Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Trapping, stabilization, and characterization of an enolate anion of a 1,6-adduct of benzophenone chelated by a sodium alkylamidozincate cation

Hevia, E. and Honeyman, G.W. and Kennedy, A.R. and Mulvey, R.E. (2005) Trapping, stabilization, and characterization of an enolate anion of a 1,6-adduct of benzophenone chelated by a sodium alkylamidozincate cation. Journal of the American Chemical Society, 127 (38). pp. 13106-13107. ISSN 0002-7863

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

There has been a recent upsurge of activity in the study of alkali metal zincate reagents due to their often special reactivity/selectivity in, for example, deprotonative metalation and nucleophilic addition reactions. Heteroleptic dialkylamidozincates, [M+Zn(R)2(NR'2)-], usually transfer selectivity of the amide ligand to electrophiles. Here, in contrast, it is reported that the sodium zincate [TMEDA·Na(-tBu)(-TMP)Zn(tBu)] reacts as an alkylating agent toward the diaryl ketone benzophenone (Ph2C=O), selectively adding one of its tBu ligands to the para-C atom of one of the Ph rings. The reaction can be carried out at room temperature, which is a decided advantage over lithium reagents as these are generally utilized at subambient temperatures. The stabilizing effect of the bimetallic (Na, Zn) cationic residue of the starting zincate reagent in coordinating to the dearomatized enolate anion of the 1,6-addition adduct allows the adduct to be isolated in a pure crystalline form. An X-ray crystallographic study of the adduct reveals a molecular structure based on a near-planar, four-element (NaOZnN) ring with a TMP-N and an enolato-O bridge. The Na and Zn atoms also carry terminal TMEDA (N,N'-attached) and tBu (C-attached) ligands, respectively. Also included are 1H/13C NMR spectroscopic data for the adduct when dissolved in cyclohexane-d12 solution.