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Abstract 22 

Glioblastoma is resistant to conventional treatments and has dismal prognosis. 23 

Despite promising in vitro data, molecular targeted agents have failed to improve 24 

outcomes in patients, indicating that conventional two-dimensional (2D) in vitro 25 

models of GBM do not recapitulate the clinical scenario. Responses of primary 26 

glioblastoma stem-like cells (GSC) to radiation in combination with EGFR, VEGF and 27 

Akt inhibition were investigated in conventional 2D cultures and a 3-dimensional (3D) 28 

in vitro model of GBM that recapitulates key GBM clinical features.  VEGF 29 

deprivation had no effect on radiation responses of 2D GSC but enhanced 30 

radiosensitivity of GSC cultures in 3D. The opposite effects were observed for EGFR 31 

inhibition. Detailed analysis of VEGF and EGF signalling demonstrated a 32 

radioprotective role of Akt that correlates with VEGF in 3D and with EGFR in 2D. In 33 

all cases, positive correlations were observed between increased radiosensitivity, 34 

markers of unrepaired DNA damage and persistent phospho-DNA-PK nuclear foci. 35 

Conversely, increased numbers of Rad51 foci were observed in radioresistant 36 

populations, indicating a novel role for VEGF/Akt signalling in influencing 37 

radiosensitivity by regulating the balance between non-homologous end-joining and 38 

homologous recombination mediated DNA repair.  Differential activation of tyrosine 39 

kinase receptors in 2D and 3D models of GBM explains the well documented 40 

discrepancy between pre-clinical and clinical effects of EGFR inhibitors.  Data 41 

obtained from our 3D model identify novel determinants and mechanisms of DNA 42 

repair and radiosensitivity in GBM, and confirm Akt as a promising therapeutic target 43 

in this cancer of unmet need. 44 

 45 

 46 
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Introduction 48 

Glioblastoma (GBM) is the most common and aggressive malignant primary brain 49 

tumour 1. Tumours exhibit inherent resistance to radiation and chemotherapy with 5 50 

year survival rates of ~4% 2,3. Radiation resistance of GBM has been attributed to a 51 

subpopulation of cancer cells termed ‘GBM stem-like cells’ (GSC) which express 52 

stem cell markers, can differentiate into different lineages and have potent 53 

tumorigenic capacity 4-10. To improve clinical outcomes, the molecular mechanisms 54 

underlying radio- and chemoresistance of GSC need to be elucidated. However, 55 

novel targeted agents that have shown pre-clinical activity in conventional GBM cell 56 

culture systems have consistently failed to achieve clinical efficacy.   57 

One explanation for the discrepancy between preclinical and clinical data is the 58 

widespread use of preclinical models that fail to recapitulate the in vivo scenario.  59 

Lack of clinical efficacy of new agents might be explained by misleading preclinical 60 

data generated in established cancer cell lines cultured in simplified two-dimensional 61 

(2D) in vitro systems, in which cells undergo profound phenotypical changes and 62 

exhibit markedly different responses to cytotoxic treatments 11-14. In the context of 63 

radiation therapy, 3D culture of lung and head & neck cancer cells embedded in 64 

laminin-rich extracellular matrix (lrECM) has been shown to promote radiation 65 

resistance compared to 2D culture 15,16.  Likewise, colorectal cancer cell lines 66 

cultured under similar 3D conditions exhibited changes in cellular morphology, 67 

phenotype and gene expression and were resistant to epidermal growth factor 68 

receptor (EGFR) inhibition compared to cells cultured in 2D conditions 17. We have 69 

recently demonstrated lack of response to the EGFR tyrosine kinase inhibitor 70 

erlotinib either alone or in combination with radiation in a novel 3D model of GBM 71 

consisting of patient-derived GSC grown on 3D-Alvetex® scaffolds (3D), whereas 72 
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radiosensitisation was clearly observed in 2D GSC 14.  These findings recapitulate 73 

those of clinical trials in GBM in which treatments targeting EGFR either through the 74 

tyrosine kinase inhibitors erlotinib or gefitinib, or the anti-EGFR antibody cetuximab 75 

showed very low response rates and in some cases yielded inferior outcomes and/or 76 

worse toxicity than standard of care 18-30, despite clear evidence of preclinical activity 77 

against established cell lines grown as 2D cultures. Taken together, these 78 

observations provide some insight into why results derived in conventional 2D cell 79 

culture systems are so often poorly predictive of clinical efficacy.  80 

Anti-vascular endothelial growth factor (VEGF) therapy has also been evaluated in 81 

GBM, yielding marginally better clinical outcomes. Hypoxia is a cardinal feature of 82 

GBM, and is associated with high levels of vascular endothelial growth factor (VEGF) 83 

31,32.  Increased VEGF expression correlates with poor prognosis and treatment 84 

resistance in GBM 33,34 and addition of anti-VEGF therapy (e.g. bevacizumab) to 85 

standard radio-chemotherapy increases progression-free survival but not overall 86 

survival 35,36. While anti-VEGF therapy was developed primarily to target the tumour 87 

vasculature, GBM cells also express VEGF receptor 2 (VEGFR2) and are thus 88 

potential targets 14,37, unlike normal brain in which VEGFR2 expression is 89 

undetectable.  Previous studies have reported protective effects of VEGF on GBM 90 

cells treated with paclitaxel or radiation 38 that were mediated via VEGFR2. VEGFR2 91 

inhibition has also been shown to reduce GSC viability and survival in vivo 37. We 92 

have recently added to this literature by showing that the anti-VEGF monoclonal 93 

antibody bevacizumab increases radiosensitivity in a customised 3D GSC system 94 

but has no effect in conventional 2D cultures 14.  95 

To interrogate these novel observations further, and elucidate the underlying 96 

mechanisms, we used our customised, validated 3D GBM model to investigate 97 
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whether the radiosensitising effects of VEGF inhibition are mediated via the DNA 98 

damage response (DDR). In this model, downregulation of VEGF signalling 99 

consistently induced a radiosensitive phenotype that was associated with aberrant 100 

NHEJ, inhibition of HR and accumulation of unrepaired DNA damage. We went on to 101 

show that the radiosensitising effects of VEGF depletion in 3D and EGFR inhibition 102 

in 2D cultures are mediated by the downstream signalling protein Akt. In addition, 103 

our data indicate that radiation induced changes in the sub-cellular localisation of 104 

EGFR are regulated by VEGF signalling.  105 

Materials and Methods 106 

Cell Culture and Radiation Treatment 107 

E2, R10 and G7 GBM cell lines were obtained from Colin Watts laboratory, derived 108 

from anonymised patient resection specimens as previously described 39.  Cell lines 109 

were routinely cultured on MatigelTM-coated plates (0.2347mg/ml in Adv/DMEM) in 110 

cancer stem cell optimised serum-free medium comprising Advanced/DMEM/F12 111 

medium (GIBCO) Supplemented with 1% B27 (Invitrogen), 0.5% N2 (Invitrogen), 112 

4g/ml heparin, 10ng/ml fibroblast growth factor 2 (bFGF,Sigma), 20ng/ml epidermal 113 

growth factor (EGF, Sigma) and 1% L-glutamine and used for experiments between 114 

passage 3 and 8.  For Alvetex® 3D cultures (3D-A), Alvetex® scaffolds were coated 115 

with diluted MatrigelTM as for 2D conditions.  Cells were irradiated using an RS225 116 

XStrahl machine, at 195 kV, 15 mA with a 0.5 copper filter, at a dose of 2.47 Gy/min.  117 

Cells were routinely tested every three months for mycoplasma always tested 118 

negative for mycoplasma contamination.  Authentication of cells with Illumina 119 

Infinium  Methylation Analysis in 2017. 120 

Mouse experiments 121 
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Female CD1 nude mice were anaesthetised using isofluorane and a 1cm incision 122 

was made through the skin along the length of the skull. A hole was drilled through 123 

the skull 3 mm posterior to the bregma, and 2 mm lateral to the midline.  Inoculation 124 

of tumour cells was performed using a digital stereotaxic frame (Harvard Apparatus). 125 

A programmable injector pump (Harvard Apparatus) was used to inject 1x105 GSC in 126 

5l PBS 3mm deep into the brain at a rate of 2l/min.   127 

Partial brain irradiation encompassing xenograft tumours was performed using the 128 

XStrahl small animal radiation research platform (SARRP). Mice were irradiated with 129 

220 kV (peak) X-ray beams at a dose of 4.8 Gy/min using a 5x5 mm collimator with 130 

parallel opposed beams under the guidance of cone-beam CT. 131 

 132 

Ethical approval  133 

Animal experiments were in compliance with all regulatory guidelines, as described 134 

in the Animals Act 1986 Scientific Procedures on living animals regulated by the 135 

Home Office in the United Kingdom. 136 

 137 

Clonogenic assays 138 

Cells were seeded on MatrigelTM-coated plates / 3D-Alvetex scaffolds (0.2374mg/ml). 139 

Seeding densities were as follows; 0-2 Gy – 300 cells / well (c/w); 3 Gy, 500 c/w; 4 140 

Gy, 800 c/w; 5-9 Gy, 1000 c/w.  18 hrs after seeding, cells were either sham 141 

irradiated or irradiated at indicated doses and incubated for 2.5 (2D) or 3 weeks (3D) 142 

prior to fixation with methanol and crystal violet staining  for 2D conditions, or 143 

thiazolyl blue tetrazolium bromide (MTT) staining followed by 2% paraformaldehyde 144 

(PFA)/PBS for 3D conditions.  Visible colonies were manually counted. Dose 145 

modifying factor (DMF) at 0.37% and 0.1% survival were calculated for each 146 
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treatment combination as well as sensitizing enhancement ratio (SER) to whole 147 

curve as in 40.  148 

For knockdown experiments, cells were transfected with respective siRNAs ( Table 149 

S1A) using Lipofectamine RNAiMax reagent according to manufacturer’s instructions. 150 

After 48 h incubation, cells were detached with Accutase, counted and seeded in 3D-151 

Alvetex Scaffolds at corresponding densities. 18 h after seeding, cells were 152 

irradiated at different doses (0-5 Gy) and incubated for 3 weeks. Clonogenic survival 153 

graphs represent mean plus SD of 3 independent experiments. Curves are fitted to a 154 

linear quadratic model and are normalised to respective 0 Gy control.  155 

For 96-well clonogenics, cells were seeded (G7 -100 c/w, G1 – 200 c/w), incubated 156 

for 16 h, treated with respective compounds, incubated for 2 h, irradiated at 0 or 3 157 

Gy, and incubated for 13 days prior to colony staining and fixing.   158 

Data was analysed using the median effect dose 159 

(https://pdfs.semanticscholar.org/6e6f/5f9d670c203ade39e49dec5920fc759d5b67.p160 

df) and Bonferroni’s statistical test. 161 

Immunofluorescence 162 

Cells (5 x 104 c/w) were seeded on Matrigel-coated coverslips or Matrigel-coated 163 

Alvetex® Scaffolds were exposed to erlotinib (1 M), MK-2206 with a chemical name 164 

of 8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-1,2,4-triazolo[3,4-f][1,6]naphthyridin-165 

3(2H)-one hydrochloride [1:1] 41(1 M) or vehicle and treated with 5 Gy or sham 166 

irradiated. Cultures were fixed in 2% PFA/PBS at the indicated time points, 167 

permeabilised with 1% Triton/PBS, blocked with 2% BSA/TBS/0.5% Tween-20 and 168 

incubated with the respective primary antibodies, followed by appropriate secondary 169 

Research. 
on November 5, 2019. © 2019 American Association for Cancermct.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on October 31, 2019; DOI: 10.1158/1535-7163.MCT-18-1320 

https://pdfs.semanticscholar.org/6e6f/5f9d670c203ade39e49dec5920fc759d5b67.pdf
https://pdfs.semanticscholar.org/6e6f/5f9d670c203ade39e49dec5920fc759d5b67.pdf
http://mct.aacrjournals.org/


8 
 

Alexa Fluor 568 or 488 secondary antibodies (Invitrogen, 1:400).  Nuclei were 170 

counterstained with DAPI in mounting medium (VectaShield).  For H2AX, pDNA-PK 171 

and Rad51 foci quantification Z-stacks were obtained at 63× magnification on a 172 

Zeiss 780 confocal microscope. The number of nuclei analysed for each data point 173 

ranged from 30 to 50 nuclei.  Foci per nucleus were counted manually.  174 

For mitotic catastrophe, micronuclei and mitotic analysis, 3D cells were grown in 175 

Alvetex scaffolds for 4 days and then mock-irradiated or irradiated (5 Gy).  Cells 176 

were fixed with 4% paraformaldehyde 24 h after radiation treatment.  Scaffolds were 177 

immunostained for the mitotic marker phospho-S10 histone H3 (green) to visualise 178 

mitotic and mitotic catastrophe cells. DAPI was used to stain for DNA (blue).  An 179 

average of 350 nuclei / condition / experiment were identified randomly and scored. 180 

Percentages of cells displaying micronuclei, mitosis or mitotic catastrophe per 181 

nucleus were calculated.  Mean ± SEM of 3 independent experiments. P values 182 

calculated by t test. 183 

Protein extraction 184 

2D and 3D cells were exposed to the indicated treatments.  For 2D cultures, cells 185 

were incubated for 30 minutes in lysis buffer (1% SDS-Tris buffer in the presence of 186 

phosphatase and protease inhibitors), scraped from plastic and clarified using 187 

Qiagen columns.  For 3D cultures, scaffolds were incubated in lysis buffer for 25 min 188 

on ice, transferred to a rotating platform at 100 rpm and incubated for 5 minutes.  189 

Recovered lysate was clarified using Qiagen columns as for 2D lysates. Lysates 190 

were prepared using LDS sample buffer (Life Technologies) in the presence of 1 M 191 

DTT, blotted onto nitrocellulose membrane and probed with specific antibodies 192 

(Table S1B).  193 
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 194 

Results 195 

Differential radiosensitisation by erlotinib and VEGF in 2D and 3D cultures 196 

Elevated VEGF levels are a prominent feature of GBM in general and the GBM stem 197 

cell niche in particular, with concentrations reaching above 6000 pg/ml in these 198 

tumours 31. VEGF has been shown to promote self-renewal and survival of GBM 199 

cancer stem cells 37 but its impact on their radiation responses is not well 200 

characterized. To evaluate whether clinically relevant concentrations of VEGF 201 

modulate cellular responses to radiation in vitro, effects on clonogenic survival of 202 

three different patient-derived GBM cell lines (G7, E2 and R10) were measured 203 

under 2D GSC culture conditions and in our novel 3D model 14. Initially, we 204 

performed ELISA assays to measure secretion of VEGF. While all cell lines secreted 205 

VEGF in both hypoxic and normoxic conditions, concentrations were significantly 206 

lower than have been observed in GBM in vivo (Supplementary Fig. S1A).  To 207 

recapitulate clinically observed levels of VEGF, therefore, media were supplemented 208 

with human recombinant VEGF-A (3000 pg/ml). Whereas VEGF supplementation 209 

had no effect on clonogenic formation of 2D or 3D GSC in the absence of radiation 210 

treatment (Fig. 1A), and did not affect radiosensitivity of 2D cultures, VEGF 211 

deprivation was associated with a significant increase in radiation sensitivity of 3D 212 

cultures in all three cell lines (Fig. 1B and  Supplementary Table S2A). These data 213 

are consistent with our previous findings in which bevacizumab caused 214 

radiosensitisation in 3D cultures only 14.   215 

EGFR overexpression and/or gene amplification are also common features of GBM.  216 

Inhibition of EGFR activity with the specific tyrosine kinase inhibitor erlotinib 217 
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decreased phosphorylation of its active site (Y1173) at baseline and in irradiated 218 

conditions in both 2D and 3D GSC (Fig. 1C). However, radiosensitisation by erlotinib 219 

(1 M) was only observed in 2D cells (Fig. 1D and  Supplementary Table S2B), as 220 

previously demonstrated 14. A likely role for DNA repair in determining selective 221 

radiosensitisation of 2D cells by erlotinib was indicated by the observed delay in DSB 222 

resolution in 2D cells, as measured by sustained elevation of H2AX expression in 223 

protein extracts (Fig. 1C, compare lane 8 to lane 3). In marked contrast, erlotinib-224 

treated 3D GSC appeared to exhibit faster resolution of H2AX expression than 225 

controls (Fig. 1C, compare lane 11 to lane 16). 226 

To rule out the possibility that lack of radiosensitisation by erlotinib in 3D conditions 227 

was due to decreased drug delivery via compound adsorption to the scaffold, we 228 

assessed the radiosensitising activity of erlotinib alongside two known 229 

radiosensitisers, the PARP inhibitor olaparib and the ATM inhibitor KU-5593342, 230 

across a range of concentrations.  Reduced clonogenic efficiency was detected at 3 231 

Gy as expected (Supplementary Fig. S1B). Erlotinib failed to induce 232 

radiosensitisation of 3D cultures even at the highest concentration tested (10 M, 233 

Supplementary Fig. S1C), whereas radiosensitisation could be detected with 234 

olaparib and KU55933 at nanomolar and micromolar concentrations, respectively 235 

(Supplementary Fig. S1D and S1E).  These results validate our conclusion that 236 

erlotinib has no radiosensitising effect on 3D cells, and render any effect of the 237 

scaffold on drug activity very unlikely.  238 

Differential regulation of the downstream signalling molecule Akt in 2D and 3D 239 

GSC 240 
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In order to characterise the mechanisms by which VEGF and EGFR regulate GSC 241 

radiosensitivity we interrogated their key downstream signalling pathway Akt.  G7 242 

and E2 cells grown in 2D or 3D conditions were starved of growth factors for 48 243 

hours then induced either with EGF or with VEGF. While EGF treatment induced 244 

robust activation of EGFR and phosphorylation of Akt at the early time points in cells 245 

grown in 2D conditions, addition of VEGF showed no increment in Akt activation 246 

beyond baseline levels (Fig. 2A, left side blots).  In contrast, 3D cells showed robust 247 

Akt activation upon VEGF stimulation in both G7 and E2 cells (Fig. 2A, right hand 248 

blots).  EGF stimulation had a modest positive impact on Akt phosphorylation in G7 249 

3D cells at the early time points (Fig. 2A, left panels), remaining at baseline levels in 250 

E2 3D cells.  Expression of the three Akt isoforms at both mRNA and protein levels 251 

was observed in G7 and E2 cell lines (Supplementary Fig. S2A and S2B). 252 

Enrichment analysis43 of RNASeq data derived from G7 and E2 3D cells before and 253 

after radiation treatment revealed upregulation of genes involved in the Akt pathway 254 

(Supplementary Fig. S2C), supporting a likely role for Akt signalling in mediating 255 

radiation responses of 3D GSC. 256 

The divergent effects of EGFR inhibition on radiosensitivity of 2D and 3D GSC 257 

cultures prompted us to investigate how the radiation-erlotinib combination affected 258 

Akt signalling in these two systems. Erlotinib titration (0.5 M to 5 M) showed 259 

inhibition of EGFR activity in both 2D and 3D cultures, as demonstrated by 260 

decreased phosphorylation of its active site (Y1173) both at baseline and after 261 

radiation (Fig. 2B). However, this effect only translated into attenuation of Akt 262 

activation in 2D cells, having no effect on Akt activity in the 3D model in the G7 cell 263 

line and a reduced effect in E2 cells (Fig. 2B). This is in keeping with our previous 264 

observation that EGF plays only a minor role in Akt activation in the 3D system (Fig. 265 
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2A).  Time course analysis revealed inhibition of radiation induced Akt activity by 266 

erlotinib in 2D conditions at early time points (30 min to 3 hrs) (Fig. 2C, left panels), 267 

but no effect in 3D conditions (Fig. 2C, right panels).  Baseline levels of total Akt 268 

were similar in 2D and 3D cells (Fig. 2C). Taken together, our results suggest that 269 

Akt activity is differentially regulated in 2D and 3D conditions: by EGF signalling in 270 

2D conditions; and by VEGF signalling in 3D cells.  271 

Akt regulates radiation resistance in 2D and 3D GSC 272 

Having identified a pivotal role for Akt in downstream signalling from VEGF and 273 

EGFR, we next investigated its contribution to radiation resistance of 2D and 3D 274 

GSC using the specific Akt1/2 inhibitor MK-2206. Treatment of G7 and E2 GSC with 275 

MK-2206 (1 M) consistently inhibited Akt activity in all models, as demonstrated by 276 

reduced phosphorylation (Fig. 2D).  This effect was accompanied by 277 

radiosensitisation in all models (Fig. 3A and 3B, Supplementary Table  S2C). In the 278 

case of G7 cells, radiosensitisation was not further increased by erlotinib in 2D 279 

conditions (Fig. 3A, left graphs) or by VEGF deprivation in 3D conditions (Fig. 3B, left 280 

graph).  MK-2206 had more pronounced radiosensitising effects on E2 2D cells than 281 

erlotinib alone or indeed erlotinib in combination with MK-2206 (Fig. 3A, right graph 282 

and  Supplementary Table S2C), suggesting that other unidentified upstream 283 

signalling factors may be regulating Akt activity in this cell line.  In 3D E2 cells, MK-284 

2206 alone and VEGF-deprivation exhibited similar radiosensitising effects whilst the 285 

combination of MK-2206 and VEGF-deprivation induced further radiosensitisation 286 

(Fig. 3B, right graph and Supplementary Table S2C). These results indicate additive 287 

effects of VEGF and Akt inhibition in this cell line.  Subsequent experiments 288 

confirmed a dose response for the radiosensitizing effect of MK-2206 (Fig. 3C). 289 
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To validate that the radiosensitizing effects of MK-2206 were ‘on target’, the effects 290 

of Akt knockdown were evaluated using siRNA targeting of the three Akt isoforms.  291 

Downregulation of Akt1 and Akt3 expression at the protein level was detected in E2 292 

cells (Fig. 3D) and was associated with radiosensitisation of E2 3D GSCs (Fig. 3E 293 

and Supplementary Table S2D) validating the effects of MK-2206 treatment. 294 

Radiosensitising effects were also observed with the Akt inhibitor perifosine 295 

(Supplementary Fig. S2D)  further confirming the radiosensitising effects of this class 296 

of compounds.  Overall, these results indicate that radiation sensitivity in GSC is 297 

modulated by Akt activity irrespective of the growth conditions. 298 

VEGF deprivation and Akt inhibition are associated with reduced DSB repair 299 

and increased mitotic catastrophe in irradiated 3D GSC  300 

Radiation kills cells by damaging DNA and the integrity of the DNA damage 301 

response (DDR) is a key determinant of radiosensitivity. More specifically, DNA 302 

double strand breaks (DSB) are the most important cytotoxic lesions induced by 303 

radiation and are repaired either by the rapid but error-prone non-homologous end-304 

joining (NHEJ) pathway or by homologous recombination (HR) which is accurate but 305 

slower and requires the presence of a homologous sister chromatid 44,45. To 306 

investigate the mechanisms underlying the radiosensitising effects of VEGF 307 

deprivation and Akt inhibition, quantitative analysis of induction and resolution of 308 

radiation induced DSB was performed, using nuclear H2AX foci as markers of DSB.  309 

Delayed resolution of DSB was observed in the VEGF-deprived radiosensitive 310 

population compared to the radioresistant VEGF-supplemented 3D populations as 311 

shown by increased numbers of unresolved H2AX foci 24 hours after irradiation (Fig. 312 

4A and B). The possibility that this increase in H2AX foci was due to a larger 313 

proportion of VEGF-deprived cells being in the G2 phase of the cell cycle was 314 
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excluded by the fact that similar percentages of cells staining positive for the G2 315 

phase marker CENPF were detected in both conditions (Supplementary Fig. S3A 316 

and S3B, VEGF-enriched 24.44% ±7.62, VEGF-deprived 22.985% ±1.138). No 317 

significant differences in H2AX foci were observed in VEGF-deprived or 318 

supplemented cells in the absence of radiation (Fig. 4C).  A delay in DSB resolution 319 

was also observed in 3D (Fig. 4D) and 2D cells (Fig. 4E) treated with MK-2206 (1 320 

M). More detailed analysis revealed MK-2206 to be associated with increased 321 

numbers of H2AX foci 30 minutes after radiation, suggesting either increased 322 

induction of DSB or impairment of early (or ‘fast’) DSB repair, and at the 24 hour time 323 

point (Fig. 4E; representative images in Supplementary Fig. S3C). Unirradiated 324 

GSCs treated with MK-2206 exhibited a small but statistically significant increase in 325 

median number of foci compared to vehicle at the 24 hour time point, indicating a 326 

possible role for Akt in repair of DSB arising from endogenous sources (Fig. 4F).   327 

Levels of unresolved DSB at 24 hours correlate with radiation sensitivity both in vitro 328 

and in vivo 44 and have potential to cause cell death by a number of mechanisms 329 

including mitotic catastrophe 46,47. To understand the cell death mechanisms by 330 

which inhibition of VEGF or Akt signalling enhances radiosensitivity, quantification of 331 

mitotic cells and those undergoing mitotic catastrophe was performed using the 332 

specific mitotic marker histone H3 phosphorylated at serine 10 (pS10-H3). Cells 333 

undergoing mitotic catastrophe were readily detected as fragmented, pS10-H3 334 

positive nuclei (Fig. 4G, red arrows). Whereas numerous cells undergoing mitotic 335 

catastrophe were identified in VEGF-deprived 3D cultures 24 hours after irradiation, 336 

very few were observed in VEGF-enriched 3D conditions (Fig. 4G and H).  An 337 

increase in the number of cells exhibiting micronuclei was also observed in the 338 

VEGF-deprived populations (Fig. 4H), consistent with the hypothesis that cells 339 
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completing mitosis in the presence of unrepaired DNA DSBs generate severe 340 

structural chromosomal defects and will eventually succumb. Similar increases in 341 

micronuclei were observed in irradiated cells treated with MK-2206 (Supplementary 342 

Fig. S3D). Together these results demonstrate that VEGF-deprived 3D cells and Akt 343 

inhibited cells are less efficient at repairing radiation induced DNA damage and 344 

hence accumulate unresolved DNA DSB that lead eventually to cell death by 345 

mechanisms including mitotic catastrophe. 346 

Aberrant NHEJ characterised by persistent DNA-PKcs binding at DSB is 347 

associated with the radiosensitising effects of VEGF deprivation or MK-2206 348 

treatment 349 

Cell survival after radiation is determined by both induction of DNA damage and the 350 

repair processes that follow. Efficiency and integrity of DSB repair depend on 351 

appropriate engagement of either NHEJ or HR, and it has been reported that cancer 352 

cells can be susceptible to aberrant DSB repair as a consequence of over-353 

expression or inappropriate activation of NHEJ proteins 48,49. Approximately 80% of 354 

X-ray-induced DSBs are repaired within 2-3 hours by the NHEJ pathway, of which 355 

DNA-PKcs is a major catalytic component 50. Of direct relevance to our experiments, 356 

Akt has been shown to activate DNA-PKcs activity in response to radiation 51,52. To 357 

investigate whether delayed resolution of DSBs in the radiosensitised populations 358 

was due to diminished NHEJ repair, we quantified the number of phosphorylated 359 

DNA-PKcs foci per nucleus in G7 and E2 cells. Unexpectedly, the number of pDNA-360 

PKcs foci 0.5 hours after radiation (5 Gy) was found to be significantly increased in 361 

VEGF-deprived, radiosensitive 3D populations compared to the more radioresistant 362 

VEGF-enriched 3D cells (Fig. 5A and B). In contrast, VEGF treatment did not affect 363 

the number of pDNA-PKcs foci in 2D cultures (Supplementary Fig. S3E). 364 
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Quantitative analysis of pDNA-PKcs kinetics over a 24 hour period after radiation 365 

treatment showed increased numbers of foci throughout the time course in the 366 

radiosensitive VEGF-deprived 3D GSC populations compared to 3D cells grown in 367 

the presence of VEGF (Fig. 5A and B).  We hypothesized that the presence of large 368 

numbers of unresolved pDNA-PKcs foci in VEGF-deprived 3D cells at the 24 hour 369 

time point was indicative of ineffective attempts at DSB repair, an interpretation that 370 

is supported by the H2AX data shown in Fig. 3 and the additional observation that 371 

these unresolved pDNA-PKcs foci were larger than those observed at earlier time 372 

points (Fig 5A, compare 0.5 hrs (-) VEGF image with 24 hrs (-) VEGF image).  373 

Consistent with our previous results, we observed a similar increase in the number of 374 

pDNA-PKcs foci (red) at the 24 hrs time point in MK-2206 treated 3D cells compared 375 

to controls (Fig. 5C). These foci co-localised with H2AX foci (green), indicating that 376 

pDNA-PKcs molecules were accumulating at DSB (Fig. 5C). In order to validate that 377 

these DNA-PK foci mediated radiosensitising effects were occurring downstream of 378 

VEGF and Akt, clonogenic assays were performed in cells depleted of DNA-PKcs by 379 

siRNA targeting. Following siRNA transfection, E2 cells exhibited a significant 380 

reduction in DNA-PKcs protein expression and were more radiosensitive than cells 381 

transfected with scrambled siRNA (Fig. 5D). Importantly, whereas MK-2206 382 

mediated radiosensitisation persisted in cells expressing scrambled siRNA, no 383 

additional radiosensitisation was observed in cells depleted of DNA-PKcs (Fig. 5D 384 

and Supplementary Table S2E). These data provide compelling evidence for a novel 385 

role for VEGF/Akt signalling in influencing radiosensitivity by interfering with NHEJ 386 

through persistent binding of DNA-PKcs to DSB. We postulate that this role has not 387 

been identified previously because mechanistic studies have generally been 388 
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conducted in 2D in vitro cultures in which EGFR signalling is upregulated at the 389 

expense of VEGF signalling. 390 

Homologous recombination repair is regulated by VEGF in 3D cultures 391 

It is well established that the NHEJ and HR pathways ‘compete’ for access to and 392 

repair of DSB under certain circumstances, and inhibition of NHEJ has been shown 393 

to enhance DSB repair under certain conditions by promoting HR 53. To test the 394 

hypothesis that persistent binding of pDNA-PKcs to DSB inhibits HR repair function, 395 

3D cells in the presence or absence of VEGF were fixed 3 hours after radiation and 396 

stained for the key HR protein Rad51. While considerable numbers of Rad51 foci per 397 

nucleus were detected in the radioresistant VEGF enriched 3D cells, far fewer foci 398 

were visible in the radiosensitive VEGF-deprived 3D cultures at the same time point 399 

(Fig. 5E and F).  These findings were supported by similar observations when cells 400 

were stained for an alternative HR protein BRCA2 (Supplementary Fig. S3F).  This 401 

effect cannot be explained by a difference in cell cycle distribution as the proportion 402 

of CENPF positive G2 cells was not affected by VEGF addition (Supplementary Fig. 403 

S3A and S3B). Consistent with the tenet that HR is cell cycle phase specific, 404 

functioning only in S and G2 phases during which a sister chromatid DNA template is 405 

available for repair, the proportion of nuclei staining positive for Rad51 was not 406 

statistically significant to the proportion of CENPF positive cells under the same 407 

conditions (Supplementary Fig. S3G). These data indicate that, in this 3D model, 408 

VEGF-deprived cells initiate HR at a much lower rate than VEGF-enriched cells and 409 

are consistent with a scenario in which VEGF driven activation of Akt promotes rapid 410 

and efficient NHEJ, which also permits functional HR. In the absence of VEGF, lack 411 

of Akt signalling results in aberrant and prolonged binding of DNA-PKcs to DSB 412 

which both delays NHEJ mediated repair and inhibits HR. 413 
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 414 

Activation of VEGFR2 and functional activation of both NHEJ and HR in an 415 

orthotopic mouse model of GBM  416 

To validate in vivo the observations made in the 3D model in vitro, we interrogated 417 

relevant DDR parameters before and after irradiation in tissue from patient-derived 418 

human GBM orthotopic mouse models. We have previously shown phosphorylation 419 

and activation of the VEGFR2 receptor in the majority of tumour cells in G7 and E2 420 

orthotopic tumours 14 and  Supplementary Fig. S4A, confirming that VEGF/VEGFR2 421 

signalling is active in vivo. Based on our 3D in vitro data, we hypothesised that 422 

tumour cells in which VEGF signalling pathway is active would exhibit functional 423 

NHEJ and that pDNA-PKcs nuclear foci would be detectable at early time points 424 

after irradiation in vivo and would resolve rapidly. To assess this, CD1 nude mice 425 

were injected intracranially with E2 cells and monitored for five months to allow the 426 

infiltrative tumour growth pattern characteristic of this model. Following this period, 427 

mice underwent partial brain irradiation (10Gy) or mock treatment and were 428 

sacrificed at different time points (0, 0.5, 2 and 24 h). Immunofluorescence was 429 

performed to evaluate activation of NHEJ by detection of pDNA-PKcs nuclear foci. 430 

For this experiment, EGFR was selected as tumour cell marker as it was not 431 

expressed in normal mouse brain tissue (Supplementary Fig. S4A). A significant 432 

increase in pDNA-PKcs foci was detected 30 minutes after radiation treatment, the 433 

vast majority of which had resolved within 2 hours. No foci were detected at the 24 434 

hour time point (Fig. 6A). Consistent with these data, Rad51 nuclear foci were 435 

detected 4 hours after radiation treatment in vivo and had resolved by 24 hours 436 

(Supplementary Fig. S4B).  These data recapitulate our in vitro observations, where 437 

3D GSC grown in the presence of VEGF activated Akt and exhibited efficient DSB 438 
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repair, with early NHEJ activation followed by HR activation and complete resolution 439 

of repair foci by 24 hours.  440 

MK-2206 extends survival in combination with radiation in the  U87MGLuc 441 

orthotopic xenograft GBM model 442 

We then proceeded to evaluate the efficacy of combining Akt inhibition with radiation 443 

in vivo. CD1 nude mice were injected intracranially with U87MGLuc cells. 444 

Bioluminescence imaging was performed on day 6 confirming tumour engraftment 445 

(Supplementary Fig. S4C).  At day 13, mice were randomised into 4 cohorts (Fig. 446 

6B), and treated with respective protocols over a two-week period.  All treatment 447 

regimens were well tolerated, with no significant changes in body weight observed 448 

(Fig. 6C).  Following this period, mice were monitored daily and sacrificed when 449 

symptomatic. While no increase in survival was conferred by the Akt inhibitor MK-450 

2206 alone, the radiation schedule of 6 x 2 Gy (administered on alternate days) was 451 

associated with a modest but statistically significant increase in survival (P < 0.001), 452 

and combined treatment with MK-2206 and radiation conferred additional survival 453 

benefit, with a 9-day prolongation in median survival over control or MK-2206 alone 454 

(P < 0.0001) and a 5-day prolongation in median survival relative to the IR schedule 455 

(P = 0.006; Fig. 6D and E,  Supplementary Table S3). 456 

Erlotinib treatment of VEGF-deprived 3D GSC increases their radiation 457 

resistance  458 

While performing clonogenic assays with different treatment combinations, we 459 

observed that erlotinib had a marked radioprotective effect on VEGF-deprived 3D 460 

cultures in three different patient-derived cell lines (G7, E2, and R10), an effect of the 461 

same magnitude as that observed for VEGF treatment in this model (Fig 7A and  462 
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Supplementary Fig. S5A).  No further radioprotection was detected in the presence 463 

of VEGF (Fig. 7A), indicating a correlation between VEGF signalling and EGFR 464 

inhibition that has not been documented previously.  In contrast, radiosensitisation of 465 

2D cultures by erlotinib was not affected by VEGF (Supplementary Fig. S5B-D).  466 

Consistent with these results, the radioresistant erlotinib-treated 3D GSC and the 3D 467 

GSC supplemented with VEGF were more efficient at repairing DSBs after radiation 468 

treatment, exhibiting lower number of H2AX foci levels at 24 hrs than the 469 

radiosensitive 3D VEGF-deprived cells (Supplementary Fig. S5E).  No statistically 470 

significant difference was observed in the number of pDNA-PKcs foci and Rad51 foci 471 

were observed in the erlotinib-treated VEGF-deprived 3D GSC (Fig. 7B and 7C) and 472 

in erlotinib-treated VEGF supplemented 3D GSC (Supplementary Fig. S5F and S5G) 473 

as in the VEGF-treated cells at early time points, which were completely resolved at 474 

24 hrs, in contrast to the VEGF-deprived cells without erlotinib which exhibited 475 

increased pDNA-PKcs foci at all timepoints and reduced Rad51 foci. 476 

EGFR/DNA-PKcs nuclear colocalisation correlates with aberrant NHEJ and HR 477 

in VEGF-deprived radiosensitive populations  478 

Having made the novel and unexpected observation that EGFR inhibition protected 479 

3D GSCs following ionising radiation, we investigated the mechanisms involved. In 480 

head and neck carcinomas, EGFR activates repair of radiation induced DSB through 481 

phosphorylation of DNA-PKcs [35, 36]. Colocalisation analysis of DNA-PKcs and 482 

EGFR was therefore performed in G7 and E2 3D cultures in the radioresistant 483 

populations (+VEGF or erlotinib) and the radiosensitive VEGF-deprived cells.  484 

Nuclear colocalisation of DNA-PKcs and EGFR was detected in the VEGF-deprived 485 

radiosensitive 3D populations at both early (0.5 hours) and late (24 hours) timepoints 486 
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after radiation treatment.  In contrast, nuclear colocalisation of DNA-PKcs and EGFR 487 

could not be observed in the radioresistant G7 3D (Fig. 7D-F) or E2 3D 488 

(Supplementary Fig. S5H) populations either before or after irradiation. These 489 

findings suggest that, in a clinically relevant 3D model of GBM: (i) VEGF inhibits 490 

nuclear localisation of EGFR, (ii) EGFR activation is required for its translocation into 491 

the nucleus, and (iii) EGFR/DNA-PKcs complex binding to DSBs requires additional 492 

signalling that promotes its disassociation and functional DSB repair.   493 

 494 

Discussion 495 

Here we describe a novel role for VEGF/VEGFR2 signalling in the regulation of 496 

radiation sensitivity and the DDR using a customised, 3D cell culture system that 497 

resembles key histological features of GBM and replicates particular clinical 498 

responses to molecular targeted therapies such as EGFR inhibition and 499 

temozolomide treatment. Our results provide important insights into the mechanisms 500 

by which GSC survive radical radiotherapy. Anti-VEGF therapy (bevacizumab) was 501 

developed primarily to target angiogenesis; our 3D model identifies a direct effect of 502 

VEGF on tumour cell radiosensitivity that could be exploited to overcome radiation 503 

resistance. Credence for the clinical efficacy of targeting VEGF signalling in GBM is 504 

provided by recently reported results of a phase II study of the VEGFR, FGFR and 505 

PDGFR inhibitor regorafenib in patients with recurrent disease, which showed 506 

improved 12 month overall survival (38.9% vs 15.0%) and 6 month progression-free 507 

survival (16.9% vs 8.3%) compared with lomustine 54. A number of potential 508 

resistance mechanisms may explain the failure of bevazicumab to extend survival in 509 

first line treatment (39), including failure to cross the blood brain barrier and 510 
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compensatory roles of other VEGFs (e.g. VEGF-B) or VEGF receptors. More 511 

specifically, GSC have been shown to exhibit a VEGF/VEGFR2 autocrine signalling 512 

loop associated with a cytosolic VEGFR2 subfraction 37, which might contribute to 513 

resistance to VEGF targeting strategies. Our results indicate that tyrosine kinase 514 

receptor related mechanisms underlying radioresistance of GBM in general and GSC 515 

in particular are worthy of detailed investigation in the future.   Further assessment in 516 

the 3D model of successful and failed molecular therapies in the clinic will provide 517 

meaningful validation of the 3D model for utilisation in preclinical studies of molecular 518 

targeted therapies that might predict translational success.  519 

Radioresistance is intimately associated with the DDR, and efficiency and integrity of 520 

DSB repair depends on appropriate engagement of NHEJ and/or HR.  An increasing 521 

body of evidence indicates that cancer cells might be susceptible to aberrant DSB 522 

repair as a consequence of over-expression or inappropriate activation of NHEJ 523 

proteins including the catalytic subunit DNA-PKcs 51,52. While EGFR signalling has 524 

been shown to modulate DNA DSB repair in general and DNA-PKcs activity in 525 

particular 51,52,55,56, to our knowledge there is no published evidence that VEGF 526 

signalling influences any aspect of DNA repair. Our previous observations with 527 

bevacizumab 14 and the demonstration by Bartek’s group that direct inhibition of 528 

VEGFR2 reduces GSC viability under conditions of radiation-evoked stress, implied 529 

a potential role for VEGF in DNA repair. The data presented here demonstrate for 530 

the first time that VEGF can activate DNA repair via Akt and DNA-PKcs functionality, 531 

a phenomenon that is only observed in 3D conditions. Furthermore, our studies 532 

show for the first time that Akt responds to different cues in 2D and 3D cells.  While 533 

EGFR regulated Akt activity in 2D cultures, VEGF signalling was required for its 534 

activation in the 3D model. Our results are consistent with previous reports that Akt 535 
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signalling to DNA-PK promotes functional NHEJ activity and radioprotection, but in 536 

previous studies conducted in 2D cultures, the link to VEGF signalling was not 537 

appreciated.    538 

Several reports have demonstrated pre-clinical efficacy of the Akt MK-2206 inhibitor 539 

in combination with gefitinib) in mouse models of GBM 57,58.  Indeed, clinical trials 540 

investigating Akt inhibitors in the treatment of GBM are either underway or in 541 

development (e.g. https://clinicaltrials.gov/ct2/show/NCT02430363). Unfortunately a 542 

phase I study of MK-2206 in recurrent GBM was terminated prior to enrolment 543 

following a re-prioritisation process by the pharmaceutical company. Data from our 544 

3D model strongly support the hypothesis that inhibition of Akt will improve clinical 545 

outcomes for GBM and provide further justification for clinical trials in this area. They 546 

also indicate that the interplay between EGFR, VEGFR2, Akt and DNA-PKcs and 547 

possibly other tyrosine kinase receptors such as PDGF and FGFR is worthy of 548 

detailed investigation in the future.  549 

Based on preclinical data, huge amounts of time and money have been devoted to 550 

clinical studies targeting EGFR in the treatment of GBM, none of which has been 551 

successful. In phase I/II clinical trials, addition of erlotinib to radiotherapy and 552 

temozolomide failed to improve outcomes 21,22 and in some cases yielded worse 553 

outcomes26. The identification in 2D breast and pancreatic cell culture systems of 554 

radiation-specific phosphorylation sites of EGFR (Y845 and T654)59 that induce its 555 

translocation to the nucleus and stimulate activation of DNA-PKcs provided a 556 

detailed rationale and mechanism of action for combining EGFR inhibitors with 557 

radiation. Nuclear translocation of EGFR was observed after radiation treatment in 558 

VEGF-deprived, radiosensitive 3D cultures as opposed to VEGF supplemented, 559 

radioresistant cell populations suggests important cross-talk between EGFR and 560 
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VEGFR signalling  in the 3D context and warrants further investigation. More 561 

generally, discrepancies between the EGFR signalling effects observed in our 3D 562 

cultures and those described in previous reports might explain the failure of 563 

simplified 2D preclinical models to predict the negative outcomes of clinical trials.   564 

In summary, irradiation of GBM stem-like cells in a novel 3D cell culture system has 565 

radiosensitisation and revealed previously unreported radioprotective effects of 566 

VEGF that are mediate through the NHEJ and HR DNA repair pathways (Fig. 7G). 567 

As well as increasing our understanding of the clinical effects and limitations of 568 

radiation therapy in the management of patients with GBM, these data support the 569 

clinical evaluation of Akt inhibitors in GBM and reinforce the concept that potential 570 

treatments for GBM should be evaluated in more representative 3D models before 571 

proceeding to in vivo and clinical testing.   572 

 573 

Acknowledgements 574 

Cell lines were kindly donated by Dr Colin Watts, University of Cambridge.  This 575 

research was funded by a Chief Scientist Office (CSO, grant number ETM/405) to 576 

A.Chalmers. We also thank the National Centre for the Replacement, Refinement 577 

and Reduction of Animals in Research (NC3Rs) for funding this work (grant 578 

reference NC/P001335/1) to A.Chalmers and N. Gomez-Roman.  579 

 580 

 581 

  582 

Research. 
on November 5, 2019. © 2019 American Association for Cancermct.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on October 31, 2019; DOI: 10.1158/1535-7163.MCT-18-1320 

http://mct.aacrjournals.org/


25 
 

References 583 

1 Brodbelt, A. et al. Glioblastoma in England: 2007-2011. Eur J Cancer 51, 533-542, 584 
doi:10.1016/j.ejca.2014.12.014 (2015). 585 

2 Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus 586 
radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year 587 
analysis of the EORTC-NCIC trial. Lancet Oncology 10, 459-466, doi:Doi 10.1016/S1470-588 
2045(09)70025-7 (2009). 589 

3 Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. 590 
New England Journal of Medicine 352, 987-996, doi:Doi 10.1056/Nejmoa043330 (2005). 591 

4 Zschenker, O., Streichert, T., Hehlgans, S. & Cordes, N. Genome-wide gene expression 592 
analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell 593 
adhesion but not DNA repair. PLoS One 7, e34279, doi:10.1371/journal.pone.0034279 (2012). 594 

5 Luca, A. C. et al. Impact of the 3D Microenvironment on Phenotype, Gene Expression, and 595 
EGFR Inhibition of Colorectal Cancer Cell Lines. Plos One 8 (2013). 596 

6 Pontes Soares, C. et al. 2D and 3D-organized cardiac cells shows differences in cellular 597 
morphology, adhesion junctions, presence of myofibrils and protein expression. PloS one 7, 598 
e38147 (2012). 599 

7 Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the 600 
DNA damage response. Nature 444, 756-760, doi:10.1038/nature05236 (2006). 601 

8 Eramo, A. et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13, 602 
1238-1241, doi:10.1038/sj.cdd.4401872 (2006). 603 

9 Lathia, J. D. et al. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem 604 
cells. PloS one 6, e24807 (2011). 605 

10 Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. 606 
Oncogene 23, 7267-7273 (2004). 607 

11 Bokhari, M., Carnachan, R. J., Cameron, N. R. & Przyborski, S. A. Culture of HepG2 liver cells 608 
on three dimensional polystyrene scaffolds enhances cell structure and function during 609 
toxicological challenge. Journal of anatomy 211, 567-576 (2007). 610 

12 Benton, G., George, J., Kleinman, H. K. & Arnaoutova, I. P. Advancing Science and Technology 611 
Via 3D Culture on Basement Membrane Matrix. Journal of Cellular Physiology 221, 18-25, 612 
doi:Doi 10.1002/Jcp.21832 (2009). 613 

13 Eke, I. & Cordes, N. Radiobiology goes 3D: how ECM and cell morphology impact on cell 614 
survival after irradiation. Radiother Oncol 99, 271-278, doi:10.1016/j.radonc.2011.06.007 615 
(2011). 616 

14 Gomez-Roman, N., Stevenson, K., Gilmour, L., Hamilton, G. & Chalmers, A. J. A novel 3D 617 
human glioblastoma cell culture system for modeling drug and radiation responses. Neuro 618 
Oncol, doi:10.1093/neuonc/now164 (2016). 619 

15 Storch, K. et al. Three-dimensional cell growth confers radioresistance by chromatin density 620 
modification. Cancer research 70, 3925-3934 (2010). 621 

16 Hehlgans, S., Lange, I., Eke, I. & Cordes, N. 3D cell cultures of human head and neck 622 
squamous cell carcinoma cells are radiosensitized by the focal adhesion kinase inhibitor 623 
TAE226. Radiother Oncol 92, 371-378, doi:10.1016/j.radonc.2009.08.001 (2009). 624 

17 Poschau, M. et al. EGFR and beta1-integrin targeting differentially affect colorectal 625 
carcinoma cell radiosensitivity and invasion. Radiother Oncol 116, 510-516, 626 
doi:10.1016/j.radonc.2015.06.005 (2015). 627 

18 van den Bent, M. J. et al. Randomized phase II trial of erlotinib versus temozolomide or 628 
carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. Journal of 629 
clinical oncology : official journal of the American Society of Clinical Oncology 27, 1268-1274 630 
(2009). 631 

19 Rich, J. N. et al. Phase II trial of gefitinib in recurrent glioblastoma. Journal of clinical 632 
oncology : official journal of the American Society of Clinical Oncology 22, 133-142 (2004). 633 

Research. 
on November 5, 2019. © 2019 American Association for Cancermct.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on October 31, 2019; DOI: 10.1158/1535-7163.MCT-18-1320 

http://mct.aacrjournals.org/


26 
 

20 Brewer, C. J. et al. Phase II trial of erlotinib with temozolomide and concurrent radiation 634 
therapy in patients with newly-diagnosed glioblastoma multiforme. Journal of Clinical 635 
Oncology 23, 130s-130s (2005). 636 

21 Peereboom, D. M. et al. Phase II trial of erlotinib with temozolomide and concurrent 637 
radiation therapy in patients with newly diagnosed glioblastoma multiforme: Final results. 638 
Neuro-Oncology 8, 448-448 (2006). 639 

22 Peereboom, D. M. et al. Phase II trial of erlotinib with temozolomide and radiation in 640 
patients with newly diagnosed glioblastoma multiforme. Journal of neuro-oncology 98, 93-99 641 
(2010). 642 

23 Vogelbaum, M., Peereboom, D., Stevens, G., Barnett, G. & Brewer, C. Phase II study of 643 
erlotinib single agent therapy in recurrent glioblastoma multiforme. Ejc 644 
Supplementaryements 3, 135-135 (2005). 645 

24 Vogelbaum, M. A., Peereboom, D., Stevens, G., Barnett, G. & Brewer, C. Phase II trial of the 646 
EGFR tyrosine kinase inhibitor erlotinib for single agent therapy of recurrent Glioblastoma 647 
Multiforme: Interim results. Journal of Clinical Oncology 22, 121s-121s (2004). 648 

25 Vogelbaum, M. A., Peereboom, D., Stevens, G. H., Barnett, G. H. & Brewer, C. Phase II study 649 
of single agent therapy with the EGFR tyrosine kinase inhibitor erlotinib in recurrent 650 
Glioblastoma Multiforme. Annals of Oncology 15, 206-207 (2004). 651 

26 Vogelbaum, M. A., Peereboom, D., Stevens, G. H. J., Barnett, G. H. & Brewer, C. Response 652 
rate to single agent therapy with the EGFR tyrosine kinase inhibitor erlotinib in recurrent 653 
glioblastoma multiforme: Results of a phase II study. Neuro-Oncology 6, 384-384 (2004). 654 

27 Lassman, A. B., Abrey, L. E. & Gilbert, M. R. Response of glioblastomas to EGFR kinase 655 
inhibitors. The New England journal of medicine 354, 525-526; author reply 525-526 (2006). 656 

28 Norden, A. D. et al. Phase II trials of erlotinib or gefitinib in patients with recurrent 657 
meningioma. J Neurooncol 96, 211-217, doi:10.1007/s11060-009-9948-7 (2010). 658 

29 Raizer, J. J. et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and 659 
nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol 12, 95-103, 660 
doi:10.1093/neuonc/nop015 (2010). 661 

30 Raizer, J. J. et al. A phase I trial of erlotinib in patients with nonprogressive glioblastoma 662 
multiforme postradiation therapy, and recurrent malignant gliomas and meningiomas. 663 
Neuro Oncol 12, 87-94, doi:10.1093/neuonc/nop017 (2010). 664 

31 Takano, S. et al. Concentration of vascular endothelial growth factor in the serum and tumor 665 
tissue of brain tumor patients. Cancer research 56, 2185-2190 (1996). 666 

32 Plate, K. H. & Risau, W. Angiogenesis in malignant gliomas. Glia 15, 339-347 (1995). 667 
33 Zhou, Y.-H., Tan, F., Hess, K. R. & Yung, W. K. A. The expression of PAX6, PTEN, vascular 668 

endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to 669 
tumor grade and survival. Clinical cancer research : an official journal of the American 670 
Association for Cancer Research 9, 3369-3375 (2003). 671 

34 Chaudhry, I. H., O'Donovan, D. G., Brenchley, P. E., Reid, H. & Roberts, I. S. Vascular 672 
endothelial growth factor expression correlates with tumour grade and vascularity in 673 
gliomas. Histopathology 39, 409-415 (2001). 674 

35 Lai, A. et al. Phase II study of bevacizumab plus temozolomide during and after radiation 675 
therapy for patients with newly diagnosed glioblastoma multiforme. Journal of clinical 676 
oncology : official journal of the American Society of Clinical Oncology 29, 142-148 (2011). 677 

36 Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. 678 
The New England journal of medicine 370, 699-708 (2014). 679 

37 Hamerlik, P. et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like 680 
cell viability and tumor growth. J Exp Med 209, 507-520, doi:10.1084/jem.20111424 (2012). 681 

38 Yu, Y. et al. Knockdown of vascular endothelial cell growth factor expression sensitizes U251 682 
glioma cells to liposomal paclitaxel and radiation treatment in vitro. Exp Ther Med 3, 181-683 
186, doi:10.3892/etm.2011.379 (2012). 684 

Research. 
on November 5, 2019. © 2019 American Association for Cancermct.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on October 31, 2019; DOI: 10.1158/1535-7163.MCT-18-1320 

http://mct.aacrjournals.org/


27 
 

39 Fael Al-Mayhani, T. M. et al. An efficient method for derivation and propagation of 685 
glioblastoma cell lines that conserves the molecular profile of their original tumours. Journal 686 
of neuroscience methods 176, 192-199 (2009). 687 

40 Subiel, A., Ashmore, R. & Schettino, G. Standards and Methodologies for Characterizing 688 
Radiobiological Impact of High-Z Nanoparticles. Theranostics 6, 1651-1671, 689 
doi:10.7150/thno.15019 (2016). 690 

41 Hirai, H. et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard 691 
chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9, 692 
1956-1967, doi:10.1158/1535-7163.MCT-09-1012 (2010). 693 

42 Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the 694 
ataxia-telangiectasia mutated kinase ATM. Cancer Res 64, 9152-9159, doi:10.1158/0008-695 
5472.CAN-04-2727 (2004). 696 

43 Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for 697 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550, 698 
doi:10.1073/pnas.0506580102 (2005). 699 

44 Banath, J. P., Macphail, S. H. & Olive, P. L. Radiation sensitivity, H2AX phosphorylation, and 700 
kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res 64, 701 
7144-7149, doi:10.1158/0008-5472.CAN-04-1433 (2004). 702 

45 Weterings, E. & Chen, D. J. The endless tale of non-homologous end-joining. Cell research 18, 703 
114-124 (2008). 704 

46 Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for 705 
avoiding genomic instability. Nat Rev Mol Cell Biol 12, 385-392, doi:10.1038/nrm3115 (2011). 706 

47 Mannino, M., Gomez-Roman, N., Hochegger, H. & Chalmers, A. J. Differential sensitivity of 707 
Glioma stem cells to Aurora kinase A inhibitors: implications for stem cell mitosis and 708 
centrosome dynamics. Stem cell research 13, 135-143 (2014). 709 

48 Neal, J. A. et al. Inhibition of homologous recombination by DNA-dependent protein kinase 710 
requires kinase activity, is titratable, and is modulated by autophosphorylation. Molecular 711 
and cellular biology 31, 1719-1733 (2011). 712 

49 Neal, J. A. et al. Unraveling the complexities of DNA-dependent protein kinase 713 
autophosphorylation. Molecular and cellular biology 34, 2162-2175 (2014). 714 

50 Kakarougkas, A. & Jeggo, P. A. DNA DSB repair pathway choice: an orchestrated handover 715 
mechanism. Br J Radiol 87, 20130685, doi:10.1259/bjr.20130685 (2014). 716 

51 Toulany, M. et al. Targeting of AKT1 enhances radiation toxicity of human tumor cells by 717 
inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular cancer 718 
therapeutics 7, 1772-1781 (2008). 719 

52 Toulany, M. et al. Akt promotes post-irradiation survival of human tumor cells through 720 
initiation, progression, and termination of DNA-PKcs-dependent DNA double-strand break 721 
repair. Molecular cancer research : MCR 10, 945-957 (2012). 722 

53 Vartak, S. V. & Raghavan, S. C. Inhibition of nonhomologous end joining to increase the 723 
specificity of CRISPR/Cas9 genome editing. FEBS J 282, 4289-4294, doi:10.1111/febs.13416 724 
(2015). 725 

54 Lombardi, G. et al. Updated results of REGOMA: A randomized, multicenter, controlled 726 
open-label phase II clinical trial evaluating regorafenib in relapsed glioblastoma (GBM) 727 
patients (PTS). Journal of Clinical Oncology 36, 2047-2047, 728 
doi:10.1200/JCO.2018.36.15_Supplementary.2047 (2018). 729 

55 Friedmann, B. J. et al. Interaction of the epidermal growth factor receptor and the DNA-730 
dependent protein kinase pathway following gefitinib treatment. Molecular cancer 731 
therapeutics 5, 209-218 (2006). 732 

56 Dittmann, K., Mayer, C., Kehlbach, R. & Rodemann, H. P. Radiation-induced caveolin-1 733 
associated EGFR internalization is linked with nuclear EGFR transport and activation of DNA-734 
PK. Molecular cancer 7, 69 (2008). 735 

Research. 
on November 5, 2019. © 2019 American Association for Cancermct.aacrjournals.org Downloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on October 31, 2019; DOI: 10.1158/1535-7163.MCT-18-1320 

http://mct.aacrjournals.org/


28 
 

57 Cheng, Y. et al. MK-2206, a novel allosteric inhibitor of Akt, synergizes with gefitinib against 736 
malignant glioma via modulating both autophagy and apoptosis. Mol Cancer Ther 11, 154-737 
164, doi:10.1158/1535-7163.MCT-11-0606 (2012). 738 

58 Narayan, R. S. et al. The allosteric AKT inhibitor MK2206 shows a synergistic interaction with 739 
chemotherapy and radiotherapy in glioblastoma spheroid cultures. BMC Cancer 17, 204, 740 
doi:10.1186/s12885-017-3193-9 (2017). 741 

59 Dittmann, K. et al. Nuclear EGFR shuttling induced by ionizing radiation is regulated by 742 
phosphorylation at residue Thr654. FEBS letters 584, 3878-3884 (2010). 743 

 744 

Figure legends 745 

Figure 1.  Radiosensitisation of GSC is determined by growth conditions.  A-B, 746 

Clonogenic efficiency (A) and survival (B) of G7, E2 and R10 GSC grown in 2D and 747 

3D conditions with or without VEGF (3 ng/ml) and irradiated with single doses of X-748 

rays (0-6 Gy; n=3).  VEGF deprivation significantly increased radiosensitivity of G7, 749 

E2 and R10 GSC under 3D conditions (two way ANOVA; p =0.0009, p =0.0056, and 750 

p <0.0001, respectively).  No significant effect of VEGF was observed in 2D 751 

conditions. C, Western blot analysis of G7 GSC grown in 2D or 3D conditions and 752 

treated with IR (5 Gy) and/or erlotinib (1 M) at the indicated time points. Actin 753 

served as loading control. D, Clonogenic survival curves as in (B).  Cells were 754 

treated with erlotinib (1 M) for 2 h and then irradiated at different radiation doses (0-755 

6 Gy).  All cell lines grown in 2D conditions were significantly radiosensitised by 756 

erlotinib (2-way ANOVA analysis: G7 p < 0.0001, E2 p < 0.001 , R10 p < 0.01). No 757 

radiosensitisation was conferred upon 3D GSC by erlotinib.  758 

Figure 2.  Akt regulates EGFR and VEGF radiosensitivity in 2D and 3D GSC, 759 

respectively. A, G7 and E2 cells grown in 2D or 3D conditions were growth factor-760 

starved for 48 hours followed by addition of EGF (10 ng/ml) or VEGF (3 ng/ml).  Cell 761 

extracts were prepared at the indicated time points and analysed for total and 762 

phospho-EGFR (Y1173) and total and phospho-Akt (S473). S = serum starved; GF = 763 
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+EGF and +VEGF for 6 hours. Actin served as loading control. B, Protein extracts of 764 

G7 (upper blots) and E2 GSCs (lower blots) grown in 2D and 3D conditions in the 765 

presence of VEGF and treated for 2 hrs with erlotinib  at a range of concentrations 766 

(0.5 to 5 M) followed by radiation treatment (5 Gy) or mock-irradiation.  Lysates 767 

were prepared 1 hour after irradiation and  analysed for total and phosphorylated 768 

EGFR and Akt. C, E2 GSCs grown in 2D and 3D conditions in the presence of VEGF 769 

were treated with vehicle (DMSO) or erlotinib (1 M) for 2 hrs and ionising radiation 770 

(5 Gy) and protein extracts obtained at different time points after irradiation and 771 

analysed as in A. D, G7 and E2 GSC grown in 2D and 3D conditions in the presence 772 

of VEGF were treated with MK-2206 (1 M) for 2 hours mock-irradiated or treated 773 

with ionising radiation (5 Gy). Protein extracts were prepared at different time points.  774 

Samples were analysed for total and activated Akt (pAkt at S473) and H2AX by 775 

Western blot.  Tubulin served as loading control.   776 

Figure 3. Radiosensitisation of GSC by Akt inhibition. A, Clonogenic survival of G7 777 

and E2 GSC grown in 2D conditions and irradiated with single doses of X-rays (0-6 778 

Gy; n=3) 1 h after treatment with DMSO, MK-2206 (1 M) and/or erlotinib (1M).  779 

MK-2206 treatment significantly increased radiosensitivity of G7 and E2 GSC in 2D 780 

(two-way ANOVA; G7 2D vs G7 2D + MK-2206 or G7 2D + erlotinib + MK2206 781 

p<0.0001; E2 2D vs E2 + MK-2206 or E2 2D + MK-2206 + erlotinib p <0.0001, E2 782 

2D vs E2 + erlotinib p = 0.0006). B, Clonogenic survival of G7 and E2 GSC grown in 783 

3D in conditions as in (A). MK-2206 treatment significantly increased radiosensitivity 784 

of G7 and E2 GSC in 3D conditions (two-way ANOVA; G7 3D vs G7 3D + MK-2206 785 

(+) VEGF or G7 3D + MK2206 (-) VEGF p<0.0001; E2 3D vs all other conditions p 786 

<0.0001.) C, MK-2206 dose response (0.1 M to 10 M) at 0 and 3 Gy in G7 3D 787 

GSC.  Each curve is normalised to respective vehicle plus radiation dose.  D, Cell 788 
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lysates from E2 cells transfected with siRNA against Akt1, Akt3 or Scramble were 789 

analysed for expression of total Akt1, Akt3 after 48 h incubation. Tubulin served as 790 

loading control. E, Clonogenic assays were performed from E2 cells previously 791 

transfected with Scramble or Akt1-3 siRNAs.  Akt siRNA cells exhibited increased 792 

radiosensitivity compared to Scramble siRNA (two-way ANOVA; siRNA Scramble v 793 

all three siRNA Akts p < 0.0001).  794 

Figure 4. VEGF deprivation and Akt inhibition reduce DNA double strand break 795 

repair following irradiation,of 3D GSC.  A, Representative immunofluorescent images 796 

for H2AX foci of G7 GSC grown in 3D conditions before (0 h) or after (24 h) ionising 797 

radiation (5 Gy) in the presence [(+) VEGF] or absence of VEGF [(-) VEGF].  B-F, 798 

Quantification of H2AX foci per nucleus following radiation treatment (5 Gy, B, D 799 

and E; or 0 Gy, C and F) in the presence or absence of VEGF (B and C); or DMSO 800 

or MK-2206 (D-F). Median ± SD from 3 independent experiments. P values 801 

calculated by t test (* p <0.01; ** p <0.001). G, Representative images of 3D cells 802 

before and 24 h after irradiation, immunostained for the mitotic marker phospho-S10 803 

histone H3 (green) to visualise mitotic cells.  DAPI was used to stain for DNA (blue).  804 

Red arrows indicate cells undergoing mitotic catastrophe. H, Percentages of cells 805 

displaying micronuclei, mitosis or mitotic catastrophe.  An average of 350 806 

cells/condition/experiment were identified randomly and scored. Mean ± SEM of 3 807 

independent experiments. P values calculated by t test. 808 

Figure 5.  Functional DNA-PKcs activity correlates with VEGF treatment and Akt 809 

activity in the 3D model. A and C, Representative immunofluorescent images of E2 810 

GSC grown in 3D conditions and stained for pDNA-PKcs foci (red) at different time 811 

points following ionising radiation (5 Gy) in the presence or absence of VEGF (A); or 812 
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DMSO or MK-2206 (C).  Cells in C were also immunostained for H2AX foci (green). 813 

B, Quantification of pDNA-PKcs foci per nucleus following radiation treatment as in A.  814 

Graphs represent medians from 3 independent experiments.  P values calculated by 815 

t test (* p < 0.01; ** p < 0.001; *** P < 0.0001). D, Clonogenic assays were performed 816 

with E2 cells previously transfected with either scrambled or DNA-PKcs siRNA for 48 817 

hrs. Transfected cells were treated with MK-2206 (1 M) 16 h after clonogenic 818 

seeding, incubated for 2 hrs and irradiated at different doses (0-5 Gy). Cell lysates 819 

from E2 cells transfected with siRNA against DNA-PKcs or Scramble were analysed 820 

for expression of total DNA-PKcs after 48 hrs incubation. Tubulin served as loading 821 

control. E, Representative immunofluorescent images of G7 GSC grown in 3D 822 

conditions for Rad51 foci at 3 hrs following ionising radiation (5 Gy) in the presence 823 

or absence of VEGF. F, Quantification of Rad51 foci per nucleus following radiation 824 

treatment.  Graph represents mean of medians from 3 independent experiments.  p 825 

values calculated by t test. 826 

Figure 6. Akt inhibition extends survival of irradiated mice bearing orthotopic glioma 827 

xenografts. A, Representative immunofluorescent images of paraffin-embedded 828 

brains bearing E2 orthotopic tumour cells in mice for pDNA-PKcs S2056 (green).  829 

EGFR (red) was used as tumour marker.  Mice implanted with E2 cells for 5 months 830 

were treated with radiation (10 Gy) and sacrificed at the indicated time points.  B, 831 

Diagram of U87MGLuc2 orthotopic efficacy study, depicting treatment schedules (15 832 

mice/cohort).  C, Graph depicting mouse body weight monitored from cell 833 

implantation until end of treatment.  Mice bearing orthotopic xenografts (U87-MGLuc, 834 

13 days after implantation) were randomized into 4 cohorts and treated with the 835 

protocols shown in B. D, Kaplan-Meier survival curves were generated and analysed 836 

for log-rank. E, Box plot graph of median survival of each treatment group, * p < 0.05, 837 
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** p < 0.001, *** p < 0.0001, by one-way ANOVA original FDR method, multiple 838 

comparison test. 839 

Figure 7. Erlotinib radioprotects VEGF-deprived 3D GSC by blocking EGFR/DNA-840 

PKcs nuclear co-localisation.  A, Clonogenic survival of E2 and G7 GSC grown in 3D 841 

conditions and irradiated with single doses of X-rays (0-6 Gy; n=3) 2 hours after 842 

treatment in the presence (+)VEGF or absence (-)VEGF of VEGF and erlotinib (1M) 843 

or vehicle (DMSO).  Mean±SD of 3 independent experiments is shown; curves are 844 

fitted to a linear quadratic model.  Erlotinib significantly radioprotected VEGF-845 

deprived cells (two-way ANOVA; G7 3D (-) VEGF vehicle vs G7 3D (-) VEGF plus 846 

erlotinib p<0.0001, E2, p=0.01).  No significant effect of erlotinib was observed in the 847 

presence of VEGF. B and C, Quantification of pDNA-PKcs (B) and Rad51 foci (C) 848 

per nucleus following radiation treatment.  Graph represents mean of medians from 849 

3 independent experiments.  p values calculated by t test (* p <0.01; ** p <0.001).D, 850 

Representative immunofluorescent images for EGFR (EGFR) and DNA-PKcs (DNA-851 

PKcs) of G7 3D cells following ionising radiation treatment and fixed with 852 

paraformaldehyde at the indicated time points (0, 0.5 and 24 hrs).  Cells were treated 853 

with erlotinib in the absence or presence of VEGF. E, Representative 854 

immunofluorescent images for the co-localisation of DNA-PKcs and EGFR using Zen 855 

Black software by selecting nuclei as regions of interest (red circles) and using the 856 

Cut Mask tool following selection and generation of a new image which sets every 857 

pixel outside the colocalised pixels to zero and exposing only the pixels where tDNA-858 

PKcs / tEGFR signals are expressed in the same pixel. F, Quantification of DNA-859 

PKcs and EGFR colocalisation per nucleus in G7 3D GSC.  Approximately 40 nuclei 860 

were quantified for each condition.  Box and whisker plots represent median number 861 

of signal per nucleus, p values calculated by Mann Whitney U test (*p<0.05; 862 
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**p<0.005). G, Graphic representation of glioblastoma responses to EGF and VEGF 863 

signalling in 2D and 3D conditions, respectively, with Akt acting as the main switch 864 

between NHEJ and HR resulting in radiation sensitization (aberrant NHEJ) or 865 

protection (HR activation). 866 
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