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Abstract

The effect of a spatially uniform magnetic field on the shear rheology of a dilute emul-
sion of monodispersed ferrofluid droplets, immersed in a non-magnetizable immiscible
fluid, is investigated using direct numerical simulations. The direction of the applied
magnetic field is normal to the shear flow direction. The droplets extra stress tensor
arising from the presence of interfacial forces of magnetic nature is modeled on the
basis of the seminal work of G. K. Batchelor, J. Fluid Mech., 41.3 (1970) under the
assumptions of a linearly magnetizable ferrofluid phase and negligible inertia. The re-
sults show that even relatively small magnetic fields can have significant consequences
on the rheological properties of the emulsion due to the magnetic forces that contribute
to deform and orient the droplets towards the direction of the applied magnetic vector.
In particular, we have observed an increase of the effective (bulk) viscosity and a re-
versal of the sign of the two normal stress differences with respect to the case without
magnetic field for those conditions where the magnetic force prevails over the shear-
ing force. Comparisons between the results of our model with a direct integration of
the viscous stress have provided an indication of its reliability to predict the effective
viscosity of the suspension. Moreover, this latter quantity has been found to behave
as a monotonic increasing function of the applied magnetic field for constant shearing
flows (“magneto-thickening” behaviour), which allowed us to infer a simple constitutive
equation describing the emulsion viscosity.

1 Introduction

Heterogeneous mixtures of small particles of various types such as solid particles, bubbles
and droplets, dispersed in a carrier fluid are widespread in many industrial, chemical and
biological processes. Typical applications can be encountered, for instance, in oil and gas
industry, mining processes, in electronic devices, in biomedical applications and food in-
dustry. Owing to their great scientific and industrial relevance, suspensions have been the
object of extensive studies over the past decades. Yet, due to their variety and the com-
plexity of their rheology under a wide range of conditions (e.g., appearance of inter-particle
interactions, presence of additional constraints like electric and magnetic fields, or different
characteristics of the dispersed phase), suspensions are still actively investigated today.

Provided the length scale of the applied flow is large compared with the mean particle
dimension, suspensions may be regarded as homogeneous fluids in some instances and their
rheological properties can be evaluated using standard rheometric flows, i.e., steady shear,
extensional and small amplitude oscillatory shear flow. In a steady shear-flow experiment,
the response of the system is completely characterised by three independent parameters:
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the shear viscosity, η = Σxy/γ̇, and the two normal stress differences, N1 = Σxx − Σyy and
N2 = Σyy − Σzz (or their coefficients, Ψ1 = N1/γ̇

2, Ψ2 = N2/γ̇
2), where Σ is the total

stress tensor (Σxy is the shear component, while Σxx, Σyy and Σzz are the three normal
components) and γ̇ is the rate of deformation.

Studies on the rheology of suspensions can be traced back to the seminal work of A.
Einstein [1, 2]. Einstein showed that the effective viscosity of a dilute suspension of rigid
Brownian spheres can be described as ηe = η (1 + 2.5φ), where η is the viscosity of the
carrier fluid and φ is the volume fraction of the dispersed phase. Later, G.I. Taylor [3]
obtained an analogous expression for the effective viscosity of a dilute emulsion derived in
the framework of small deformation theory, ηe = η [1 + 2.5φ(λ+ 2/5)/(λ+ 1)], where λ is
the drop-to-continuous phase viscosity ratio. In the limiting case λ → ∞, the emulsion
behaves like a dilute suspension of rigid spheres dispersed in a viscous fluid, and Taylor’s
equation reduces to Einstein’s equation. In the opposite case, i.e., for λ → 0, the emulsion
can be regarded as a foam-like material and the expression for its effective viscosity becomes
ηe = η (1 + φ) (cf., e.g. Derkach [4]).

The abovementioned theories predict a constant (Newtonian) shear viscosity, however it
is well-known that suspensions can exhibit different non-Newtonian behaviour. In the case
of hard sphere colloidal suspensions (HS, in the following), the rheological properties are
essentially determined by the volume fraction of the dispersed phase, φ, and by the Péclet
number, Pe = τBγ̇, where τB is the Brownian time scale, i.e., the time required for a free
particle to diffuse its own radius [5]. In the Brownian regime, Pe� 1 and these suspensions
exhibit a Newtonian-like behaviour consistent with Einstein’s equation. Shear-thinning ef-
fects start to become appreciable at Pe ≈ 1, followed by a second Newtonian regime at
Pe � 1 with a viscosity that finally diverges (shear-thickening regime) at random close
packing, φRCP ≈ 0.64 (cf. Ref.[6]). Moreover, normal stress differences can also be detected
in simple shearing experiments with hard sphere suspensions [7–9]. While these suspensions
are usually characterised by a negative first normal stress difference for moderately dense
regimes, transition from negative to positive N1 can be observed at high shear rates for very
dense regimes [10, 11].

A particular type of dispersion of hard particles which finds a multitude of practical
and scientific implications are ferrofluids (FFs). These fluids are colloidal suspensions of
nanosized (typically dp . 10 nm, where dp is the particle diameter) superparamagnetic par-
ticles dispersed in a continuous fluid. Without the presence of a magnetic field, the particles
remain randomly dispersed in the carrier phase due to Brownian effects and FFs can be
regarded as regular nanofluids. For dilute suspensions, FFs essentially exhibit a Newtonian
behaviour, while for sufficiently large concentrations, shear-thinning effects may become ev-
ident (see, e.g., Ref.[12]). In the presence of magnetic fields, however, a variety of different
non-Newtonian behaviour may appear. In this regard, we can distinguish between the ideal
scenario in which inter-particle interactions are considered absent (“non-interacting” (NI)
ferrofluid models) and the case in which particle-particle interactions are non-negligible and
chain-like aggregates may appear (see, e.g., [13] for a detailed overview of the subject). In the
absence of particle interactions (ideal ferrofluid, in the following), the rheological behaviour
of the material is essentially dictated by the response of the particles to the magnetic field,
in addition to Brownian and hydrodynamics effects. In such conditions, the presence of a
magnetic moment imposes a constraint on the rotation of each particle (that would other-
wise be free to rotate under the effect of the vorticity component of the flow). As a result,
an additional viscous dissipation appears, which ultimately leads to an increase in the sus-
pension viscosity (magnetoviscous effect [14, 15]), usually accounted for with an additional
“rotational viscosity”, ηr. Several theories have succeeded in describing this effect for non-
interacting particles. Worth mentioning is the early macroscopic (phenomenological) theory
of Shilomis [16] and the subsequent microscopic theories of Brenner and Weissman [17] and
Martsenyuk et al. [18]. Specifically, Martsenyuk et al. [18] derived an expression for the ro-
tational viscosity which is proportional to the particle volume fraction, φ, and the Langevin
parameter, i.e., ηr (β) = 3

2
ηφβL (β)/(β − L (β)), where β = mH/kBT is the Langevin pa-

rameter in which m is the magnetization moment, H is the intensity of the magnetic field,
kB is the Boltzmann constant and T is the absolute temperature, whereas L (β) represents
the Langevin function. Hence, it can be observed that in the absence of magnetic field,
ηr (0) = 0, while, on the contrary, if the field is strong enough to prevent completely particle
rotation, ηr (∞) = 3

2
ηφ. Since the volume fraction of spherical particles is φ ≈ 0.74 near
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the densest close packing, the maximum rotational viscosity predictable by the theory of
Martsenyuk et al. [18] is ηr,max ≈ 1.1η.

Despite the success of these theories on capturing the magnetoviscous effect in very dilute
ferrofluids (e.g., see the comparison between experiments and the theory of Martsenyuk et
al. [18] reported in McTague [15]), the agreement with experiments for moderately to highly
concentrated suspension is unsatisfactory (a relative increment in viscosity of about 200%
with respect to the continuous liquid phase viscosity η was already detected in the early
observation of Rosensweig et al. [14]). Such discrepancies might be justified considering
the occurrence of interactions between particles. Indeed, it is well-known that upon the
application of a magnetic field, dipolar and steric interactions may promote the formation
of chain-like aggregates which, on the one hand contribute to enhance the aforementioned
magnetoviscous effect, and, on the other hand, confer additional rheological attributes that
are typically encountered in non-Newtonian fluids, such as shear-thinning effects, a yield
stress [19] and viscoelastic effects, namely normal stress differences in simple shearing flow
[20, 21].

Similarly to hard sphere suspensions, emulsions also exhibit several non-Newtonian fea-
tures. Contrarily to HS, however, the deformability of the dispersed phase introduces ad-
ditional complexity into the system, originating rheological properties that are intimately
connected to the morphological microstructure of the droplets evolving under the effect of
a flow. Deformation-induced shear-thinning is a distinguishing mark of these systems (see,
for instance Ref. [4]). Moreover, unlike hard sphere suspensions, emulsions are usually char-
acterised by a positive first normal stress difference [22, 23], a signature of viscoelasticity,
although some authors have reported a reversal in the sign of N1 attributed to the presence
of inertial effects [24].

After the early efforts of Taylor [3, 25], many authors attempted to unveil the richness
of the physics involved in the dynamics of emulsions evolving under different flow condi-
tions. The amount of literature regarding this subject is indeed very vast. Oldroyd [26]
derived a linear viscoelastic constitutive equation for time-dependent flows, corroborated by
expressions for the relaxation and retardation times of the fluid proportional to the droplet
capillary time scale. Later, Schowalter et al. [27] investigated the behaviour of a drop under
steady shear adopting a first-order perturbation method and determined a positive N1 and
a negative N2, both proportional to the square of the rate of deformation, γ̇. Frankel and
Acrivos [28] generalized the theory of Schowalter et al. [27] for a time-dependent shearing
flow for a dilute emulsion and obtained the expression for the stress tensor. Subsequently,
Cox [29] provided a solution for the drop shape in a rather general time-dependent creeping
flow.

In addition to these works, which were specifically aimed at determining the flow field
and the morphological configuration of a single drop under certain flow conditions, other
authors developed theories aimed at describing the rheological properties of suspensions in
terms of average particle interfacial stress [30–32]. In particular, Batchelor [30] obtained an
expression for the bulk stress of a suspension of particles of generic shape and constitution
(solid particles, drops, capsules, etc.) in Newtonian fluids in the absence of external body
forces, while allowing for the presence of couples exerted on those particles. Apart from these
limiting assumptions, the derivation of Batchelor [30] is rather general and can, in principle,
be adopted for any type of suspension regardless the concentration of the dispersed phase.
Later, Choi and Schowalter [33] determined constitutive equations for non-dilute suspensions
adopting the definition of interfacial stress tensor given in Batchelor [30].

More recently, various authors have approached the problem from a phenomenological
perspective and succeeded in obtaining accurate predictions for both droplet conformation
and rheological behaviour of dilute emulsions [34–36].

Aside from viscous (and possibly inertial [24]) effects arising from the presence of an
imposed flow, the configuration of the dispersed phase can also be altered by additional
stresses of different nature, such as electric fields (e.g., see [37–39]) and magnetic fields [40–
44]. In the latter case, at least one phase must be composed of a magnetizable material.
Cunha et al. [43] derived a model for the interfacial stress tensor developing in the presence
of uniform magnetic fields. Then, they applied their model to the two-dimensional problem
of a dilute emulsion composed of ferrofluid droplets surrounded by a non-magnetizable fluid
under a steady shearing flow and a uniform magnetic field acting both in the normal and
parallel directions with respect to the imposed flow. They calculated the effective viscosity
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by integrating the viscous stresses at the wall and found good agreement with the prediction
of their model. Moreover, in both flow conditions they found positive first normal stress
differences. More recently, Ishida and Matsunaga [44] have also proposed a model for the
rheology of a dilute emulsion of ferrofluid droplets dispersed in a non-magnetizable medium
approaching the problem considering two- and three-dimensional configurations and uniform
magnetic fields applied along each of the three coordinate directions. They observed a
reversal of normal stress differences with respect to non-magnetic configuration when the
magnetic field was parallel to the direction of the vorticity vector. Regarding the shear
viscosity, their two-dimensional calculations have shown a general good agreement with the
finding of Cunha et al. [43].

To the best of our knowledge, the abovementioned works of Cunha et al. [42, 43] and
Ishida and Matsunaga [44] are the only aimed at investigating the rheology of emulsions in
the presence of a ferrofluid phase and an imposed magnetic field. Previous works, on the
other hand, have been devoted to the study of non-rheological properties such as emulsion
magnetic permeability, for emulsions of ferrofluid drops in non-magnetizable fluids (e.g., see
Refs. [45–47]) as well as for inverse emulsions, i.e., for non-magnetizable drops surrounded
by a ferrofluid (cf. Refs. [48, 49]), the formation of chained structures of ferrofluid droplets,
[50] and the effect of these structures on the emulsion electrical properties [51]. Finally, it is
worth mentioning the recent work of Zakinyan and Zakinyan [52] who succeed on producing
an emulsion of ferrofluid microdrops using a rotating magnetic field and showed that the
resulting magnetic torque of the emulsion can be enhanced with respect that observable in
the pure ferrofluid.

From this brief account, it clearly emerges that ferrofluid emulsion show the potential
for being employed in a wide range of novel scientific and engineering applications owing
to the possibility to “tune” their mechanical and electromagnetic properties ad hoc with
the application of opportune magnetic fields. Nevertheless, if some of the aspects related to
the electromagnetic properties of these systems have been already studied theoretically end
experimentally in certain detail, contrarily, works specifically aimed at investigating their
rheological properties are relatively scarce. In the present work, therefore, a model based on
the theory of Batchelor [30] is developed anew following a different route from those adopted
in the aforementioned works of Cunha et al. [43] and Ishida and Matsunaga [44]. Qualitative
comparisons with the previous findings reported in [43, 44] provided evidence of agreement
between different models on predicting shear stresses. On the contrary, discrepancies in
terms of normal stress differences might be expected since the present approach predicted
the reversal of the normal stress differences, while, for flow conditions comparable to ours,
in the above mentioned works of Cunha et al. [43] and Ishida and Matsunaga [44] this
occurrence was not observed. Finally, a quantitative comparison with our results and those
obtained with the adoption of the model developed by Cunha et al. [43] is is also provided.

2 Problem formulation

The aim of the present work is to evaluate the role played by magnetic stresses on the rheology
of a dilute suspension made of ferrofluid droplets dispersed in a non-magnetic immiscible fluid
subjected to the simultaneous effect of a shearing flow and a homogeneous magnetic far field.
To accomplish our goal, we consider a Couette cell, as schematized in Fig. 1, consisting of
two parallel walls placed at mutual distance Ly moving in opposite directions with velocity
±U0ex, and imposing a uniform magnetic field, H0 = H0ey, where ex and ey are the unit
vectors in the x- and y-axis direction, respectively.

In order to determine the exact form of the bulk stress which will be used to evaluate
the effective viscosity and normal stress difference coefficients, certain assumptions will be
made.

Both fluids will be regarded as incompressible and Newtonian, although, as we have seen
for a ferrofluid the Newtonian constitutive equation for the stresses can not be always safely
inferred a priori (further justifications regarding this assumption will be provided below).
Moreover, both phases will be characterized by the same viscosity and density. This latter
assumption is necessary to avoid unwanted particle translations driven by buoyancy.

Another assumption which often is tacitly made when dealing with ferrofluids, is the
hypothesis that any field-induced non-uniformity of concentration of the ferromagnetic (or
ferrimagnetic) particles dispersed in the carrier fluid can be neglected (see [42, 43, 53–56], for
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Figure 1: Schematic representation of a drop of ferrofluid inside a Couette cell filled with
a non-magnetizable liquid subjected to the simultaneous effects of shear and a wall normal
uniform magnetic field of intensity H0.

instance). This simplification can be questionable, [57] especially when large magnetic fields
are considered (in these conditions, field-induced assemblies may appear even for relatively
small particle concentrations [58]). Nevertheless, to avoid the difficulty of accounting for
fluid density non-homogeneity, and to deal with an expression for the magnetic stress tensor
which can be promptly adopted for the calculation of the bulk stress tensor in line with the
theory of Batchelor [30], here we will ignore this complication.

Additionally, the concentration of magnetic nanoparticles in the ferrofluid phase is as-
sumed to be sufficiently low that the magnetostatic approximation applies while assuming
that the magnetization vector, M, is related to the magnetic field by a linear relation, i.e. we
pose M = χH, where χ is the magnetic susceptibility. This latter assumption restricts con-
siderably the range of applicability of our model, circumstance that is also shared with the
models previously developed by Cunha et al. [43] and Ishida and Matsunaga [44]. In view of
these considerations, the following treatment should not be considered complete or general.
Nonetheless, it may represent the starting point for ensuing, more accurate, models for the
characterization of viscometric functions in the presence of a ferrofluid phase, and provide
results at least qualitatively in line with what one should expect in reality (as long as the
abovementioned conditions are verified, especially the hypothesis of linearly magnetizable
material, arguably the most restrictive).

Finally, before embarking on the derivation of the stress model, a final remark regarding
the nature of the Maxwell stress tensor (MST), which constitutes the foundation of our
derivation: Broadly speaking, a body density force, fM , is said to be Maxwellian if it
can be expressed through the divergence of a dyadic field, ∇ · TM ≡ ∇ · TM (x), i.e.,
fM = ∇ ·TM (see, e.g., [59]). This definition is rather general and goes beyond the context
of electromagnetism; an example being the gravitational density force, g , which can be
shown to be expressible through the divergence of an adequate gravitational stress field
[59]. In this work, we are dealing with a non-conducting, linearly magnetizable ferrofluid,
and the relevant Maxwellian body force can be represented through the divergence of a
properly defined Maxwell stress tensor, introduced in the following section. By virtue of
this definition, the magnetic density body force can be taken into account by incorporating
the Maxwell stress tensor into the true hydrodynamic stress. The theoretical implications of
such modus operandi, however, are not as straightforward as one would imagine. Rinaldi and
Brenner [59], in fact, have pointed out that such operation should be regarded conceptually
flawed on a physical ground and may bring to erroneous results in some circumstances
which, however, are not a cause of concern in this work. Indeed, for ferrofluid flows, Rinaldi
and Brenner [59] could show that the replacement of the magnetic density force by the
corresponding MST counterpart in the linear (and possibly angular) momentum equations,
provides correct estimates of the total force (and possibly torque) acting on the fluid domain.
On the contrary, the same approach might lead to an erroneous evaluation of the rate of
work associated with the Maxwell stress tensor. In the present context, however, the stress
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model is not affected by the aforementioned limitations since, as we shall see, the MST
contribution to the particle extra-stress is ultimately incorporated through the first moment
of the magnetic body density force.

3 Bulk stress and rheological properties of the suspen-

sion

As stated before, the main goal of the present work is to investigate the bulk, or effective
stress in a dilute suspension of ferrofluid droplets embedded in a non-magnetizable carrier
fluid. To accomplish this, we rely on the definition of bulk stress introduced by Batchelor [30],
considered here in its most general formulation. This will allow us to derive a model stress
appropriate in the present flow configuration, i.e., in the presence of additional magnetic
stresses. One of the key ingredients on deriving the effective stress is the assumption that
the two fluids behave as Newtonian, thus before we proceed further we should clarify some
aspects related to the rheological properties of ferrofluids.

In the introduction, we stated that a ferrofluid on its own may show a variety of rheological
features. In particular, magnetoviscous effects may appear even upon the hypothesis of ideal
ferrofluids, i.e., when aggregate formation is not taken into account. This phenomenon,
which strictly speaking should not be regarded as a non-Newtonian effect, does not put any
particular restriction on the applicability of the model reported in Batchelor [30], since the
viscosity of the ferrofluid phase would be fixed once the extent of the magnetic field is also
fixed. Hence, in this regard, care should only be exercised on determining the viscosity of the
fluid any time the magnetic field is adjusted. Put more simply, for a given set of experiments
performed for a given magnetic field intensity, the viscosity of the ferrofluid remains constant,
which is a necessary requirement for the adoption of the model of Batchelor [30]. On the
contrary, in the presence of particle aggregation, we have seen that these fluids usually
show non-Newtonian responses. Including these effects into the stress model would require
the knowledge of reliable constitutive equations for the ferrofluid phase and substantial
modifications of the method detailed by Batchelor [30] which are beyond the scope of the
present preliminary analysis. On the basis of these considerations, we shall treat the magnetic
phase as a Newtonian fluid having a constant viscosity η, having in mind that possible large
discrepancies between experiments and theoretical predictions should primarily be sought
among those non-Newtonian features that have been disregarded from the present stress
model formulation.

Another important aspect of the theoretical development detailed by Batchelor [30] that
is worth highlighting, is the hypothesis that the resultant of any type of force that might act
on the particle should be zero (while allowing for the presence of couples). This hypothesis
is required for a definition of the bulk stress that is invariant to translation of the coordinate
system. In the following we will see that for a spatially uniform magnetic field there is no net
magnetic force acting on the surface of the drop, thus magnetic stresses will be responsible
for interface deformations but will not induce drop translations.

Now that the specific requirements necessary for the deduction of the bulk stress in our
conditions have been pointed out, we can proceed further with the actual derivation of the
model.

Without introducing any restriction on the nature of the particles that may be dispersed
in the ambient fluid (e.g., they might be solid particles, drops, capsules, etc.), Batchelor [30]
showed that the bulk stress in a suspension is given by the sum of different contributions
attributable to the ambient fluid alone and an additional term arising from the presence of
the particles. Thus, if we denote with V the whole control volume, and with V0 the volume
of a particle of surface area S0, the expression for the bulk stress for a single particle may
be written as

Σij =
1

V

∫
Va

−pδijdV + η

(
∂Ui
∂xj

+
∂Uj
∂xi

)
+ Σp

ij, (1)

where Va = V − V0 is the volume occupied by the ambient fluid. The remaining variables
appearing in Eq. (1) are the pressure p, the volume-averaged velocity gradient, ∂Ui/∂xj, i.e.
the average value taken over the whole control volume, being Ui the mean velocity of the
imposed flow, differing from the local velocity, ui, arising from the presence of the particles
(their difference, u′i = ui − Ui, can be interpreted as a ‘perturbation’ velocity), and δij is
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the Kronecker delta. It should be emphasized that, in line with the convention adopted by
Batchelor [30], S0 is defined in such a way it lies on the outside of the interfacial layer, i.e.
Va is supposed to be entirely occupied by the ambient fluid. The last term on the right-hand
side of Eq. (1) represents the extra-stress tensor arising from the presence of the particles,
which for negligible inertia may be written as (cf. Batchelor [30])

Σp
ij =

1

V

∫
V0

TijdV −
1

V

∫
S0

η (uinj + ujni) dS, (2)

where n is the unit normal pointing outward the surface S0. Hence, we see that in Stokes
flow conditions the contribution to the stress due to the presence of the particles is given
by the sum of the volume average (bulk) of the stress tensor T acting within the particle,
and a viscous contribution exerted on its surface by the surrounding fluid. In the particular
case of drops having the same viscosity of the ambient fluid, this latter term is uninfluential,
nevertheless it will be retained for the sake of completeness.

Now, we notice that we may pose (cf. equation (4.3) in Batchelor [30])∫
V0

TijdV =

∫
S0

TikxjnkdS −
∫
V0

∂Tik

∂xk
xjdV, (3)

thus, this extra-stress can be seen as the sum of a stress acting on the particle surface
(obtained upon the adoption of the divergence theorem) and a volume integral contribution.

For a ferrofluid drop subjected to a uniform magnetic field, the second order tensor T
accounts for two contributions, namely the surface tension stress, Γ, and the magnetic stress
τ . It can been shown, (see, for instance Ref. [30] or Ref. [60]) that the surface contribution
to Eq. (3) due to surface tension reads∫

V0

TijdV =

∫
S0

σkxjnkdS (4)

where σ is the surface tension coefficient, and k is the sum of the curvatures of any two
orthogonal sections of the interface containing the local normal n. The second integral of
(3) can be shown to be identically zero in this particular case (see, e.g., Batchelor [30]).

Before we proceed further, some additional observations are required. In the original
treatment, Batchelor [30] assumed that any body force per unit volume that might act on
the flow was uniformly distributed. Owing to this hypothesis, he concluded that the second
term appearing in the right-hand side of Eq. (3) may, in general, be equilibrated by a linearly
varying isotropic stress which may be ignored. Hence, with allowance for inertial forces, he
pointed out that this term can be replaced by an inertial contribution, ∂Tij/∂xj = ρfi,
where ρ is the fluid density, assumed to be uniform throughout the whole suspension, and
fi is the local acceleration relative to the average value of the acceleration. Thus, upon the
assumption of Stokes flow conditions, he considered this contribution to be negligible. In the
present conditions, however, the magnetic body force arises at the interface in the form of
a discontinuity, hence the assumption of uniform body force fails and both terms of Eq. (3)
should, in principle, be retained. We shall see that the contribution to the bulk stress due
to magnetic effects indeed arises from the volume integral in the right-hand side of Eq. (3).

3.1 Extra-stress tensor for ferrofluid droplets under the effect of
a homogeneous magnetic field

For a dilute ferrofluid, the magnetostatic approximation may be invoked (e.g., see Refs.
[54, 55, 61]), thus the magnetic field H and the magnetic induction B are governed by the
magnetostatic Maxwell equations

∇×H = 0, ∇ ·B = 0, (5)

in which B = µ0µrH, µ0 is the magnetic permeability in vacuum and µr is the relative
magnetic permeability of the medium. For a linearly magnetizable medium, µr = 1 + χ
while for a non-magnetizable material µr = 1, since χ = 0 in this case.

With these premises, the magnetic stress tensor (MST) in the case of incompressible
fluids can be written as [61]

τ = −1

2
µ0|H|2I + µ0µrHH, (6)
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i.e., the magnetic stress is the sum of an isotropic term (proportional to the unit tensor I
and to the square of the intensity H of the magnetic field) and a deviatoric part.

Now, we observe that the drop interface acts as a discontinuity for the MST since the
surrounding medium is supposed to be non-magnetizable (i.e., µr = 1), while inside the
ferrofluid phase we have µr = 1 + χ. A possible way to deal with such a discontinuity is to
introduce an indicatrix (cf. Ref. [31])

α(r) =

{
0, r in the ambient fluid

1, r inside the drop
(7)

where r is the vector position, the interface location being identified by the vector r0. Thus,
indicating with the superscript “p” and “a” quantities related to the drop (particle) and to
the ambient fluid, respectively, the MST reads

τij = ατ
(p)
ij + (1− α) τ

(a)
ij , (8)

therefore, the magnetic body density force reads

fmi =
∂τij
∂xj

= α
∂τ

(p)
ij

∂xj
+ (1− α)

∂τ
(a)
ij

∂xj
+
[
τ
(a)
ij − τ

(p)
ij

]
njδ (r− r0) , (9)

where δ (r− r0) is the Dirac delta function. Noting that ∇ ·τ = 0 everywhere except at the
interface location (this is because inside the drop the magnetic particles impose a uniform
magnetic field and uniform magnetization, while in the ambient fluid the stress tensor is
divergence-free because of the irrotational character of the magnetic field, see, for instance
Rowghanian et al. [55] for further explanations), we find

∂τij
∂xj

=
[
τ
(a)
ij − τ

(p)
ij

]
njδ (r− r0) . (10)

Observing that τ (a) = −1
2
µ0H

2I + µ0HH, and τ (p) = −1
2
µ0H

2I + µ0 (1 + χ) HH, we
obtain ∫

V0

∂τik
∂xk

xjdV = −
∫
V0

µ0χHiHkxjnkδ (r− r0) dV = −
∫
S0

µ0χHiHkxjnkdS. (11)

Evaluation of the role played by the remaining term, i.e., the surface integral of Eq.
(3), requires special considerations. First of all, we observe that the magnetic force will
be introduced into the momentum equation (shown in the subsequent section) through the
divergence of the Maxwell stress tensor. Thus, with regard to magnetic effects, the contri-
bution to the exchange of momentum is provided by the magnetic body force, fm = ∇ · τ .
In view of this, we conclude that hydrodynamic stresses of magnetic nature are generated
by the sole force fm and the surface contribution to the particle extra-stress should not be
accounted to what concerns magnetic effects.

On the basis of the previous considerations, the particle stress tensor finally reads

Σp
ij =

1

V

∫
S0

{σkxjni − η (1− λ) (uinj + ujni) + µ0χHiHkxjnk}dS, (12)

where λ = ηp/η is the ratio between the viscosities of the droplet and of the ambient fluid.
Since in the present work λ = 1, this term will not be taken into account. We may note that
this formulation is rather general and could also be applied to an “inverse” emulsion (i.e.,
for non-magnetizable drops surrounded by a ferrofluid) or when both phases are magnetiz-
able. In this regard, assuming the surrounding phase and drop characterised by magnetic
susceptibilities, χa and χp, respectively, it would be sufficient to use the term µ0 (χp − χa)
in place of µ0χ.

It should be emphasized that the stress Eq. (12) is meaningful only for a zero-thickness
interface. As we shall see, in the framework of the numerical approach adopted here the
drop boundary is represented by a finite thickness layer in which α is a continuously varying
function. Thus, within the interfacial region the two divergence terms previously disregarded
from Eq. (9) are not identically vanishing functions and should be re-introduced in the
numerical implementation of the model. We will come back to this aspect later, when we
will describe the approach in the context of the numerical framework.
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We might also note that the presence of a magnetic force at the drop-fluid interface
generates a torque, thus, contrarily to the surface tension tensor, the magnetic particle
stress tensor is not symmetric in general. Hence, for some purposes, it might be convenient
separating it in its symmetric and antisymmetric parts. With the obvious meaning of the
symbols adopted (the superscript m indicates that we are considering only the magnetic
term of Eq.(12)), we have,

Smij =
1

2

(
Σp,m
ij + Σp,m

ji

)
, Amij =

1

2

(
Σp,m
ij − Σp,m

ji

)
. (13)

The antisymmetric part of the magnetic particle extra stress is related to the magnetic
torque, Cm, through the simple relationship Amij = −1

2
εijkC

m
k , where εijk is the Levi-Civita

symbol.
Once the particle stress (12) has been computed, the steady shear rheology, which is char-

acterized by the “excess” viscosity, ηe, and the two normal stress differences normalised by
the reference shear stress ηγ̇ (in the following, N1 and N2 are simply termed as dimensionless
normal stress differences for the sake of brevity), is given by

ηe
η

= 1 +
Σp
xy

ηγ̇
, N1 =

Σp
xx − Σp

yy

ηγ̇
, N2 =

Σp
yy − Σp

zz

ηγ̇
, (14)

where γ̇ is the imposed shear rate.
Finally, we may define an average shear stress evaluated as (see, for instance [43])

Σxy =
1

Sw

∫
Sw

η
∂ux
∂y

dS, (15)

where Sw represents indistinctly the surface of one of the two lateral walls y = 0 or y = 1.
From this expression, and with the aid of Eq. (1), we can finally work out an alternative
expression for the particle extra shear stress,

Σp
xy = Σxy − γ̇η. (16)

4 Mathematical and numerical models

The set of governing equations is solved numerically in a Cartesian frame of reference using
a hybrid level set-volume-of-fluid based OpenFOAM code developed by Capobianchi et al.
[40] on the basis of the original formulation of Yamamoto et al. [62]. Here, we highlight the
general features of the methodology, while the reader is addressed to Capobianchi et al. [40]
for a detailed description of the approach.

Firstly, we observe that the discrete counterpart of the magnetostatic Maxwell equations
(5) may be rewritten in terms of a scalar potential ψ in the following manner

H = −∇ψ, ∇ · (µ(x)∇ψ) = 0. (17)

On writing the second equation of (17), we adopted the “one-fluid” formulation, having
highlighted the fact that in this context the magnetic permeability is regarded as a continuous
quantity µ(x) = α(x) (1 + χ)µ0+(1− α(x))µ0 through the discrete vector position, x. Here,
α(x) is the standard fraction function adopted in VOF-based codes, which can be regarded
as the discrete counterpart of the indicatrix function α(r) introduced in Sect.3.1. Generally
speaking, similar definitions apply for any other material property that may be encountered
in the problem. Since we are dealing with isodense and isoviscous fluids, density and viscosity
are constant in space, however, on writing the governing equations, the functional dependence
of these two quantities on the position x will be retained for the sake of generality.

The fluid flow obeys the isothermal and incompressible conservation of mass and Navier-
Stokes equations for magnetizable fluids in the presence of a magnetic vector field

∇ · u = 0, ρ(x) (∂/∂t+ (u ·∇)) u = −∇p+ ∇ · (2η(x)D) + fσ + fm, (18)

where ρ(x) is the density and D = 1
2

(∇u + (∇u))T is the rate-of-strain tensor. The
two forces densities appearing on the right-hand side of the momentum equation (18) ac-
count for the surface tension and the magnetic force. The former can be written as fσ =
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σk (ϕ) n (ϕ) δ (ϕ) (cf. Ref. [63]) where n (ϕ) = − ∇ϕ
||∇ϕ|| is the (discrete) outward normal at

the drop interface, k (ϕ) = ∇ · n (ϕ) and ϕ is the level set function (see, e.g., Refs. [40, 62]
for more information). The magnetic body force density, on the basis of the assumptions
made, reads as

fm = ∇ ·
[
−1

2
µ0|H|2I + µ (x) HH

]
. (19)

As anticipated, this force vanishes everywhere apart from at the interface since in the bulk
of each phase the divergence of the magnetic stress tensor is identically zero. In the present
numerical framework the interface is characterized by a finite thickness, within which the
MST is not divergence-free (0 < α < 1). This fact must be taken into account on evaluating
the magnetic part of the extra-stress tensor. Reintroducing the divergence terms discharged
from Eq. (9), the magnetic part of the bulk stress now assumes the compact form

Σp,m =
1

V

∫
V

−fm ⊗ xdV. (20)

Note that the domain of integration can be conveniently extended to the entire domain
since, for the reasons explained before, the magnetic force is zero everywhere except at the
interface.

With reference to Eq. (20), we observe that if the origin of the coordinate system is
shifted by an arbitrary vector x0, we have

Σp,m (x− x0) = − 1

V

∫
V

fm ⊗ (x− x0) dV = − 1

V

∫
V

fm ⊗ xdV +
1

V

{∫
V

fmdV

}
⊗ x0, (21)

but previously we have anticipated that the rightmost integral of Eq. (21) must vanish for
uniform magnetic fields, hence the statement made regarding the arbitrariness of the origin
of the coordinate axes mentioned at the beginning of this section follows consequently.

Regarding the surface tension extra-stress tensor, we observe that a similar approach
could be used. Indeed, in the present numerical framework, the surface tension contribution
could be accounted for with an additional surface tension density force, fσ, added within
the volume integral of Eq. (20), as done by Ishida and Matsunaga [44]. Nevertheless, we
also note that this method is not strictly required, since the interfacial tension is a constant,
while the remaining variables are purely geometrical quantities (cf. Eq. (12)), meaning that
the variable α is not involved here. Hence, once the interface location has been identified
(iso-surface α = 0.5), the interfacial extra-stress can be calculated through the aid of Eq.
(12). Practically speaking, this operation was accomplished in postprocessing by extracting
the surface and calculating the integral

Σp,σ
ij =

∫
S0

{σ (δij − ninj)}dS, (22)

taking advantage of the identity kxjni = δij − ninj (cf. Refs. [24, 30]). This approach
was found to be numerically more accurate, because the normal vector computed from the
reconstructed interface was found to be generally more precise than the one evaluated by
computing the gradient of the level-set function (this latter quantity, in turn, would serve to
compute the force fσ).

The governing equations (17) and (18) are discretized in a three-dimensional computa-
tional domain having dimensions (Lx = 2, Ly = 1, Lz = 1) composed of (120× 60× 60) cells
in the respective directions, x, y and z (mesh M0). An initially spherical drop of radius
a = 0.1 is placed at the centre of the computational Couette cell, i.e., its centre being placed
at the point of coordinates (1, 1/2, 1/2). An octree adaptive mesh refinement is employed at
the interface, adopting three consecutive levels of refinement within an iteration (the typical
refined cell at the interface is cube having sides 23 times smaller than the parent (non-refined)
cell), with the refined mesh consisting of about 1.5M nodes. At the boundaries y = 0 and
y = 1, Dirichlet boundary conditions are applied for the velocity by imposing U = (−U0, 0, 0)
and U = (U0, 0, 0) respectively, yielding to a constant shear rate γ̇ = 2U0/Ly ≡ 2U0. A uni-
form magnetic far field vector, H = (0, H0, 0), is set by imposing the conditions ψ = ψ0

and ψ = ψ1 at the boundaries y = 0 and y = 1, respectively so that the resulting magnetic
field is H0 = (ψ1 − ψ0) /Ly ≡ ψ1−ψ0. Periodic flow conditions are applied at the remaining
boundaries, i.e., at x = 0 and x = 2, and at z = 0 and z = 1.
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Since we are considering periodic conditions, hydrodynamic interactions between two
adjacent droplets may come into play due to the relatively short extension of the domain.
Confinement effects in the y-direction may also be relevant, especially for those cases where
the relative strength of viscous and magnetic effects are predominant with respect to the
interfacial tension (we shall see later that in these cases the drop appears largely stretched
and partially aligned to the magnetic field, thus the relative distance between the poles of
the drop and the lateral wall can be critically small). The role played by these effects has
been evaluated considering a droplet with halved radius, maintaining the domain size and
mesh resolution, for flow conditions that provided the largest drop elongation in the vertical
direction. No substantial differences were observed in relation to the corresponding case for
the original drop radius, therefore the effect of confinement can be regarded negligible for the
conditions considered here. Moreover, a mesh study was conducted considering the largest
value of Bom (i.e., as we shall see, Bom = 5.6) for three different levels of refinement by
halving the original mesh size, M0, one time (mesh M1), twice (mesh M2) and finally three
times (mesh M3). A good rate of convergence was found and all subsequent simulations have
been carried out using the resolution M3. Detailed information regarding the confinement
and mesh studies can be found in the Supplementary Information document.

Prior to embarking on the discussion of the results, we list the set of non-dimensional
parameters that will be used. Adopting a, γ̇a, γ̇−1, ηγ̇ and H0 as reference quantities for
length, velocity, time, stress and magnetic field, respectively, we can define the Reynolds
number, Re = ργ̇a2/η, the capillary number, Ca = ηγ̇a/σ and the magnetic Bond number
Bom = µ0H0

2a/σ. In the present context, Re� 1, thus inertial effects can be neglected. The
remaining two parameters represent the ratio between viscous force and interfacial tension
(Ca), and the ratio between the magnetic force and interfacial tension (Bom), hence the drop
dynamics depend exclusively on the interplay between viscous stresses, interfacial tension
and magnetic stresses.

5 Results

5.1 Drop morphology and rheological functions in the absence of
magnetic field: comparison with existing theoretical models

Before discussing the role of the magnetic stress on the rheological properties of the system in
the presence of magnetic effects, we assess the accuracy of the numerical approach assuming
H0 = 0 by comparing our results against two different theoretical models, namely the model
proposed by Choi and Schowalter [33] (C-S model), and the morphological model of Yu et
al. [36] (GBP-YB model), which was based on the earlier work of Grmela et al. [35].

To this end, Fig. 2a shows the drop deformation parameter, D = (a1 − a2) /(a1 + a2)
(here a1 and a2 are the major and minor axes of the drop measured on the mid-plane
z = 0.5), respectively as a function of Ca obtained with the present simulations (squared
symbols) compared to the two theoretical models mentioned before. For small values of Ca,
the numerical simulations and the models predict similar deformations. As Ca is increased,
however, the numerical simulations always provide larger deformations. Analogously, in
Fig. 2b we show the comparison in terms of droplet orientation, θ′ = 45◦ − θ (measured
in degrees), where θ is the angle between the drop major axis, a1, and the x-axis, i.e., the
axis oriented along the direction of the unperturbed flow (cf. Fig. 3b). It can be seen that
the C-S model is in good agreement with our simulations in the whole range of Ca, while
the GBP-YB model consistently predicts smaller values of θ′. Comparisons with previous
numerical simulations are provided as supplementary information.

Figs. 2c,d show the comparison in terms of dimensionless excess shear stress, Σp
xy, and

normal stress differences, N1, N2, respectively (with abuse of notation, unless otherwise
stated, in the following we shall indicate normalized stresses with the same symbolism
adopted for the respective dimensional quantity, e.g., Σp ≡ Σp/(φγ̇η), being customary
to divide stresses by the volume fraction φ = V0/V of the ferrofluid phase dispersed in the
ambient fluid). The latter will be kept constant throughout the whole study and equal to
φ ' 0.21%.

In Fig. 2c, we observe that the C-S model provides an excess stress that is independent
of Ca (see the corresponding dashed line), contrarily to the GBP-YB model which correctly
reproduces the shear-thinning behavior. Moreover, we note that for very low Ca both models
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Figure 2: Deformation parameter (a), drop orientation (b), excess shear stress (c) and
normal stress differences (d) given as functions of the Capillary number. The present results
are compared with the C-S model [33] and the GBP-YB model [36]. The excess stresses in
(c) are scaled with the quantity ηγ̇φ, while normal stresses (d) are scaled with the volume
fraction φ.

and the present numerical results (diamond symbols) roughly predict the same excess stress
Σp
xy (i.e., the same excess viscosity ηe). As Ca increases, the simulations capture the expected

shear-thinning behaviour although the simulation data are consistently larger than the values
provided by the GBP-YB model. A similar discrepancy was also observed by Li and Sarkar
[24] for a numerical model system analogous to the present one (same values of the domain
confinement but larger value of the Reynolds number, Re = 0.1). Additionally, in the same
figure we show the excess stress evaluated by means of Eq. (16) (red symbols). The good
agreement with the values calculated by means of Eq. (12) is excellent over the whole range
of capillary number considered, which indirectly highlights the reliability of the methodology
adopted to evaluate the quantities appearing in expression (12).

With regard to the normal stress differences, from Fig. 2d we observe an excellent
agreement between our predictions (diamond symbols) and the GBP-YB model in terms
of N1 in the whole range of Ca, while the C-S model provides an underestimation of N1 if
compared to the other sets of data. Regarding the second normal stress difference, N2, the
present simulations (filled triangles) provide values lying in between those predicted by the
two theoretical models.

Overall, we can conclude that the present numerical approach is in qualitative agreement
with both the C-S and the GBP-YB model. At large Ca however, a certain deviation is
observed, which is expected since the theoretical models were conceived in the framework of
small Ca theories.

5.2 Emulsion rheology in the presence of the magnetic field

The accuracy of the ferrofluid solver was already assessed by Capobianchi et al. [40] con-
sidering a ferrofluid droplet undergoing deformation under the effect of a spatially uniform
magnetic field and absence of flow. The results were compared with the experiment of
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Figure 3: Deformation (a) and orientation (b) as a function of Ca for different values of the
magnetic Bond number, Bom. χ = 0.5. Some representative images of the drops for different
conditions have been added in (b).

Afkhami et al. [54] and the calculations of Rowghanian et al. [55] under the assumption of
linearly magnetizable material (confirmed by the experimental observations of [54], whose
magnetization curves are shown in Appendix B) and for a value of the magnetic suscepti-
bility χ = 0.8903, which was considered during the experiments of Afkhami et al. [54] and
ensuing calculations of Rowghanian et al. [55]. In the following, however, we shall consider
a smaller susceptibility (χ = 0.5) since for large magnetic Bond numbers and χ = 0.8903 we
observed the presence of an instability which would deserve a separate investigation. The
range of magnetic fields considered (i.e., the range of Bom in practice) will be the same as
in Capobianchi et al. [40] for which we assume the validity of the magnetic linear constitu-
tive equation. All other material parameters are the same as in the cases of Sect. 5.1 (the
interested reader will find in Appendix B some considerations about the dimensional values
corresponding to these dimensionless quantities). Additionally, it is worth mentioning that
for the fluid pair adopted by Afkhami et al. [54] in their low-magnetization regime, appre-
ciable drop interface displacements would appear for millimetre-sized drops or moderately
smaller. Nevertheless, using different fluid pairs, the interfacial tension can be drastically
lowered and drop deformations can be appreciably large even for microsized drops upon the
application of moderate magnetic fields [47]. Considerations regarding the values of drop
deformation to be expected in actual experiments using both the parameters reported in
Afkhami et al. [54] and in Zakinyan and Dikansky [47] can be found in Appendix B.

Fig. 3(a) shows the deformation, D versus Ca for different values of the magnetic Bond
number, Bom. It can be seen, as expected, that for a fixed Bom the deformation increases
monotonically with Ca due to the increased shear stress in the face of a constant interfacial
tension. Essentially, the trends are therefore congruent with the behaviour observed for
the non-magnetic case shown in Fig. 2(a). Analogously, a monotonic increase is observed
also for increasing values of Bom for fixed values of Ca, since the magnetic stresses act to
“stretch” the drop in the direction of the imposed magnetic vector field, thereby contributing
to increment the drop surface while forcing it to be oriented toward the vertical axis due
to the presence of a magnetic torque. In this regard, Fig. 3(b) shows the corresponding
orientation θ′. Again, we note a similar monotonic behaviour with Ca, while θ′ decreases for
increasing Bom for each value of Ca. Moreover, it is worthwhile highlighting that for most
of the conditions considered here θ′ is negative (θ > 45◦). Only for Ca = 0.2 the orientation
θ′ is positive for all values of Bom due to increasingly strong viscous effects which act to
orient the drop toward the direction of the imposed shear. Some of the shapes obtained for
different combinations of Ca and Bom have been added in the figure for the sake of clarity.

As a result of the relevant modification of the droplet morphology induced by the ad-
ditional magnetic stresses, the rheological properties of the emulsion are expected to be
substantially different from those observed in the absence of magnetic effects. In this regard,
in Fig. 4a we show the particle excess shear stress, Σp

xy, as a function of Ca for different values
of the magnetic Bond number obtained by means of the current model (open symbols) and
compare them with the values obtained by means of Eq. (16) (closed symbols). In general,
we notice a shear-thinning behaviour, although the relative variations of Σp

xy with Ca are less
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Figure 4: a) Excess shear stress as a function of Ca for different Bom. b)Excess shear stress
as a function of Bom = for different Ca. χ = 0.5. Open symbols represent data obtained
from Eq. (12), while data represented with closed symbols were obtained through Eq. (16).
Data shown are scaled with the quantity ηγ̇φ.

pronounced than those obtained in the absence of magnetic effects (cf. Fig. 2c), with the
exception of the results obtained with the present model for low Ca regime, here represented
by Bom = 1.4 (cf. Fig. 4a). Such discrepancy can be attributed to the numerical error
associated to the evaluation of the components of the vector normal to the drop interface
when the interfacial tension is predominant with respect to the other constraints, which is a
typical drawback of interface capturing techniques such as VOF and level-set methods (see,
e.g., Refs. [63, 64]). Nevertheless, it is worth pointing out that the trend obtained through
Eq. (16) is consistent with that obtained through the adoption of the model in all the other
cases, i.e., it exhibits monotonic decreasing behaviour in the whole range of Ca.

From Fig. 4b, where we report the excess shear stress obtained by means of Eq. (16)
for all values of Bom, we can infer that Σp

xy increases for increasing Bom for a fixed Ca. In
particular, with reference to Fig. 4b, we notice a monotonic increase (“magneto-thickening”),
roughly cubic behaviour, suggesting the possibility to model the emulsion viscosity with an
equation like

ηe
η
≈ 1 + φΣp,(0,0)

xy + φ
(
Kχ,1Bom +Kχ,2Bom

2 +Kχ,3Bom
3
)
, (23)

which applies for fixed capillary numbers. Here, Σ
p,(0,0)
xy represents the excess stress when

Bom → 0, while Kχ,i (i = 1, 2, 3) are constants of proportionality which are expected to
be dependent on the magnetic susceptibility (it appears reasonable, in fact, to expect an
increase of ηe with χ since larger values of χ lead to larger magnetic stresses). However,
we should recall that the present model is valid only for linearly magnetizable fluids, which
limits the maximum value of χ (see, e.g., Ref. [57]). Finally, the direct linear proportionality
to the volume fraction φ is a consequence of the additive character of the model (12) (see e.g.,
Batchelor [30] and Li and Sarkar [24] for additional information), and it seems reasonable to
assume that such behaviour is valid as far as dilute regimes are concerned.

We continue our discussion by showing the normal stress differences derived with our
model. In this regard, in Fig. 5 we report N1, N2 as a function of the capillary number for
different Bom. From these plots we immediately realize that the general trend observed for
both normal stress differences resemble those observed in the case Bom = 0. Nevertheless,
we note the presence of a reversal in the sign of both normal stresses in the range of small Ca
for the larger values of Bom, i.e., for Bom = 4.2, 5.6. This is attributable to the fact that the
magnetic torque, which counteracts the shearing of the imposed flow, forces the drop to be
elongated and prominently oriented toward the vertical direction (θ′ < 0) thereby introducing
a stress anisotropy enhanced toward the direction of the magnetic field. Moreover, by a direct
comparison with Fig. 2d, we observe that the extent of the normal stresses in the presence
of magnetic field is in general different than that obtained in the absence of magnetic field.
The continuous lines added represent polynomial cubic fits.

The same set of results can also be displayed versus Bom for fixed capillary number, as
shown in Fig. 6, from which we can draw some interesting considerations. Fig. 6a, in partic-
ular, shows the trends for N1, and a comparison between the low- and high-Ca data, shows
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Figure 5: First and second normal stress differences as a function of Ca for different Bom.
χ = 0.5. The lines represent cubic fits. Data are scaled with the volume fraction φ.

rather different behaviours. For the largest values of the capillary number, i.e., Ca = 0.15
and Ca = 0.2, we observe that N1 increases with Bom. On the contrary, for the remaining
values of Ca, the first normal stress difference decreases with Bom. These opposite behaviours
can be ascribed to the configuration assumed by the drop for different flow conditions stem-
ming from the competition between magnetic and viscous forces. For increasing capillary
numbers, in fact, we have seen that the orientation θ′ increases monotonically. Therefore, for
large values of Ca, the anisotropy of the system is enhanced in the direction of the mean flow
(x-direction), thereby promoting the increment of N1 = Σxx−Σyy (note that for Ca = 0.2, θ′

was found to be always positive). On the contrary, in the opposite case scenario small cap-
illary numbers lead to a decrease of the orientation (θ′ < 0), therefore the anisotropy of the
system is enhanced in the direction of the magnetic field, thereby favouring the increment of
the vertical normal stress Σyy compared to the Σxx component. This circumstance therefore
leads to a progressive reduction of N1 when Bom is increased. Regarding the results for N2

shown in Fig. 6b, we observe that opposite considerations apply. When Ca is sufficiently
small, N2 increases with Bom due to the increase of Σyy, conversely, for increasing Ca, Σyy

is progressively decreased and the increments of N2 become less pronounced.

5.3 Rheological functions in the presence of magnetic field: com-
parison with existing theoretical models

In the introductory section, it has been mentioned that Cunha et al. [43] and Ishida and
Matsunaga [44], have derived models for the same type of emulsion considered here using
the approach detailed in Batchelor [30]. However, these authors relied on the formulation
introduced by Kennedy et al. [60], in which the quantity inside the surface integral appearing
in Eq. (3) is rewritten as xj∆ti upon the application of the divergence theorem, where ∆ti
is the interface traction jump. In this formulation, the stress was already reduced to the
rightmost (volume) integral appearing in Eq. (3) upon the hypothesis of negligible inertia
and uniform body force mentioned before (we recall that, contrarily, we found advisable
retaining the body force term since the magnetic body force is not uniform throughout the
flow domain). In spite of the fact that both Cunha et al. [43] and Ishida and Matsunaga
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Figure 6: First and second normal stress differences as a function of Bom for different Ca.
χ = 0.5. Data are scaled with the volume fraction φ.

[44] shared the same starting point, they followed different routes and came across different
formulations for the magnetic extra stress tensor: in Cunha et al. [43], in fact, the magnetic
extra-stress tensor is proportional to the square of the magnetic field intensity, H2. On
the other hand, Ishida and Matsunaga [44] derived their model relying on the fact that
in their numerical framework the interface is not sharp and therefore they approximated
the surface integral of the tensor xj∆ti with a volume integral evaluated over the finite
thickness interfacial layer. As a result, their magnetic contribution to the particle stress
tensor resembles the one derived in the present work (formulation in the framework of our
numerical approach) with the difference of being transposed and having the opposite sign
with respect to ours.

A comparison with the stress calculation using the integral formulation detailed in Eqs.
(15)-(16) has shown the reliability of the formulations reported in Cunha et al. [43] and
Ishida and Matsunaga [44] in providing accurate prediction of the total shear extra-stress,
circumstance that has been encountered also with our model. Hence, we can argue that all
models are capable to provide similar predictions of this quantity. Regarding the normal
stress differences, Cunha et al. [43] have reported positive increasing values for N1 (their
setup was two-dimensional, hence N2 was not contemplated) for increasing capillary number.
On the other hand, Ishida and Matsunaga [44] considered three-dimensional configurations,
but no reversal of the signs of N1, N2 were observed. Since their magnetic extra-stress tensor
share a similar structure to the one determined in this work, being only transposed and
changed in sign, the occurrence of a different behaviour in terms of normal stress differences
can be expected.

Figure 7: Comparison in terms of first and second normal stress differences with the model
of Cunha et al. [43] as a function of Ca for Bom = 1.4, Bom = 5.6 and χ = 0.5. Data are
scaled with the volume fraction φ.

In Fig.7, we show the normal stress differences vs capillary number calculated for our flow
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conditions adopting the model of Cunha et al. [43] (dashed lines) for the cases Bom = 1.4 and
Bom = 5.6 compared to our findings (continuous lines). It appears clear that both models
predict similar trends, nevertheless, in line with the previous two-dimensional findings of
Cunha et al. [43], also in these conditions reversal of normal stresses was not observed (cf.
Fig. 7b). Completely analogous trends were found for the intermediate values of Bom which
are not reported here for the sake of brevity. Regarding shear stresses, the model of Cunha
et al. [43] provided results essentially identical to those obtained with our model and shown
in Fig. 4, with relative differences contained within 1%.

6 conclusions

The rheological properties of a dilute emulsion composed of ferrofluid droplets suspended in
a non-magnetizable fluid have been investigated numerically considering uniform magnetic
fields applied in the direction transverse to the imposed shear. Three-dimensional simula-
tions have been carried out with a multiphase OpenFOAM code previously developed by
Capobianchi et al. [40] capable of dealing with interfacial flows in the presence of ferrofluid
phases. A novel model for the bulk rheology of the emulsion based on the early work of
Batchelor [30], has been derived assuming Newtonian behaviour for both phases, negligible
inertia and linearly magnetizable fluids.

The accuracy of the multiphase numerical framework in a three-dimensional setup has
been initially tested in the absence of magnetic effects against the models of Choi and
Schowalter [33] and Yu et al. [36] for a isodense and isoviscous system. A general good
agreement in terms of droplet morphology (deformation and orientation) and bulk rheology
was found in a fairly broad range of capillary number. Subsequently, we imposed different
moderate uniform magnetic fields while setting a magnetic susceptibility χ = 0.5, held con-
stant throughout the whole study. In line with the previous two-dimensional calculations of
Capobianhi et al. [40] and Cunha et al. [43], as well as with the three-dimensional compu-
tations of ishida and Matsunaga [44], the droplet morphology was found to be significantly
affected by the presence of magnetic stresses. In particular, it was found that magnetic
effects contribute to enhance the drop deformation and orient it along the direction of the
imposed magnetic field. Consequently, the rheological properties of the emulsion were found
to be different to those observed for non-magnetizable fluids. In line with the non-magnetic
case, the excess shear stress was found to be a monotonic decreasing function of Ca (for each
value of Bom), nevertheless the relative reduction of viscosity appeared to be less pronounced
than the corresponding situation where the magnetic field was not considered. Arguably, a
larger magnetization could lead to the opposite scenario, i.e., to the appearance of a shear-
thickening behavior.

Calculation of the excess shear stresses obtained with the present model provided results
that are in good agreement with the direct calculation of the stresses, thereby indicating the
reliability of the present model. Calculations of the excess shear stress obtained with the
model proposed by Cunha et al. [43] also provided results in line with the present model in
the whole range of parameters considered. Conversely, for constant values of Ca, the excess
shear stresses were found to be a monotonic increasing function of Bom (magneto-thickening
behaviour), and the available data suggested a cubic dependence with this latter parameter.
On the basis of this observation, we proposed a simple constitutive equation for the emulsion
describing its viscosity as a function of the applied magnetic field, i.e., as a function of Bom

while keeping constant the imposed shear.
In terms of normal stresses, our model predicted a reversal of the sign of both first and

second normal stress differences with respect to those obtained for the non-magnetizable
case for those conditions in which the imposed magnetic force prevails over the viscous force.
We concluded that such behaviour can be ascribed to the strong anisotropy introduced by
the magnetic stresses which contribute to deform and orient the drop toward the direction
of the magnetic field.
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See the supplementary information for the complete validation study of the present numerical
framework.
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A The C-S and the GBP-YB Models

Here we report the C-S model of [33] and the GBP-YB model of [36] adopted in the validation
section for the convenience of the reader.

A.1 The C-S Model

Choi and Schowalter [33] developed a rheological model for emulsion in steady shear Stokes
flow based on the small deformation perturbation analysis. As the volume fraction φ → 0,
the rheological functions vary linearly with volume fraction φ. Consider the viscosity ratio
λ = 1, the interfacial rheological functions are reduced to:

ΣC−S
xy =

ηC−Se

η
=

7

4
φ, (24)

NC−S
1 =

245

32

Ca

(1 + Z2)
φ, (25)

NC−S
2 = −35

16

Ca

(1 + Z2)
φ, (26)

where

Z =
35

16
Ca. (27)

A.2 The GBP-YB Model

Based on Grmela et al. [35] morphological tensor model, Yu et al. [36] calculated the
interfacial rheological functions for emulsion in shear Stokes flow. Shear-rate dependence of
viscosity is taken into account. The expressions for these functions are:

ΣGBP−YB
xy =

ηGBP−YB
e

η
=

128

35

φ

S
, (28)

NGBP−YB
1 = 16

φ

S
Ca, (29)

NGBP−YB
2 = −1

2
NGBP−YB

1 , (30)

where

S = (10− 7φ)

(
Ca2 +

256

1225

)
. (31)

B Ferrofluid code validation

In this Appendix, we report the the magnetization (high- and low-field intensity) curves
reported in [54] which are also relevant for the present study, as we have referred to the same
type of ferrofluid for our numerical simulations, and the validation of the code developed by
[40] against the experiments of [54]. In this regard, in Fig. 8a,b we report the results of
the measurements of [54] for the magnetization for both high (Fig. 8a) and low (Fig. 8b)
magnetic field intensity. In our numerical simulations, the applied magnetic field was always
constant and set to a value H = 750 A/m, i.e., within the limit of the small magnetization
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Figure 8: High (a) and low (b) field magnetization curves for the 7 vol. % magnetite (Fe3O4)
particles with a mean diameter of 7.2 nm dispersed in glycerol (µglyc ' µ0) determined by
[54].

Figure 9: Deformation of a ferrofluid droplet immersed on a non-magnetizable fluid as a
function of the magnetic Bond number. Comparison between the numerical results of [40]
and the experiments of [54].

curve. Nevertheless, we should observe that in an actual emulsion the dimension of the drops
are expected to be several order of magnitude smaller than that considered here. Thus, it
is necessary to check whether for an emulsion with droplets having reasonably small size,
the values of the relative magnetic Bond number are reasonably large for the intensity of
the magnetic field that are in the limit of low fields intensity. Thus, considering the largest
magnetic field reported in Fig. 8b, i.e., H ≈ 6 kA/m, and the interfacial tension the value of
σ ≈ 10 mN/m (cf. Refs. [54, 55]), we infer that the droplet dimension should be on the range
O (10−4) m to O (10−3) m to obtain the order of magnitude of the magnetic Bond numbers
considered in this work. With a fluid pair having a smaller interfacial tension, see for instance
[47, 65], smaller droplet sizes would lead to similar values of Bom. For instance, Zakinyan and
Dikansky [47] reported a value of the interfacial tension, σ = 10−3 mN/m, for their system
composed by drops of a kerosene-based ferrofluid dispersed in a FH51 aviation oil. They
were able to produce significant displacement of micron-sized drops with the application of
relatively low magnetic fields (order of few kA/m or smaller).

Fig. 9 shows the deformation of a ferrofluid drop surrounded by a non-magnetizable
fluid measured as the ratio between the major and minor axes (refer to the inset). The red
symbols are representative of the experiments of [54], while the black ones are the simulation
carried out by [40]. The value of the magnetic susceptibility was χ = 0.8903, as reported by
the measurements of [54]. Apart from a small discrepancy at the low-Bom regime (Bom < 1),
which can be attributed to the aforementioned problem related to the interface-capturing
numerical methodology adopted here, the two sets of results are in fairly good agreement.
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