) 

0.43 
500 

214 50.82 
100 0.75 375 60.30 

1.00 500 68.11 

2. Numerical model 

2.1. Reynolds-Averaged Navier Stokes Equations (RANS) 
RANS and the continuity equations as defined in equations (1) and (2) were employed for the 
numerical model. RANS model is a modified Navier Stokes equation (3) taking the time averaged 
values of the fluctuating velocities and pressure variables to solve the equations. RANS was used due 
to its less computational time compared to Large Eddy Simulation models [5]. 
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In addition, the hybrid Menter SST k-ω turbulence model is employed to consider the advantage of 
the k-ω at the near wall and k-ε in the fully turbulent region [6]. The Menter SST k-ω model are 
defined in equation (4) and (5) respectively.  
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2.2. Numerical domain 
The numerical domain independency test was done where the dimension of 3D-8D-3D were found to 
be the optimal dimension. This means that inlet and outlet are 3D and 8D away from the centre of the 

Pitch Length 
Diameter 
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turbine respectively, whereas the radius of the cylindrical domain is at 3D from the centre of the 
turbine. The domain is divided into two parts i.e. the stationary and rotating domain where Moving 
Reference Frame was used for the rotating domain to represent the rotation of the turbine as shown in 
Figure 2.  The rotating domain was set to be at 1.5D from the turbine centre, with the upstream and 
downstream boundaries set at 2D distance. 
 

 
Figure 2. The numerical domain where inner vertical lines represent the upstream and downstream 

boundary of the rotating domain. RR and RS is the radius of the rotating and stationary domain 
respectively 

2.3. Mesh independency test 
The mesh independence analysis was conducted with the settings listed in Table 2 below. As 
mentioned previously, the domain dimensions for all model was set at 3D-8D-3D. 
 

Table 2. Mesh settings of the numerical domain 

Mesh 
Setting 

Rotating (Rotating) Stationary (Stationary) Total 

 Mesh Number 
1 1,439,663 216,322 1,655,985 
2 1,847,224 216,322 2,063,546 
3 1,847,224 355,116 2,202,340 

2.4. Grid Convergence Index (GCI) 
The numerical model was also validated using GCI where the procedure used in this paper is based on 
the widely accepted Richardson Extrapolation (RE) [7 -9] obtained from obtained from Celik et al [10] 
as described below.  

Firstly, a representative mesh cell size, h, for three dimensional calculations is calculated as defined 
in equation (6). 

  *
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where     is the volume of the ith cell, and N is the total number of cells used in the computations. 
Then, select three different sets of grids and run simulations to determine the value of the solutions 

for the study i.e. in this case power and thrust coefficients which is denoted as variable ϕ. The 
refinement factor               ⁄  is recommended to be greater than 1.3. Let          and 
        ⁄ ,         ⁄  and calculate the apparent order p of the method using equation (7) to (9). 
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where          ,           and    represents the solution on the kth grid. 
Calculate the grid convergence index as defined in equation (12) by first calculating the 

approximate relative error defined in equation (10) and the extrapolated relative error as defined in 
equation (11). 
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3. Results and discussion 

3.1. Validation of numerical model 
The mesh sensitivity test considered three different sizes as indicated in Table 2. The results among 
the three settings were consistent with no significant difference as shown in Figure 3. The consistency 
in the mesh results was probably due to the small difference in the number of mesh with only a 
difference of approximately 200,000 cells between each setting. The results from the independency 
test presents a reliable numerical model for the turbine performance investigation. Similarly, other 
researchers also obtained optimum mesh numbers of approximately 2 million cells [11, 12]. In 
addition, the CGI calculation as shown in Table 3 resulted the numerical uncertainty for the fine-grid 
solution was 2.34% for the power coefficient and 2.28% for the thrust coefficient. Now that the 
numerical model has been validated both by using mesh sensitivity test and the GCI calculation, it is 
further used to investigated the performance of the turbine at different P/D ratio.   
 

 
Figure 3. Mesh sensitivity result of the numerical model 

 
Table 3. GCI results for the numerical model used 

 ϕ = power coefficient at TSR = 2.6 ϕ = thrust coefficient at TSR = 1.75 
N1, N2, N3 2202340, 2063546, 1655985 
r21 1.021 1.021 
r32 1.076 1.076 
ϕ1 0.2982 0.8144 
ϕ2 0.2991 0.8165 
ϕ3 0.2978 0.8136 
p 7.173 6.355 



AMMM 2020

IOP Conf. Series: Materials Science and Engineering 893 (2020) 012008

IOP Publishing

doi:10.1088/1757-899X/893/1/012008

5

 
 
 
 
 
 

  
   0.0030 0.0026 
  
   0.0043 0.0036 
         

   0.79% 0.75% 

       
   2.34% 2.28% 

3.2. Turbine performance 
The influence of the P/D ratio on the Power Coefficient (CP) and Thrust Coefficient (CT) was 
investigated for a full range of operational Tip Speed Ratio (TSR). The equations are defined below 
for reference.  
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where Q is the torque, T is the thrust, Ω is the angular velocity of the turbine, ρ is the density of the 

fluid, A is the swept area of the turbine, and U is the flow velocity. 

It was found that the P/D ratio greatly varies the performance characteristic of the turbine where the 
higher the ratio, the lower the power coefficient as shown in Figure 4. The results were found to be in 
agreement to the work conducted by Wen [2] where lower P/D gives the highest performance. The 
Hydro-Spinna turbine with P/D = 0.43 gives a power coefficient of 0.32 at the optimal TSR of 2.25. 
The operational range of this turbine is 0 < TSR < 4.15. The higher the pitch length is the further the 
turbine is extended in the axial direction, while the diameter stays constant. Therefore, the higher the 
P/D ratio, the pitch angle of the turbine blade also increases hence contributing to the low power 
coefficient. 

 
Figure 4. The power coefficient of the Hydro-Spinna turbine with different P/D ratio 
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Figure 5. The thrust coefficient of the Hydro-Spinna turbine with different P/D ratio 

 
In addition, it was also concluded that while the power increases with lower P/D the operational 

TSR range also increases. Where turbine with P/D ratio of 1 has a range of 0 < TSR < 1.9. Hence, the 
Hydro-Spinna turbine with the lowest P/D ratio gives the highest power coefficient. Consequently, it 
also has the highest thrust coefficient among the three as presented in Figure 5. The turbine with P/D 
of 0.43 has a maximum thrust coefficient of 0.95 at TSR of 1.25, whilst at its optimal TSR i.e. TSR = 
2.25, the thrust coefficient was only 0.66, 30% less than the maximum thrust. The high thrust at TSR = 
0 is believed to be caused by the high solidity of the turbine surface blocking the current flow. 

4. Conclusion 
The performance characteristic of the Hydro-Spinna with different P/D ratio was successfully 
investigated by using a numerical model. The numerical model was validated by conducting domain 
and mesh sensitivity test as well as by GCI calculation. The numerical model validations were 
conducted to ensure the credibility of the model used. The numerical investigations concluded that that 
turbine with lowest P/D ratio has the highest power and thrust coefficient. Similarly, the operational 
TSR range of the turbines decreases with higher ratio.  
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