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HIGHLIGHTS   

 Resting-state electroencephalographic (rsEEG) measures may reflect synchronization of 
cortical neurons in humans.  

 
both the group and individual level. 

  Linear EEG measures may be used as neurophysiological markers in AD clinical trials. 
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ABSTRACT

The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium 

endorsed recommendations on candidate EEG measures for AD) clinical 

trials. The Panel reviewed the field literature. As most consistent findings, AD patients with 

mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and 

at posterior alpha (8-12 Hz) and widespread delta (<4 Hz) and theta (4-8 Hz) 

rhythms in relation to disease progression and interventions. The following consensus 

statements were subscribed: (i) Standardization of instructions to patients, rsEEG recording 

methods, and selection of artifact-free rsEEG periods are needed; (ii) Power density and 

rsEEG measures (e.g., directed transfer function, phase lag index, linear 

lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification 

of AD patients and monitoring of disease progression and intervention; and (iii) International 

multisectoral initiatives are mandatory for regulatory purposes. 
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1. BACKGROUND 

 

1.1. Qualified biomarkers for the diagnosis and monitoring of  

patients in clinical trials 

 

The International Working Group (IWG) and the US National Institute on Aging

Research Framework (NIA-AA Research Framework) have recently 

proposed and refined recommendations and research criteria for the diagnosis and monitoring 

of  at the preclinical, prodromal (with objective mild cognitive 

impairment, ADMCI), and overt dementia (ADD) stages for clinical trials, based on in-vivo 

fluid and neuroimaging biomarkers [1; 2; 3; 4]. According to these diagnostic criteria, AD 

status is associated with (i) a reduction of cerebrospinal (CSF) A 42 and an increase in 

amyloid at the brain level as revealed by amyloid positron emission tomography (PET) 

mapping, and (ii) an increase of phospho-tau in CSF and of tau PET tracer retention. 

Neurodegeneration over the course of disease progression may be revealed by 

18Fluorodeoxyglucose PET (FDG-PET), total tau in CSF, and magnetic resonance imaging 

(MRI) of brain atrophy in temporoparietal cortex and the medial temporal lobes (including 

the hippocampi).  

 

1.2. Measures of eyes-closed resting state electroencephalographic (rsEEG) rhythms  

 

The use of the above neuroimaging techniques for serial recordings in longitudinal 

AD clinical trials may be limited due to their high costs and invasiveness, especially in lower- 

and middle-income countries. Apart from the indirect role played by FDG-PET as a marker 

of synaptic integrity, none of these biomarkers reflects effects of AD neuropathology on 

neurophysiology of brain neural signal transmission underpinning cognitive processes. It is 

physiology in the amyloidosis, tauopathy, and neurodegeneration framework of 

biomarkers in AD research [4]. 

To fill that gap, measures of eyes-closed resting state electroencephalographic 

(rsEEG) rhythms are quite promising as they are non-invasive, reproducible (without 

learning effects) until severe dementia, cost-effective, and based on recording techniques 
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largely available worldwide including lower- and middle-income countries [5, 6;7]. These 

measures may probe effects of AD on ascending activating systems and reciprocal 

thalamocortical circuits in which oscillatory (de)synchronizing signals dynamically underpin 

cortical arousal in the regulation of quiet vigilance [5, 6; 8;7]. This phase 

synchronization/desynchronization of cortical neural activity may occur in an interrelated 

way in multiple cortical areas, gating transmissions and communications of action potentials 

within both local and long-range neural networks [9; 10; 11; 12]. Animal studies elucidated 

the cellular and molecular basis of on-going EEG activity at cortical and subcortical level 

[13; 14; 15]. Furthermore, they demonstrated that AD neuropathology may cause 

disconnection among neural cells, damage to cortico-cortical and cortico-subcortical 

pathways, and loss of myelinated axons possibly associated with cortical neural 

hyperexcitability and hypersynchronization as well as reduced neurotransmission, neural 

signaling and synaptic activity [16; 17] 

In clinical contexts, rsEEG activity is typically recorded from 19-25 to > 80 scalp 

electrodes placed according to 10-10 montage system (18; Figure 1) while patients are in 

quiet wakefulness with their eyes closed. They are instructed to stay psycho-physiologically 

relaxed with no cognitive demand and to allow their mind to wander freely (Panel 1). 

 

Please insert about here Figure 1 and Panel 1 

 

Due to the resistive features of skull and scalp, rsEEG rhythms recorded at the scalp 

level is mainly represented by frequencies spanning about from 1 to 100 Hz, detectable by the 

high temporal resolution (< 1 ms) of EEG recording systems [19; 20, 21]. 

Spatial resolution of EEG techniques is low to moderate (i.e., few centimeters) as 

compared to the neuroimaging techniques mentioned above. Indeed, rsEEG activity measured 

at a scalp electrode may results from cortical sources located several centimeters apart or 

distributed into large regions due to head volume conduction effects (> 10 cm2; 20, 2015). 

This resolution depends on the number of scalp EEG electrodes and mathematical techniques 

for EEG source estimation (Figure 2). 

 

Please insert about here Figure 2 

 

In artifact-free rsEEG activity, posterior  alpha rhythms (about 8-12 Hz) 

are the dominant oscillations and reduce in amplitude in the transition from eyes closed to 
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open condition, due to activation of visual-spatial cortical systems [5, 6; 22].  In quiet 

vigilance (no task demands), high amplitude of low-frequency alpha rhythms (about 8-10 Hz) 

may reflect low levels of general brain arousal, attention, and readiness [23; 24], while high 

amplitude of high-frequency alpha (about 10-13 Hz) and low-frequency beta (about 12-20 

Hz) rhythms may reflect low levels of perceptual, somatomotor, and memory processes [23; 

25].  

During sensorimotor and cognitive events, alpha rhythms are replaced by faster 

cortical rsEEG oscillations, namely high-frequency beta (20-30 Hz) and gamma (30-70 Hz) 

rhythms, mainly prompted by (i) forebrain cholinergic direct inputs to hippocampus and 

cerebral cortex and (ii) thalamocortical projections (15; 20).  

In healthy adults, rsEEG activity at delta (1-4 Hz) and theta (4-7 Hz) rhythms may 

typically show small amplitude and exhibit complex patterns of changes during sensorimotor 

and cognitive events [26; 20]. Therefore, abnormally prominent theta or delta rhythms in the 

resting state condition are considered as signs of brain dysfunctions [5, 6].   

Several methods can probe information embedded in artifact-free scalp rsEEG 

waveforms (see Supplementary materials: Main features of resting state EEG measures 

used in studies on A  disease). Fast Fourier Transform (FFT) assumes a linearity of 

rsEEG signals and returns local  density of rsEEG voltage time series at each scalp 

electrode, frequency-bin-by-frequency bin (Figure 3). Other methods estimate 

interrelatedness of rsEEG activity at scalp electrode pairs or EEG source connectivity,  

based on an assumption of linearity or nonlinearity of rsEEG signals [5; 27, 28, 29] and 

graph theoretical indices represent general topological features of those estimates as network 

nodes connected (or not) by edges [30; 31; 32; 33; Panel 2]. 

The inclusion of rsEEG measures in AD clinical trials (e.g.,  stratification, 

monitoring disease progression, efficacy of therapeutics, etc.) as enriching 

neurophysiological biomarkers has to steam on a preliminary demonstration that those 

measures are reliable, consistent, and sensitive (e.g., test-retest reliability, effect and sample 

sizes, etc.). For example, the statistical power and the variability of effect-sample sizes of a 

given rsEEG measure are relevant parameters to evaluate if that candidate biomarker can be 

included in clinical trial protocols of phases > 1 designed for AD patients, namely protocols 

testing the neurobiological efficacy and therapeutic effects of new drugs against AD. It 

should be considered that clinical trials of phases 2 and 3 typically involve 100-300 and 300-

3,000 patients for each  group, respectively [34]. Therefore, a suitable rsEEG 
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biomarker is expected to be reliable, consistent, and have a sample size substantially lower 

than n=300 patients for group.  

Concerning the issue of test-retest reliability, previous studies reported that the power 

density of artifact-free rsEEG rhythms is stable at 12-40 months retest performed in healthy 

adults [35; 36]. Namely, those studies showed high test-retest correlations (r = 0.92 at 5 min, 

0.84 at 12 14 weeks, [37]; intra-class correlation coefficients = 0.8-0.9 at 4 weeks, [36]. 

Furthermore, the absolute and relative power densities of rsEEG activity, including dominant 

posterior alpha rhythms during the eyes-closed condition, were quite consistent when 

computed from artifact-free rsEEG data lasting 20 s, 40 s, 60 s to 4 minutes [36; 37; 38] 

which are the typical durations of rsEEG datasets used for the quantitative analysis performed 

in Clinical Neurophysiology [5].  

In general, results of the previous test-retest studies showed that the rsEEG relative 

power density was slightly more repeatable than the absolute power density, probably for the 

general property of normalization procedures to reduce measure variabilities [e.g., 36]. 

Furthermore, the reproducibility of spectral rsEEG measures over sessions was higher in the 

eyes-closed than -open condition, possibly due to the effects of residual blinking and 

saccades in the data used for rsEEG spectral analyses [39; 36]. Moreover, the reproducibility 

of rsEEG measures was higher in rsEEG power density than interrelatedness (connectivity) 

estimates at both sensor and source levels [36]. Finally, such a reproducibility was slightly 

higher at sensor than source levels, but the findings encouraged the use of both levels of 

analysis for clinical applications [36; 40].  

Keeping in mind the above data and considerations, the reliability and consistency of 

typical rsEEG measures derived from healthy adults seem to be generally suitable for 

applications in Clinical Neurophysiology [5]. However, those statistical features should be 

carefully taken into account to interpret the statistical effects reported in the studies using 

rsEEG measures to compare AD and control individuals and to investigate AD progression and 

therapy responses.  

Please insert about here Figure 3 and Panel 2 

 

1.3. Aims and methodology 

          

Although international panels of experts have emphasized the merits of rsEEG 

measures in AD research [6;7], there are still uncertainties about the specific biomarker value 

(e.g., disease status, progression, etc.) of different rsEEG measures for their use in AD 
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clinical trials, possibly due to the heterogeneity of methodological approaches that are 

available. To clarify these uncertainties, the Electrophysiology Professional Interest Area 

(EPIA) of A  Association and Global Brain Consortium endorsed this article 

written by a multidisciplinary Expert Panel to provide recommendations about candidate 

rsEEG measures for AD clinical trials. The core question was Are there rsEEG measures 

that reveal consistent effects across previous studies carried out in AD patients for use in 

future clinical trials for  stratification, monitoring of disease progression, and 

study of the efficacy of interventions  Expertise in the Panel covers several relevant 

disciplines (i.e., Neurology, Psychiatry, Neuroimaging of Dementias; Clinical 

Neurophysiology; Quantitative Analysis of rsEEG rhythms in Dementias; Cognitive 

Neurosciences; Public Health) strictly related to the core question.  

The Panel formulated the recommendations based on a comprehensive review of the 

field literature performed through Web of Science, Scopus, and MEDLINE, using several 

appropriate combinations of the following key words.  

populations of interest  were used

Mild Neurocognitive Disorder , 

Cognitive 

, Neurocognitive Disorder , and Dementia.  

EEG techniques of interest the following key words were used: 

Electroencephalography (EEG) Resting State EEG Background 

 (qEEG) and .  

EEG measures of interest   

(i.e., visual analysis and description of well-known graphoelements observed on ongoing 

rsEEG traces), 

 and Irregularity (referring to the dynamics of temporal patterns at one scalp 

electrode or spatiotemporal patterns in many scalp electrodes) [40],  

EEG activity or EEG source connectivity,  Spectral Coherence,  Partial Coherence,  

Entropy,      Granger Causality,  Directed Transfer 

Function,  -Amplitude Coupling,  (SL),  Phase Lag 

Index (PLI  Phase Locking Value (PLV)  Ampli

lustering coefficient, haracteristic path length, odularity index,

Source Estimation,  Source Estimation,  ,  and 
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 Experimental design of interest  were used: 

Longitudinal studies  (cohorts of AD patients followed over time), ross-sectional studies  

(samples of AD patients with different severity and disease duration Classification studies  

(accuracy of EEG measures in the discrimination between controls, patients with AD and/or 

other types of cognitive impairment at individual level). 

Only papers published in international journals with peer-review and impact factor 

were selected (-2020). Some papers could not be downloaded from available Internet 

resources and were not considered. All selected abstracts/papers were critically reviewed by 

selected members of the Expert Panel (i.e., C.B., L.B., C.D.P, B.G., R.L., F.T., S. L. G.N., 

and G.Y.) taking into account the criteria reported in Jelic and Kowalski [42] namely original 

article published in English with 10 or more persons per diagnostic group, diagnosed 

according to the established consensus clinical diagnostic criteria used as a "gold standard." 

The validity of the rsEEG measures was mainly based on the guidelines for rsEEG recordings 

and data analysis in Clinical Neurophysiology [5]. The selected rsEEG papers were 

distinguished in three arbitrary classes with increasing weight in the formulation of the 

recommendations. They were as follows: 

1) Class A. ADD or ADMCI patients mostly diagnosed using qualified CSF or PET 

diagnostic biomarkers of AD [1; 2; 3; 4, 43] and > 10 participants for each group. When the 

data were available in the Class-A paper, we reported the effect and sample sizes of the main 

rsEEG measures characterizing AD patients over controls (see Tables 1, 2, and 3).  

2) Class B. ADD or ADMCI patients enrolled using traditional criteria for the clinical 

diagnosis of AD as inclusion criteria [e.g., 44] and large populations (> 100 participants) of 

AD and control CU persons.  

3) Class C. As Class B but with smaller populations (< 100 participants). In the article, Class 

C papers were described and without the specification 

of the number of persons for the sake of brevity. 

The selected members of the Expert Panel (i.e., C.B., L.B., C.D.P, B.G., R.L., F.T., S. 

L. G.N., and G.Y.) produced a first draft of the article. This draft has been sent to the other 

co-Authors (January 6th, 2020) for further discussions looking towards a unanimous 

consensus about the recommendations to be released. It was finalized in March 2020. 

 Significant caveats and intrinsic limitations of this article include (i) the potentially 

restrictive criteria used for the literature revision and classification; (ii) the inclusion of 

studies that have applied the heterogeneous diagnostic criteria for AD used for decades, 

which may not exclude the presence of moderate cerebrovascular, non-AD hippocampal 
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impairment (TDP-43), and Lewy body co-pathology, especially in older ages; (iii) the 

blurring effects of head as a volume conductor spreading scalp rsEEG activity (Figure 4), 

and (iv) heterogeneous procedures for the detection of artifacts in preliminary rsEEG data 

analysis. See more details in the Supplementary materials: Caveats and intrinsic limitations.  

Please insert about here Figure 4 

 

2. RsEEG MEASURES FOR STRATIFICATION  

 

2.1. Local  measures of rsEEG rhythms in AD patients  

 

ADD and ADMCI patients repeatedly showed marked changes in linear measures 

of rsEEG power density at delta, theta, and alpha bands in relation to CSF, neuroimaging, 

and clinical markers. The main results are reported below.   

In two experiments of the international multicentric North Baltic (NORDEEG) study 

(Class A), as compared to age-matched old cognitively unimpaired (CU) persons (n=138), 

ADD (n=117) and ADMCI (n=138) patients showed increased global theta power density 

and lower cognitive performance as well as a positive relationship between posterior alpha-

beta power density and cognitive performance [45]. Furthermore, decreased CSF amyloid 

power density averaged across all 

electrodes (global field power, GFP) in patients diagnosed with subjective cognitive decline 

(SCD, n = 210), MCI (n=230), and ADD (n=197). In contrast, increased p- and t-tau 

correlated with decreased alpha and beta GFP [46]. Moreover, d

and increased p- and t-tau were significantly associated with decreased alpha and beta global 

field synchronization (GFS) at zero voltage across all alectrodes as a function of cognitive 

status [46].  

European multicentric PHARMACOG study (Class A) compared rsEEG measures in 

amnesic MCI seniors with diagnostic CSF markers incompatible (noADMCI, n = 54) and 

compatible (ADMCI, n = 72) with AD diagnosis [47]. A statistical model incorporated 

rsEEG source estimates from recordings performed every 6 months for 2 years. Results 

displayed that as compared to noADMCI patients, ADMCI patients were characterized by 

greater global delta and theta source activity and greater ratio between posterior delta-theta 

and alpha source activity (47Furthermore, ADMCI patients who could be evaluated until the 

last follow-up (n=63) exhibited an association between occipital theta/alpha source activity 
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and global cognitive status, as measured by ADAS-cog13 score, and reduced connectivity 

within the default mode network in resting state functional MRI markers [47]. 

In an ITALIAN-TURKEY rsEEG study (Class A), as compared to CU persons 

(n=60), ADMCI patients with high (n=35) and low (n=35) education attainments presented 

greater alpha source activations topographically widespread [48]. On the contrary, in relation 

to the ADMCI subgroup with the low education attainment, the ADMCI subgroup with the 

high education attainment displayed lower alpha source activations topographically 

widespread (notably, the two ADMCI subgroups had matched cerebrospinal AD diagnostic 

biomarkers, APOE 4 genotyping, brain gray-white matter measures, and neuropsychological 

scores). 

Another study [41; Class A] examined the association between CSF biomarkers and 

EEG parameters in AD patients (n=14). Those patients showed significant negative 

correlation between CSF beta-amyloid -42 concentration and the logarithms of CSD 

over the right temporal area in the theta band. Total tau concentration was negatively 

correlated with the lagged phase synchronization (LPS) between the left frontal eye field and 

the right auditory area in the alpha-2 band in patients with AD.  

The effects of AD neuropathology on the amplitude of delta, theta, and alpha rhythms 

are corroborated by the following studies of independent worldwide consortia (Class B).  

In a study based on the NEWYORK (n=264) and the STOCKHOLM (n=155) rsEEG 

databases, ADD and ADMCI patients were characterized by decreased alpha, beta, and 

gamma Global Field Synchronization (GFS), and increased delta GFS as compared to CU 

individuals with intact cognition [49]. In another STOCKHOLM rsEEG study, ADD (n=38) 

patients showed decreased alpha and beta GFP, and anteriorization of dipole source location 

fitting scalp alpha and beta rhythms as compared to ADMCI (n=31) and age-matched CU 

persons (n=24) [50].  

In some experiments of the ITALIAN rsEEG study, as compared to CU persons 

(n=126), ADD (n=193) and ADMCI (n=155) patients presented a widespread increase of 

delta source activity and a decrease of posterior alpha source activity in relation to cognitive 

performance, as revealed by mini mental state evaluation (MMSE) score and other 

neuropsychological tests [51]. Furthermore, those abnormalities in rsEEG source activities 

were related to structural (e.g., hippocampal and cortical gray matter atrophy) [52, 53, 54] 

and functional (e.g., poor FDG-PET metabolism in posterior cortical regions) [55] 

neuroimaging markers. Findings at source level were cross validated by GFP markers at the 
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scalp level. In fact, ADMCI patients (n=85) showed that the ratio between theta and gamma 

power density and the ratio between high- and low-frequency alpha power density were 

related to gray matter atrophy in hippocampus, thalamus, and basal ganglia in relation to 

cognitive status [56, 57, 58, 59, 60].  

In the European DESCRIPA rsEEG study, when compared to non-amnesic MCI 

(n=51), SMC (n=53) not tested for amyloid deposition in the brain, and age-matched CU 

(n=79) persons, ADMCI patients (n=92) exhibited increased occipital-frontal theta source 

activity and lower posterior alpha source activity [61].  

In the study by Roh and colleagues, as compared to CU persons (n=39), ADD (n=41) 

and ADMCI (n=38) patients presented (1) higher temporal and parieto-occipital theta power 

density and a decrease of posterior alpha source activity and (2) lower parieto-occipital alpha 

and frontal and temporal beta 2 power density in relation with cognitive deficits [62]. 

Other rsEEG studies of Class C showed similar results about delta, theta, and alpha 

power density in relation to cognitive functions [56, 59; 63]. 

Furthermore, beta power density (13-25 Hz) was positively correlated with good 

cognitive functions in ADD patients [64]. 

Other studies of Class B and C explored the relationship between rsEEG power 

density and neuroimaging measures in ADD patients. As compared to age-matched CU 

persons, ADD patients showed abnormal resting state functional MRI connectivity and 

decreased regional cortical blood perfusion and or metabolism by 99mTc-HMPAO SPECT or 

FDG-PET and scans, respectively, in relation to spatially widespread delta power density or 

cortical source activity [65 Class C; 66 Class B; 67 Class B; 68Class C; 69 Class C; 70 Class 

C].  

 

Age and genetic risk factors 

 

The above effects were modulated by age and genetic risk factors, as shown by the 

following rsEEG studies (Class B), while gender factor was matched or used as a covariate.  

In the rsEEG study of VU Amsterdam University Medical Center (AMSTERDAM  study), 

abnormalities in delta and alpha power density were more pronounced in 

than old (> 65 years) seniors with ADD (n=320) and intact cognition (n=246) [71].  

In the ITALIAN rsEEG study, posterior alpha source activity was lower in ADMCI 

patients (n=84) than in age-matched CU persons (n=89), especially in those patients carrying 

the haplotype B of cystatin C genotyping [72]. A similar effect on posterior alpha source 
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activity was also observed in ADMCI (n=89) and ADD patients (n=103) with ApoE 4 

genotyping over non-carriers [73]. This effect was replicated in ADD (n=125) and CU 

persons (n=60) in an independent study using a similar methodology [74]. However, it was 

not replicated in the AMSTERDAM study carried out with ADD (n=320) and CU persons 

(n=246) using a methodological approach based on scalp rsEEG power density measures 

[75]. 

The above rsEEG measures (e.g., increased delta-theta power density and decreased 

posterior alpha power density) differed in ADD and ADMCI patients in other studies, as 

reported by the following studies (Class B). As compared to age-matched CU persons 

(n=35), ADD patients (n=61) were characterized by abnormalities in widespread scalp delta 

power density [76, 77].   

 A rsEEG study by the European Consortium of Lewy Body Dementia (E-DLB 

study) was performed in CU (n=42) and ADD (n=42) patients, Results displayed greater 

abnormalities in posterior alpha source activity and fewer abnormalities in delta source 

activity estimated in AD patients over controls [78]. 

In the ITALIAN study, there was greater delta and theta GFP and lower alpha GFP in 

ADD (n=60) than age-matched CU persons (n=30) [79], in line with previous relevant 

evidence [80; 81]. Furthermore, as compared to age-matched CU persons (n=38), ADD 

patients (n=48) showed reduction in posterior alpha source activities and increase in spatially 

widespread delta source activities [82].  

In another rsEEG study [83], the ratio between alpha and delta+theta power density, 

and the global rsEEG mean frequency, were lower in ADD patients (n=62) than CU persons 

(n=14).  

 

Preclinical AD 

 

Previous rsEEG studies showed mixed results in SMC seniors with significant 

amyloid brain deposition .  

In the French INSIGHT-preAD study (Class A), SMC seniors (n=318) 70-85 years 

old were tested by18F-florbetapir PET SUVR as marker of amyloid deposition in the brain 

and received an extensive data collection including rsEEG recordings [84]. Three articles 

reported the rsEEG findings. In the first study [85], there was only a negative trend in the 

relationship between amyloid deposition and posterior alpha power density (no effect in beta 

power density). In the second study [86], results unveiled a nonlinear U-shaped relationship 
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between Alzheimer  neuropathology and delta, beta, and gamma power density, while the 

relationship with alpha rhythms remained unclear. 

 In the third study [87], high values of Alzheimer neuropathology and education 

attainment were related to posterior alpha power density (no effect in the other standard 

frequency bands). Taken together, those 

neuropathology may affect rsEEG rhythms in SMC seniors but with variable consequences 

on posterior alpha rhythms or other rsEEG measures. 

 

Nonlinear rsEEG measures 

 

Nonlinear rsEEG measures demonstrated an overall loss of EEG complexity in ADD 

patients [88;89; 90; 91; 41; 92, 93; 27; 94; see 95 for a review], especially at alpha rhythms 

[96] and even in patients with autopsy-confirmed neuropathology [97]. Furthermore, ADD 

and VaD patients showed different EEG complexity values [98], with the general limitation 

of a relatively low number of AD patients and the lack of control on the severity of cognitive 

dysfunctions groups. Overall, the following considerations motivate further 

validation studies before the use of nonlinear complexity rsEEG measures in regular AD 

clinical trials: (i) the heterogeneity of the above reference theories and methodological 

procedures (i.e., information theory, entropy, chaos, etc.); (ii) experimental databases with 

relatively small groups of AD patients; (iii) variable findings at rsEEG frequency bands [99]; 

(iv) sensitivity of those measures to instrumental and biological noise; and (v) the lack of 

validations with neuroimaging and diagnostic biomarkers of AD.  

 

2.2 nterrelatedness/source   

In the INSIGHT-PreAD project (Class A), as compared to SMC seniors (n=175)  

without significant amyloid accumulation in the brain, 

neuropathology (n=25) showed that neurodegeneration, as revealed by FDG-PET 

hypometabolism, was associated with increased frontocentral beta and gamma power density, 

decreased delta power density, higher spectral entropy, higher complexity, and increased 

functional connectivity measured by weighted symbolic mutual information in theta rhythms 

Interestingly, if persons with neurodegeneration exceeded a certain threshold of amyloid load, 

the whole trend of rsEEG metrics reversed with increased delta power and the decrement of 

the following variables: beta and gamma power, median spectral frequency, spectral entropy, 

complexity and others typically characterizing ADMCI and ADD [86]. 
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A bulk of previous studies have shown convergent evidence of differences between 

CU persons and ADD patients in measures of interrelatedness  of rsEEG rhythms at 

electrode pairs or estimates of cortical source connectivity. Many of them were performed 

using spectral coherence , a very popular linear rsEEG technique. As 

compared with age-matched CU persons, ADD patients pointed to lower spectral coherence  

between electrode pairs at alpha (8-12 Hz) and beta (13-20 Hz) rhythms [41; 100; 101; 102; 

103; 104; 105; 106,107; 108; 109, 110; 111; 112; 113]. However, these effects were 

topographically variable being observed in temporo-parieto-occipital electrode pairs in some 

investigations [100; 106; 111] and frontocentral [104] and fronto-parietooccipital electrode 

pairs in others [41, 109; 103].  

In the AMSTERDAM study (Class B), global alpha and beta 

 across all combinations of electrode pairs (sensitive to both linear and nonlinear 

) was lower in ADD (n=109) and ADMCI (n=88) patients as compared to 

age-matched CU persons [29]. Furthermore, the ADD patients exhibited decreased global 

phase lag index  in relation to disease severity [114].  

In the same line, the ITALIAN multicentric rsEEG study (Class B) reported a 

reduction of the global alpha coherence  in ADMCI patients (n=57) as a function of 

the cerebrovascular impairment in cholinergic tracts from basal forebrain to cerebral cortex 

as revealed by MRIs [115]. These effects were spatially specified in ADD (n=109), VaD 

(n=25), and ADMCI (n=88) patients as compared to CU (n=69) [116, 117]. In relation to the 

CU persons, the ADD and ADMCI patients showed a reduction in fronto-parietal alpha 

[116, 117]. Furthermore, DTF; a 

multivariate measure of directional rsEEG 

was lower from parietal to frontal electrodes in ADD and ADMCI patients as compared to 

age-matched CU persons [118, 119; 120]. This effect was confirmed in independent 

investigations [121, 122].  

In a monocentric rsEEG study (Class B), another measure 

phase synchronization ) showed decreased alpha interrelatedness  

between temporal and parietal electrodes in ADD (n=125) patients compared with age-

matched CU persons (n=60) [123].  

In the European E-DLB study (Class B), another rsEEG measure called 

(removing the zero-  more sensitive to head volume 

conduction effects) exhibited widespread lowering of alpha inter-hemispherical alpha source 
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connectivity in ADD (n=120) and ADMCI patients (n=70) as compared to age-matched CU 

persons (n=100) [124, 125, 126]. 

The effect of AD on the above rsEEG interrelatedness  was less clear at delta (< 4 

Hz) and theta (4-7 Hz) bands. Compared with age-matched CU persons, ADD patients 

showed decreased  low frequencies, especially at central theta rhythms 

[100; 108]. In contrast, other rsEEG studies reported widespread increases of 

 delta rhythms [115] or quite complex topographical patterns showing increases 

and decreases of coherence  values at different electrode pairs [127]. 

 Specifically, Sankari et al. [127] observed (i) an increase in left intrahemispheric 

frontal coherence in alpha, theta, and delta rhythms; (ii) an increase in left intrahemispheric 

temporo-parietal coherence in all bands; and (iii) a decrease in right intrahemispheric 

temporal-parietal-central coherence in all bands [127].  

Other measures of interrelatedness  showed the following results.  

In a large monocentric rsEEG study (Class B), global theta p

was higher in ADD patients (n=125) over CU (n=60) [74].  

In the ITALIAN rsEEG study (Class B), l higher 

delta inter-hemispherical connectivity at occipital sources and higher theta intra-

hemispherical connectivity at occipital-temporal sources in ADD patients (n=120) compared 

with age-matched CU persons (n=100) [124, 118], whereas s

showed widespread increased interrelatedness at delta rhythms in ADD (n=82) and ADMCI 

patients (n=88) over CU persons (n=69) [116, 117]. 

In contrast, a national monocentric rsEEG study displayed decreased phase lag 

(removing the influence of zero-lag coherence) at the delta and theta rhythms within 

the frontal and between the frontal and temporal/parietal electrodes in ADMCI patients (n=9) 

as compared to age-matched CU persons (n=14) [128].  

Some divergent results in the above studies may be due to different applied rsEEG 

and common drive effects (see Supplementary materials: Main features of rsEEG measures 

used in AD studies for more discussion). 
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2.3. classification of AD 

individuals 

 
RsEEG measures may be used to quantify brain neurophysiological dysfunctions in 

ADD and ADMCI individuals for their sub-group stratification in observational and 

intervention clinical trials. This use may imply a classification rate > 80% in the 

discrimination between AD and control individuals based on rsEEG measures.  

In the NORDEEG study (Class A), temporal theta power density showed a 

classification rate of 73% in the discrimination between ADD (n=117) and CU persons 

(n=138) [45]. In the same study, combined alpha and theta GFP reached 84% in the 

discrimination between ADD (n=38) and CU (n=24) persons as well 78% between ADD and 

ADMCI patients [50]. Furthermore, alpha and theta relative power density combined with 

mean frequency from left temporo-occipital electrodes (T5-O1) correctly predicted ADMCI 

(n=27) patients progressing to dementia with an accuracy of 85% [106].  

In the AMSTERDAM study (Class A), global rsEEG power density, pair-wise 

interrelatedness  

several frequency bands were used to train random forest learning machines (i.e., highest 

degree, leaf number, and tree hierarchy) for classifications between ADD (n=66) and age-

matched CU persons (n=66) individuals [129]. This approach reached 62% of classification 

accuracy in the discrimination between the CU persons and ADD individuals.  

In the ITALIAN rsEEG study (Class B), the ratio between parieto-occipital delta and 

alpha cortical source activities reached discriminated ADD (n=127) and age-matched CU 

persons (n=121) individuals with 75% of area under the receiver operating characteristic 

(ROC) curve [130]. The clinical significance of those results was also tested by a correlation 

analysis between the activity of parieto-occipital cortical delta or alpha 1 sources and the 

MMSE score in all Nold and AD subjects as a whole group [130]. Results showed that the 

higher the activity of parieto-occipital delta sources, the lower the MMSE scores (i.e., global 

cognitive status). Furthermore, the higher the activity of dominant parieto-occipital alpha 1 

sources, the higher the MMSE scores. 

Furthermore, a first-order polynomial regression of graph small-worldness index 

reached an area under the ROC curve of 61% in discriminating between stable (n=74) and 

progressing (n=71) ADMCI patients, while considering ApoE 4 allele it reached 97% accuracy 

[131].  
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In the E-DLB rsEEG study (Class B), delta and alpha cortical source estimates 

reached 85-90% of the area under the ROC curve of in the discrimination between age-

matched CU persons vs. ADD patients (n=42 each group) [78]. Such accuracy dropped under 

80% in the classification of individuals with prodromal (i.e., MCI) stages of AD (n=75) 

[132].  

These findings extended those of other smaller national rsEEG studies. Global delta 

and alpha spectral coherence  between electrode pairs successfully classified ADD (n=64) 

compared with CU people (n=54) with a classification accuracy > 80% [133]. Furthermore, a 

stepwise logistic regression analyses reached a classification accuracy of 82% between ADD 

(n=31) and CU persons (n=17) using  

theta power density [100]. 

A seminal national study (Class B) was very important from a methodological point 

of view. Two rsEEG databases were used, one formed by ADMCI (n=25) and CU (n=56) 

persons [122] while the other was based on ADD (n=17) and CU (n=17) persons [134]. In the 

first experiment [122], mean-square and phase coherence, Granger causality principle (e.g., 

partial coherence, DTF, direct DTF, full-frequency DTF), phase synchrony indices, 

information-theoretic divergence, state space based indices, and stochastic event synchrony 

(SES)1 were comparatively used to discriminate ADMCI and CU persons. Most synchrony 

measures indicated decreased EEG synchrony in MCI patients. However, this effect was 

. The SES 

reached 68% and 75% of classification accuracy as measured by linear and quadratic 

discriminant analyses, respectively. Instead, the ff-DTF reached 70% by both linear and 

quadratic discriminant analyses. Combined measures reached 83% of classification accuracy. 

In the second experiment [134], ff-DTF and SES reached  rates of 83% 

and 98% using ADMCI and ADD patients, respectively. These results were replicated by 

other national monocentric studies showing > 90% of accuracy in the discrimination between 

AD and control CU persons with a combination of those procedures on theta and alpha 

rhythms [135; 136].  

                                                      
1 SES method  relies on i) identification of so- frequency space and ii) aligning the 

-coincident t f : average time 
and frequency offsets respectively between coincident bumps. However the problem of aligning is ambiguous 
and depends on arbitrary choices. 
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In European DECIDE rsEEG study (Class B), non-normalized DTF and spectral 

coherences of rsEEG activity mainly combining delta, theta, and alpha rhythms reached an 

area under ROC curve of 86%-88% in the discrimination between ADD and control CU 

persons [120]. 

Bennys and colleagues [137] reported that the ratio between parieto-temporo occipital 

theta and alpha + beta calculated from absolute power EEG bands reached an area under the 

ROC curve of 86 % in the discrimination between ADD (n=35) and age-matched CU (n=35) 

persons with a significant decrease in fast activities in mildly impaired patients. 

The above results were corroborated using more advanced mathematical classifiers 

based on learning classifiers (see caveats in the Supplementary materials: The risk of 

 discrimination accuracy in classification studies) in the following large national 

monocentric rsEEG studies (Class B).  

A classification rate of 90% was obtained through an artificial neural network as a 

classifier in the discrimination between patients with dementia (n=111) and age-matched CU 

persons (n=56) using the topographic distributions of absolute delta and theta power density 

as input rsEEG measures [138]. Furthermore, a similar discrimination accuracy between 

ADD patients and CU persons was reached giving rsEEG power density and measures of 

interrelatedness  as inputs to several mathematical classifiers including principal component 

linear discriminant analysis, partial least squares linear discriminant analysis, principal 

component logistic regression, partial least squares logistic regression, bagging, random 

forest, support vector machines and feed-forward neural network (10-fold cross-validation 

runs) [139]. As best results, random forests reached 81.5% classification accuracy in the 

discrimination between mild ADD patients (n=116) and age-matched CU persons (n=45), 

while neural networks reached 88.5% classification accuracy between moderate ADD (n=81) 

and CU persons [139].  

The ITALIAN rsEEG study (Class B) tested the discrimination among ADD (n=180), 

ADMCI (n=115), and CU individuals (n=171) using multichannel rsEEG voltage time series 

IFAST  [140,142;141]. This approach 

showed classification accuracies > 90% between ADD and CU persons as well as between 

ADD and ADMCI patients [140; 141]. Based on rsEEG rhythms (0-12 Hz) recorded at 

baseline and 1-year clinical follow up, the ADMCI patients were retrospectively classified 

with 86% accuracy in the discrimination between those progressing to ADD and those with a 

stable ADMCI condition [142]. Notably, the classification accuracy did not improve using 
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the most discriminant cortical source activity such as posterior alpha in relation to delta/theta 

sources as an input to backpropagation artificial neural networks [77% accuracy; 143]. 

In other studies, high classification accuracies of 94-98% were obtained with novel 

rsEEG "interrelatedness" measures based on Sugihara causality analysis in CU (n=15), MCI 

(n=16), and ADD (n=17) persons [144; Class C] and based on inter-regional transfer entropy 

analysis in CU (n=15), MCI (n=16), and ADD (n=17) persons [145; Class C]. 

In the NORDEEG study (Class A), a stepwise classification procedure using support 

vector machines as a statistical pattern recognition (SPR) produced 5 values from 0 to 1 for 

each person, based on the analysis of 20 selected rsEEG measures (i.e., power density and 

 extracted from the original EEG recording. These 5 values referred to 

the following diagnostic labels: NRM CU persons index), sMCI  index), AD  

(AD index), ADms  (AD, moderate/severe index), and LP

disease index). A graph represented these values within their confidence intervals to support 

the diagnosis. A seminal experiment tested the diagnostic accuracy in the evaluation of 

clinicians based only on that EEG-based graph, using as a gold standard clinical diagnosis 

obtained by an experienced multidisciplinary team with the agreement of at least 2 

experienced physicians (specialist level in dementia). The team gave the clinical diagnosis 

using all available examination results (e.g., clinical, neuropsychological, fluid biomarkers, 

neuroimaging markers) [146]. Five clinical 

units using harmonized EEG procedures were involved. This procedure was followed in the 

diagnosis of ADD (n=32), MCI (n=56, 65% of them having CSF diagnostic biomarker values 

compatible with AD), and CU individuals (n=41) who had received the evaluation of CSF 

diagnostic biomarkers [146]. The diagnostic accuracy of the EEG-based graph was expressed 

as a percentage of correct diagnosis, using the mentioned clinical diagnosis as a gold 

standard. Results exhibited the following relatively low-moderate diagnostic accuracy based 

on the EEG-based graph: 60% for ADD vs. MCI, 66% for ADD vs. CU, and 56% for MCI 

vs. CU persons [146].  

In precedence, the same Consortium had developed other experiments (Class B) in 

larger populations in which not all persons had received CSF diagnostic biomarker analysis. 

In an interesting experiment, accuracy in the correct classification of individuals between two 

groups, based on the mentioned SPR index from 0 to 1, was tested in CU individuals 

(n=146), ADD (n=135), and LP (n=15) seniors [147]. The SPR index was used as an input 

for the ROC curve analysis. Results displayed the following correct binary classifications: 

90% for ADD (n=135) vs. CU (n=146) persons [147]. These findings outperformed the same 
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classification exercise based on a standard visual assessment of neuroimaging [148] and 

agreed with previous evidence obtained by the same classification procedure applied in ADD 

(n=226), ADMCI (n=41), and CU persons (n=226) [149] from the same NORDEEG cohort. 

Similar results were obtained using an independent SPR procedure based on support vector 

machines carried out in small populations of CU individuals and patients with dementia 

[150]. 

Keeping in mind the above rsEEG results at the individual level, combined 

across rsEEG frequency bands could 

repeatedly produce binary classifications of ADD and ADMCI over control CU persons with 

an accuracy ranging from 90% to 70%, thus potentially being useful for patient stratification 

purposes in AD clinical trials. Notably, the use of these binary classifications for mono-

modal diagnostic purposes provided modest accuracy around 60%.  

 

2.4. i  measures of rsEEG 

rhythms in ADD and ADMCI patients: the new wave of the graph theory indices 

 

The popular Graph theory probed the topology of rsEEG interrelatedness  at 

electrode or source pairs in the comparison between groups of ADD/ADMCI patients and CU 

individuals [9; 151; 32; 31; see also 152 for a review]. As compared to age-matched CU 

persons, ADD and ADMCI patients were characterized by a more random topology of rsEEG 

interrelatedness  at electrode or source pairs, possibly due 

properties of the underlying cortical neural networks [9; 10; 153; 154; 155, 156; 157]. 

However, it should be remarked that the rsEEG studies lending support to such an 

interpretation exhibited inconsistent findings about the single graph indices forming the 

on delta, theta, alpha, beta, and gamma bands [32; 9; 154; 155,156]. This inconsistency can 

be e

studies; (ii) the application of bivariate measures of such ,  which are more 

sensitive to volume conduction and common drive effects than multivariate measures are (see 

Supplement 2.2); (iii) the use of sensor vs. source level; and (iv) diverse statistical thresholds 

used 5).  

Beyond small worldness, further graph measures were tested (see Panel 2 for the 

definitions). In the NORTH-EAST ENGLAND study (Class A), minimum spanning trees 
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(MSTs)  

hierarchical clustering organization of cortical networks as topology of rsEEG 

CU individuals (n=17) and ADD (n=26) [158]. Compared to age-

matched CU persons, the ADD patients showed lower alpha lower 

dominant frequency (maximum rsEEG power density at alpha range) [158].  

In the AMSTERDAM study (Class B), MSTs of rsEEG rhythms 

at electrode pairs were also used to model the topology of rsEEG interrelatedness  between 

ADD (n=133) and CU individuals (n=115) [114]. Compared to age-matched CU persons, 

ADD patients presented decreases of alpha with increasing disease severity 

and a shift of the betweenness centrality  center of mass from posterior to more anterior 

scalp regions with increasing disease severity [114]. Concerning the specificity of 

those results, frontal delta was selectively affected in bvFTD patients 

(n=48) against the background of preserved global efficiency , whereas parietal and occipital 

loss of network organization global efficiency  was observed in ADD patients (n=69) in 

relation to decreased alpha [159]. 

Keeping in mind the above results, the graph topology of the  of 

rsEEG rhythms may enrich our understanding of AD as a disconnection  syndrome [6; 160; 

11; 12]. However, the most consistent topographic patterns and rsEEG measures to model this 

abnormality for systematic applications in AD clinical trials has not yet been determined. 

More international research is needed to improve the promising techniques computing the 

models and source estimations [5]. 

 

2.5. Predictive value of baseline rsEEG measures in CU persons and AD seniors 

 

Previous longitudinal studies in CU persons and AD patients tested the value of 

rsEEG measures derived from baseline datasets to predict their cognitive status at follow-

ups.  

In the AMSTERDAM rsEEG study (Class A), high delta-theta and lower alpha power 

density predicted clinical worsening over time in SCD (n=63) and MCI patients (n=142) 

with amyloid deposition in the brain [161]. 

In the STOCKHOLM rsEEG study (Class A), combined alpha and theta power 

density and mean frequency from left temporal-occipital regions predicted cognitive decline 

in ADMCI patients (n=27) at 1-year follow-up [106]. In a parallel rsEEG study, anterior 
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localization of alpha sources predicted the cognitive decline in ADMCI patients (n=31) at 

about 2-year follow-up [50]. 

In another national rsEEG study (Class B), low posterior alpha power density 

predicted the cognitive decline in ADMCI (n=88) and ADD (n=42) patients at 1-year follow-

up [162]. 

In the ITALIAN rsEEG study (Class B), ADMCI patients (n=74) with high 

alpha3/alpha2 frequency power density ratio at scalp electrodes presented greater cortical 

atrophy and lower perfusion rate in the temporo-parietal cortex as revealed by neuroimaging 

markers and conversion to ADD status at 3-year follow up [163]. Furthermore, high temporal 

delta source activity predicted marked cognitive decline in ADMCI patients (n=69) at an 

average of 14-month follow-up [164]. 

In the NEWYORK rsEEG study, high temporoparietal theta power density and 

slowing of mean rsEEG frequency predicted cognitive decline from SMC (n=44) to 

significant cognitive deficits at 7-9-year follow-up with an overall predictive accuracy of 

90%, thus extending previous evidence of the same Workgroup in CU persons, SMC, 

ADMCI, and ADD individuals [165,166,167]. 

In another national rsEEG study, baseline high theta power density and cognitive 

performance predicted cognitive decline at an average of 20-month follow-up with an overall 

predictive accuracy of 93% in CU persons ranging from intact cognition (n=24) to ADMCI 

(n=20) and ADD (n=14) status [63;168]. 

Tables 1 and 2 report the most consistent findings of the rsEEG studies of Class A 

reviewed in this chapter. They lead support to the value of rsEEG measures 

in the characterization of AD 

status and prediction of cognitive decline for  in clinical 

trials.  

 

Please insert about here Tables 1 and 2 

 

3. MEASURES OF rsEEG RHYTHMS REFLECTING AD PROGRESSION AND 

EFFECTS OF INTERVENTION   

 

3.1. Value of rsEEG measures of disease progression in ADMCI and ADD patients  



26 
 

Several studies on AD and CU persons tested the value of rsEEG measures to monitor 

progression of brain dysfunctions comparing those measures derived from baseline and 

follow-up recordings. Core results are reported in the following.  

In the STOCKHOLM rsEEG study (Class A), ADMCI (n=27) seniors showed increased 

temporal and occipital theta-delta power density and decreased beta power density at an 

averaged follow-up of 21 months [106]. 

In the international multicentric PHARMACOG rsEEG study (Class A), as compared to 

noADMCI patients (n=54), ADMCI patients (n=72) presented increased limbic theta source 

activity and greater cognitive decline at 24-month follow-up in relation to reduced functional 

connectivity within cortical default mode network as revealed by resting state fMRI [47]. 

In the ITALIAN rsEEG study (Class B), in relation to age-matched CU persons (n=35), 

ADD patients (n=88) showed increased delta and reduced parieto-occipital alpha and beta 

source activities at an averaged follow-up of 13 months [24]. In the same study, similar 

effects were observed at the prodromal stage of ADMCI [169]. Specifically, the ADMCI 

patients (n=55) displayed reduced alpha source activities in posterior regions at an averaged 

follow-up of 13 months.  

Other national monocentric studies on AD and control CU persons tested the value of 

rsEEG measures to monitor progressive brain dysfunctions. ADD patients (n=40) presented 

increased parietal and occipital theta-delta power density and reduced alpha-beta power 

density at an averaged follow-up of 30 months [170]. In another study, half of ADD patients 

(n=40) were characterized by increased temporal and occipital delta-theta power density at 

an averaged follow-up of 12 months [171]. In another study, ADD patients showed increased 

delta-theta power density and decreased alpha power density at an averaged follow-up of 2 

years while no changes were observed in VaD and functional psychiatric patients [80]. 

Finally, m ed progressive brain 

dysfunctions in AD patients. Compared with age-matched CU persons (n=14), ADMCI 

patients (n=9) exhibited decreased delta and theta phase lag index  within frontal and 

between frontal and temporal/parietal areas at 1-year follow-up [128]. 

 

3.2. Value of rsEEG measures in monitoring disease progression and intervention in 

ADMCI and ADD patients 
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Several national studies presented effects of Acetylcholinesterase inhibitors (AChEIs), 

enhancing the cholinergic tone, on rsEEG measures obtained in ADD patients.  

In the STOCKHOLM rsEEG study (Class A), as compared to untreated ADD patients, 

AD patients (n=15) receiving AChEIs (tacrine) had a reduction of theta GFP after 3 and 12 

months of therapy, while both delta and theta GFP reduced after 6 months (n=10) [107]. These 

results extended previous evidence [172;173]. 

In the GERMAN study (Class B), rsEEG measures were sensitive to AChEIs in ADD 

patients. In a group of AD patients (n=15), alpha-theta power density ratio responded to a single 

dose of AChEIs (tetrahydroaminoacridine) predicting clinical effects of a chronic treatment of 

7 weeks [174]. In other ADD patients (n=15), a significant reduction in spatially widespread 

delta and theta power density was observed after AChEI treatment (rivastigmine) of 5 days 

[175], while after treatment of 1-2 weeks (rivastigmine) only decreased theta power density 

(n=35) was observed [176]. In another group of ADD patients (n=20), decreased theta power 

density after 1 week and short-term memory performance did predict treatment response 

(rivastigmine) at 6-month follow-up [177]. 

In the ITALIAN rsEEG study (Class B), in relation to CU individuals (n=65), ADD 

patients (n=58) presented a reduction in posterior alpha source activity at 1-year follow-up, 

which was less marked in those patients (n=28) clinically responding to concomitant treatment 

with AChEIs (donepezil), as revealed by global cognitive status (i.e., MMSE score), when 

compared to those who did not respond (n=30) [178].  

Other smaller national rsEEG studies reported similar effects in ADD patients. 

Specifically, AD patients (n=18) showed a significant reduction in temporal delta power 

density and an increase in power density at other frequency ranges including temporal and 

centroparietal theta after AChEIs (donepezil) administered for 6 months [179]. This effect was 

in line with other evidence [180,181]. Furthermore, another group of ADD patients (n=16) 

displayed a significant reduction in widespread delta and theta power density after AChEIs 

(rivastigmine) given for 3 months [182]. Cortical source estimation of those data pointed to 

significant effects in a network that included left fronto-parietal regions, posterior cingulate 

cortex, bilateral parahippocampal regions, and the hippocampus [182]. 

Other pharmacological interventions presented significant effects on rsEEG measures 

in ADMCI and ADD patients. Core results are reported in the following. 

In the PQ912 study (Class A), ADMCI and ADD patients formed an experimental 

group (n=60) receiving a 12-week treatment with an inhibitor of the glutaminyl cyclase enzyme 

(PQ912) that plays a central role in the formation of synaptotoxic pyroglutamate-A-beta 
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oligomers while a placebo group (n=60) received a hypocaloric beverage for the same period. 

Results showed an improvement of memory and a reduction of theta GFP in the experimental 

group as compared with the increase of that rsEEG measure in the placebo group [183]. Of 

note, the PQ912 

[183]. In a re-analysis of those rsEEG data, a new measure of rsEEG 

 amplitude envelope correlation with 

leakage correction (AEC-c) increased more in the alpha frequency band of the experimental 

group (n=47) compared to the placebo group (n=56) [184]. 

In the international SOUVENAID study II (Class B), ADD patients formed an 

experimental group receiving Souvenaid functional food for 24 weeks (n=86) while a placebo 

group received a hypocaloric beverage for the same period (n=93). Results displayed an 

improvement of memory and an increase in 

pairs in the Souvenaid group as compared to the placebo group [185]. A re-

presented a stable graph index at 24-month follow-up of local brain network 

connectivity at beta rhythms in a subsample of the experimental group (n=70-66) as compared 

to the placebo group (n=77-75) [186]. 

Table 3 reports the most consistent findings of the rsEEG studies of Class A reviewed 

in this chapter. They lend support to the value of rsEEG measures in the characterization of 

AD progression and pharmacological intervention in clinical trials.  

Please insert about here Tables 3 

 

4. NEUROPATHOPHYSIOLOGICAL BASIS OF EEG MEASURES IN AD 

PATIENTS 

 

In the review of the literature, AD patients showed the most consistent abnormalities 

in (eyes-closed) rsEEG rhythms featured as changes in delta-theta and alpha power density at 

scalp electrodes or estimates of cortical source activity. It can be speculated that these 

abnormalities may reflect, directly or indirectly, the effect of AD neuropathology on 

distributed brain neural networks involved in the generation of cortical rsEEG rhythms and 

the regulation of general brain arousal, balance of cortical inhibition/excitation, and vigilance 

[6; 11;7]. Those networks might be formed by subcortical and cortical neural circuits [187; 

14; 188], with a special role of thalamocortical functional connectivity during active event-

related information processing [25]. 
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However, more literature relating AD neuropathology to beta and gamma rhythms is 

emerging. It was recently shown that once the amyloid load exceeds a certain level, the 

power spectrum level of beta and gamma decreased markedly [86]. Other bodies of evidence 

have demonstrated that gamma power as well as gamma coherence is markedly affected in 

human patients with AD [49; 29; 189]. 

More discussion about the neurophysiological underpinnings of the rsEEG findings 

reviewed in this article can be found in the Supplementary materials (Physiological basis of 

abnormal rsEEG measures in AD patients). 

 

5. RECOMMENDATIONS 

 

5.1. Diagnostic specificity of stand-alone rsEEG measures 

 

Despite historical efforts at evidence-based reviews [6,7], the diagnostic usefulness of 

rsEEG measures is still controversial. Using an evidence-based technique, Jelic and Kowalski 

[42] performed a systematic review of the literature regarding the diagnostic accuracy of 

rsEEG in dementing disorders published from 1980 until 2009. They concluded that although 

the classification accuracy values were in general high (> 80%), the evidence for the 

diagnostic utility of rsEEG markers in AD was insufficient to suggest its use alone in 

memory clinics routines, also considering that they do not provide a direct measure of the 

underlying AD neuropathology. Along the same line, international guidelines on AD 

diagnosis did not recommend the use of rsEEG biomarkers for diagnostic purposes; rather, 

they target molecular and structural measures of AD neuropathology [2; 3; 4]. Notably, the 

present review did not find consistent novel findings to change this position to date. 

However, novel techniques including rsEEG measures based on local, 

 as inputs to 

machine learning algorithms may hold the promise in increasing the diagnostic utility of 

quantitative EEG in future, especially in lower- and middle-income countries [7]. 

5.2. Stratification of AD patients in clinical trials based on rsEEG measures  

The present article reports that ADD and ADMCI patients may be characterized by 

consistent changes in rsEEG measures.  

The most consistent findings were obtained using linear rsEEG measures pointing 

to reduced relative power density at scalp electrodes or estimates of source activity as well 

as reduced interrelatedness  t
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pairs or linear lagged source connectivity) at dominant alpha rhythms in posterior regions 

in ADD and ADMCI patients as compared to age-matched CU persons and patients with 

matched cognitive deficits due to other neurodegenerative and cerebrovascular causes (Table 

1). Furthermore, the same 

posterior theta rhythms were repeatedly associated with higher probability to develop a 

significant cognitive decline in CU persons and AD patients (Table 2). Also, rsEEG 

measures at delta frequencies were often reported as significant markers (Tables 1 and 2).  

Those linear rsEEG measures are recommended for the stratification of ADD and 

ADMCI patients in a stepwise triage procedure for the enrollment of patients in clinical 

trials. In the first step, probable ADD and ADMCI patients may be selected based on the 

traditional NINCDS-ADRDA criteria for the clinical diagnosis of AD [44; 2]. In the second 

step, these patients may receive standard non-invasive and cost-effective rsEEG recordings 

and be sub-grouped in those with lowest vs. highest abnormalities in rsEEG measures (i.e., 

threshold based on median values). In the third step, the ADD and ADMCI patients with the 

highest abnormalities of rsEEG measures may receive invasive and relatively expensive 

procedures to extract CSF and neuroimaging diagnostic biomarkers of AD [3; 4]. Only the 

ADD and ADMCI patients who are positive for those diagnostic biomarkers would then be 

used in the observational or intervention clinical trials. This procedure would confer some 

neuroimaging diagnostic biomarkers of AD in the enrollment phase. Furthermore, the 

enrolled patients having highest abnormalities of rsEEG measures may be ideal to test new 

diagnostic procedures and therapeutic interventions in ADD and ADMCI patients. 

Alternatively, should the above clinical trials aim to recruit prodromal AD people in 

the very early stages of disease, rsEEG recordings may be helpful to those with normal or 

minimally abnormal rsEEG measures.  

Discussion about costs of rsEEG measures in AD clinical trials can be found in 

Supplementary materials (Physiological basis of abnormal rsEEG measures in AD 

patients). 

 

5.3. RsEEG measures of AD progression and efficacy of interventions  

Disease progression biomarkers are clearly important in both observational and 

intervention AD clinical trials. In the monitoring of AD progression and response to 

therapies, the most consistent findings were obtained using linear rsEEG measures pointing 

to reduced power density at scalp electrodes or estimates of source activity as well as reduced 
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, DTF, ctrode pairs 

or linear lagged source connectivity) at delta, theta, alpha and gamma rhythms (Table 3). 

In this respect, those rsEEG measures may be used as secondary endpoints of 

interventions and have a complementary value compared with neuroimaging biomarkers 

providing more direct measurements of progressive AD neuropathology and 

neurodegeneration [2; 3; 4].  

 

5.4. International initiatives for research on rsEEG measures in AD 

 

In general, the findings reviewed in the present article raise the need for international 

consensus initiatives to develop or refine a multi-center standardization of instructions to 

patients, rsEEG recordings, and selection of artifact-free rsEEG periods in line with the 

standards of clinical trials in AD. First attempts can be found in initiatives of International 

Federation of Clinical Neurophysiology [5;7]. Future double-blind, prospective, multicenter 

clinical trials may also carry out comparisons of different linear and non-linear rsEEG 

measures /connectivity ) of disease 

monitoring, progression, and intervention to reach consensus about optimal standard 

operating computational procedures and their validity and reliability. Ideally, these 

procedures will be based on well-established open-access Internet-based software platforms 

to ensure future replicability [see two interesting examples in 190; 191].  

We also recommend that all efforts should be made to make neurophysiological 

datasets (with accompanying anonymized data) open access.  This open science approach 

would also ensure replicability of reported results, in addition to enabling datasets to be pulled 

(allowing big data analytics), and algorithms/classification models to be developed/tested 

against one another, accelerating the data science in this field.  For this purpose, repositories 

could be used such as OpenNEURO (https://openneuro.org/). 

In those initiatives, an important role should be played by regulatory authorities (e.g. 

Food and Drug Administration, European Medicine Agency, etc.), international scientific 

Societies of Clinical Neurophysiology and Neurology,  

validated rsEEG measures are expected to be used as biomarkers in clinical trials relevant for 

drug regulation and licensing in the future. 

A summary of the recommendations of the present expert panel is reported in Panel 3. 

 

Please insert about here Panel 3 
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6. CONCLUSIONS  

 

What can be the added value of rsEEG measures for the instrumental assessment and 

monitoring of disease status and progression in ADD and ADMCI patients?  

In precedence, IWG-2 suggested two classes of biomarkers for the assessment of 

ADD, namely the  biomarkers (i.e., those measuring the pathophysiological 

hallmarks of the disease such as the cerebral amyloidosis and the amount of total or phospho-

tau in the cerebrospinal fluid or directly within the brain by PET), and the 

topogr  biomarkers (i.e., those measuring progression of region-specific 

- -PET and structural 

MRI). More recently, NIA-AA Research Framework (4) suggested three classes of 

biomarkers for the assessment of AD. They named   biomarkers as those 

-

by CSF or PET techniques. They also named neurodegenerative/progression  biomarkers 

-PET 

hypometabolism, and structural MRI markers of brain atrophy.   

Keeping in mind the  meaning of rsEEG measures reviewed in the 

present article, we posit that the term physiologic (P) . In this line, the AD 

biomarker framework (4) P   (e.g., + 

or -) may possibly reflect vulnerability or resilience of subcortical and thalamocortical loops 

and the ascending activating systems as additional and supplementary relevant information 

concerning the AD status and progression.  
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Table legends 

 
Table 1. Measures of eyes-closed resting state electroencephalographic (rsEEG) rhythms for 
stratification -sectional and 
longitudinal rsEEG studies of the so- hich AD patients with dementia (ADD), 
amnesic mild cognitive impairment (ADMCI) or subjective memory complaint (SMC) / subject 
cognitive impairment (SCI) were compared with old cognitively unimpaired (CU) persons with intact 
cognition (CU persons) resting in quiet wakefulness for a few minutes
patients received a diagnosis based on qualified biomarkers of AD derived from cerebrospinal fluid 
(CSF) or amyloid positron emission tomography (PET) in line with recent international guidelines [1; 
2; 3; 4]. measures showing either differences between 
AD patients and CU control persons at the group or individual level (i.e., classification studies including 
those calculating discriminant accuracy by area under the receiving operating characteristic -AUROC- 
curve) or significant accuracy in the statistical prediction of their cognitive decline at a follow-up of 12 
months or later. Noteworthy, to test the generalizability of the findings of the articles with the symbol 

 [129; 147], the reported classification accuracy should be cross-validated using the same (trained) 
classifiers and rsEEG measures in fully independent individual rsEEG datasets obtained from clinical 
recording units not involved in the original experiments. Frequency bands of rsEEG rhythms were 
standard, namely delta, theta, alpha, beta, and gamma. More literature evidence and the meaning of 

source activity generating scalp rsEEG rhythms, etc.) are reported in the main text. When the data were 
available in the Class-A  paper, the effect and sample sizes of the main rsEEG measures characterizing 
AD patients over controls are reported. Other explanations and considerations are reported in the 
Supplementary materials  

 
Table 2. Biomarkers of eyes-closed rsEEG rhythms for  in AD clinical trials. 
These biomarkers refer to rsEEG measures showing significant accuracy in the statistical prediction of 
their cognitive decline at a follow-up of 12 months or later. Noteworthy, to test the generalizability of 

[106], the reported classification accuracy should be 
cross-validated using the same (trained) classifiers and rsEEG measures in fully independent individual 
rsEEG datasets obtained from clinical recording units not involved in the original experiments. 
Frequency bands of rsEEG rhythms were standard, namely delta, theta, alpha, beta, and gamma. More 
literature evidence 

the main text. When the data were available in the Class-A  paper, the effect and sample sizes of the 
main rsEEG measures characterizing AD patients over controls are reported. Other explanations and 

Supplementary materials  
  
Table 3. Measures of rsEEG rhythms for monitoring AD progression and response to interventions in 
AD clinical trials. These biomarkers refer to longitudinal rsEEG studies of the so-
Table 1 for definitions). The qualification of those measures was based on studies showing differences 
in rsEEG measures at baseline vs. follow-up recordings or before vs. after a pharmacological 
intervention in relation to placebo. For example, in the PQ912 study, ADMCI and ADD patients formed 
an experimental group (n=60) receiving an inhibitor of the glutaminyl cyclase enzyme (PQ912) that 
plays a central role in the formation of synaptotoxic pyroglutamate-A-beta oligomers for 12 weeks, 
while a placebo group (n=60) received hypocaloric beverage for the same period [181]. In other studies, 
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ADD and ADMCI patients received Acetylcholinesterase inhibitors (AChEIs) for weeks/months. 
Frequency bands of rsEEG rhythms were standard, namely delta, theta, alpha, beta, and gamma. When 
the data were available in the Class-A  paper, the effect and sample sizes of the main rsEEG measures 
characterizing AD patients over controls are reported. More literature evidence and the meaning of 
rsEEG measures in the table are reported in the main text. 
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Figure legends

 
Figure 1.  Modified combinatorial nomenclature of the 10 10-system of scalp electrode montage for 
clinical electroencephalographic (EEG) recordings, extended with anterior and posterior electrodes in 
the inferior chain. Adapted from 18, Clinical Neurophysiol. 2017 (courtesy from the Publisher). 
 
Figure 2. Schematic overview of the scale of spatial and temporal resolution of measurement methods 
used for electrophysiology and functional neuroimaging. Measurement methods are EEG, 
magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), functional magnetic resonance 
imaging (fMRI), electrocorticography (ECOG), local field potential (LFP) recordings, micro-electrode 
array (MEA) recordings, and microelectrode (ME) recordings. Non-invasive methods are shown in blue 
and invasive methods are shown in red. Adapted from van Gerven et al., 2009, J Neural Eng. 2009 
(courtesy from the Publisher).  
 
Figure 3.  Decomposition of EEG rhythms into an EEG power spectrum. A sketch illustrates example 
of sinusoidal EEG waveforms at frequency binds od delta, alpha and beta rhythms and how they can 
be represented (i) when summed each other at given phases or (ii) used as an input for the calculation 
of an EEG power density spectrum. 
 
Figure 4.  Tentative physiological model of the generation of resting state eyes-closed EEG (rsEEG) 
rhythms in the brain of age-matched old cognitively unimpaired (CU) persons 
(AD) patients. In the normal brain, dominant EEG rhythms are observed at alpha frequencies (8-12 Hz), 
which would denote the background, spontaneous synchronization around 10 Hz of neural networks 
regulating the fluctuation of the 
would span neural populations of cerebral cortex, thalamus, basal forebrain and brainstem, including 
glutamatergic, cholinergic, dopaminergic and serotoninergic parts of the reticular ascending systems. 
In the brain of AD patients, the amplitude of these rhythms is reduced (i.e., tonic background 
desynchronization) together with an amplitude increase of the pathological rsEEG slow frequencies 
spanning delta (< 4 Hz) and theta (4-7 Hz) rhythms
reflect a sort of thalamo  
 
Figure 5. 

e techniques for the computation of functional and 
effective connectivity from rsEEG rhythms.  

. 
In the model, the source 

ource 

source 
localization/orientation and head as a volume conductor, phase and amplitude of EEG signals collected 
at a given exploring scalp electrode would reflect a weighted average of contributions of cortical sources 
in relation to their respective distance from that electrode. Indeed, electric fields generated from a 
cortical source decay to zero values at 10-12 centimeters of distance, with possible additional mild 
effects for distances greater than 20 cm due to head and source geometry [21]. Notably, the impact of 
head volume conduction effects is magnified by the extension of underlying cortical EEG sources. In 
all frequency bands, EEG activity recorded at a given scalp electrode may reflect synchronous cortical 
sources distributed in a vast cortical region of tens of squared centimeters (20, 2015). In the ideal model 
of the figure, the possible synchronizing influence of thalamocortical neural populations is not shown. 

ould be 
recorded relative to a distant reference electrode (not shown).  
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interdependence could be erroneously interpreted as a functional connectivity between the cortical 
 

MIDDLE ROW, RIGHT. Due to the effect of head volume conduction, a coherent activation of the 

 
L

 

 
 LOWER ROW, RIGHT. A directional connectiv

conn

pattern of source connectivity may induce a directional interdependence of the rsEEG rhythms recorded 

 
In the figure, the green arrows between the scalp electrodes indicate the interdependence of EEG 
activity (not shown) at the sensor level that would correspond to the functional connectivity between 
the underlying cortical sources, indicated by green arrows as well. In this case, such interdependence 
unveils the true underlying functional cortical connectivity. In contrast, the red arrows between the scalp 
electrodes indicate the interdependence of EEG activity (not shown) at the scalp level that would not 
correspond to the functional connectivity between the underlying cortical sources, indicated by red 
arrows as well. In this case, such interdependence provides a misleading representation of the 
underlying functional cortical connectivity.  Adapted from 5, Clinical Neurophysiol. 2020 (courtesy 
from the Publisher). 
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Panels 

Panel 1: Experimental conditions of recordings of electroencephalographic (EEG) activity in 
quiet vigilance (resting state) in humans. 
 
Neurophysiological mechanisms, duration, and instructions 
 

 Neurophysiological mechanisms keeping the state of low vigilance with eyes-closed for several 
minutes (i.e., 5-15 minutes or more). It also probes the transition to drowsiness and sleep, hence 
the experimenter (or trained technologist) should not alert the subject in case of sleep. The 
instructions invite the subject to sit quietly, stay relaxed in a state of mind wandering (i.e., no 
goal-oriented mental activity), and keep the eyes closed.  

 Neurophysiological mechanisms regulating the increase and decrease in the vigilance level 
while opening and closing the eyes sequentially (i.e., 5-10 minutes). The periods of eyes-open 
and -closed in response to the 
eyes-open and -closed is repeated (i.e., 2-4 times). The instructions to the subject are like those 
of the first condition. The experimenter will have to alert the subject in case of sleep to have 
enough EEG data related to the proper mental state.  

 The third condition tests the neurophysiological mechanisms underlying the steady 
maintenance of low vigilance at eyes-closed (i.e., 3-5 min) and moderate vigilance at eyes-open 
(i.e., 3-5 min). The instructions to the subject are like those of the second condition.   

 

Panel 2: Graph theory modeling the topology of measures of rsEEG interrelatedness. 
Activity  
 
Gore graph indexes in rsEEG research 
 

   as the degree to which nodes in a graph tend to cluster together. 
   as the mean number of edges any node needs to reach the others of the graph. 
  as number of edges one node needs to reach all the other nodes of 

the graph (the lower the number, the higher the centrality). 
  as the degree to which nodes in a graph tend to cluster together. 
  is computed on node neighborhoods and is related to the clustering 

among nodes of the network. 
  as the degree to which the network may be subdivided into delineated groups. 
 -  is defined as a good balance between an intense local connectivity and 

 
  are the ability of a network to maintain its connectivity when a 

fraction of nodes (links) is damaged. 
 
Panel 3: Recommendations  
 
Summary 

  Data acquisition  after careful multi-center standardization and harmonization of 
instructions to patients and rsEEG recordings. 

  Data analysis  based on standardized selection of artifact-free rsEEG periods and extraction 

rsEEG measures by open-access Internet-based software platforms for replicability. 
 Use  for stratification of AD patients and monitoring of disease progression and 

intervention. 
 Endorsement  for multi-sectoral international initiatives for further validation of rsEEG 

measures in AD 


