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Abstract: Heather honey was tested for its effect on the formation of biofilms by Staphylococcus 
aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella 
Enteriditis and Acinetobacter baumanii in comparison with Manuka honey. At 0.25 mg/mL, Heather 
honey inhibited biofilm formation in S. aureus, A. baumanii, E. coli, S. Enteriditis and P. aeruginosa, 
but promoted the growth of E. faecalis and K. pneumoniae biofilms. Manuka honey inhibited biofilm 
formation in K. pneumoniae, E. faecalis, and S. Enteriditis, A. baumanii, E. coli and P. aeruginosa, but 
promoted S. aureus biofilm formation. Molecular docking with Autodock Vina was performed to 
calculate the predictive binding affinities and ligand efficiencies of Manuka and Heather honey 
constituents for PaDsbA1, the main enzyme controlling the correct folding of virulence proteins in 
Pseudomonas aeruginosa. A number of constituents, including benzoic acid and methylglyoxal, 
present in Heather and/or Manuka honey, revealed high ligand efficiencies for the target enzyme. 
This helps support, to some extent, the decrease in P. aeruginosa biofilm formation observed for such 
honeys. 
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1. Introduction 

Antimicrobial drug resistance, particularly in Gram-negative bacteria, is an ever-increasing 
challenge for healthcare systems worldwide [1]. Alternative treatment options to conventional 
antibiotics are urgently needed to tackle this global threat [2,3]. This includes the discovery of 
molecules that could disrupt the ability of pathogens to produce virulence factors [4,5]. In Gram-
negative bacteria, various virulence factors are produced under the control of a master virulence 
regulatory oxidoreductase enzyme called DsbA. The latter catalyses the formation of disulfide bonds 
in proteins and, in doing so, is instrumental to the process of correct protein folding of bacterial 
virulence proteins, including type-IV fimbriae, flagellae and adhesion factors that play a central role 
in biofilm formation [6–11]. The disulfide bond forming pathways in Gram-positive bacteria are less 
well established [12]. 
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Biofilms are formed when microbial communities, held together by a polymeric matrix, attach 
to surfaces. The formation of microbial biofilms poses significant risks in healthcare settings when 
pathogens attach to wounds, surfaces, and medical devices [13,14]. The opportunistic nosocomial 
pathogen, Pseudomonas aeruginosa, is one of the most common bacteria isolated from chronic wounds 
and has become difficult to eradicate due to its ability to form biofilms [15–18]. Its DsbA enzyme is 
an attractive target in the search for new antivirulence agents [19,20]. 

Products from the beehive have a long history of use as traditional remedies [21], and honey has 
emerged as a promising topical antibacterial agent [22–26]. Honey is known to contain a diversity of 
chemicals which vary depending on nectar sources in different geographical locations, harvesting 
seasons, types of bees foraging and storage of the final product [27–29]. The antimicrobial activity of 
most honeys has been attributed to a high sugar content, low pH, and the ability to produce hydrogen 
peroxide [22,30]. Other contributors to this activity include plant- and bee-derived chemicals [30]. 
Both Manuka honey (derived from the nectar of Leptospermum spp.) and Heather honey (from Erica 
spp.) have a similar pH, low hydrogen peroxide activity and a high sugar content [31] and contain 
various phytochemicals such as phenolic acids and flavonoids [32–35]. Manuka honey is very rich in 
methylglyoxal (MGO), a plant-derived compound formed during storage and used for ‘Unique 
Manuka Factor’ (UMF) grading [28–30,35,36]. Heather honey, on the other hand, is rich in abscisic 
acid [31,37]. 

Both honeys have demonstrated antibacterial activity [36,38,39] and an inhibitory effect on 
polymicrobial biofilms [40]. Manuka honey can disrupt biofilm formation in several pathogens [41–
49]. To the best of our knowledge, the effect of Heather honey on monobacterial biofilms has never 
been reported, and neither has the potential affinity of Manuka nor Heather honey constituents for 
DsbA been predicted. Here, we compared the effect of Heather honey with that of Manuka honey on 
the formation of biofilms in seven bacteria. We also employed a molecular docking approach to 
predict the binding affinity of constituents from both honeys towards the P. aeruginosa DsbA enzyme 
(PaDsbA1). 

2. Results 

2.1. Determination of the Time Required for Optimal Biofilm Formation 

Optimal biofilm formation (OD550 nm 0.8–1.7) by all bacterial species was obtained after a 24 h 
incubation period. This time point was selected to further study biofilm formation in subsequent 
experiments. High amounts of biofilm were also observed after 48 h (OD550 nm 0.7–1.6), less so after 
72 and 96 h (Supplementary Materials Figure S1). 

2.2. Antibiofilm Activity 

At 0.25 mg/mL, Manuka honey showed the strongest inhibition of biofilm formation in K. 
pneumoniae, E. faecalis, and S. Enteriditis (92.8, 78.0, and 65.7% inhibition, respectively). It also inhibited 
biofilm formation in A. baumanii, E. coli and P. aeruginosa. Unlike Manuka honey, which increased S. 
aureus biofilm formation, Heather honey inhibited biofilm formation in S. aureus (69.6%). It decreased 
biofilm formation in A. baumanii, E. coli, S. Enteriditis and P. aeruginosa, but promoted the growth of 
E. faecalis biofilms (Figure 1). Oleanolic acid decreased biofilm formation in all bacteria (≥50% in all 
cases except for E. coli) (Figure 2). 
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Figure 1. Inhibition of bacterial biofilm formation by Heather and Manuka honeys (0.25 mg/mL). 

 
Figure 2. Inhibition of biofilm formation by oleanolic acid (OA) tested at a concentration of 0.0625 
mg/mL. 

2.3. Molecular Docking of Honey Constituents against P. aeruginosa DsbA1 

A guided docking approach was used to predict the binding affinities and ligand efficiency 
indices of 56 constituents of Manuka and Heather honey towards PaDsbA1 (Supplementary 
Materials Table S1). The best ligand efficiencies were obtained for benzoic acid (0.60), 5-methyl-3-
furancarboxylic acid (0.57), methylglyoxal (0.56) and 5-hydroxymethyl-2-furaldehyde (0.56) (Table 
1). The molecular interactions of each of these ligands with PaDsbA1 are detailed in Table 1 and in 
Figures 3–6. Benzoic acid strongly interacted with PaDsbA1 via two hydrogen bonds (contact 
distances < 2.5 Å) to Tyr148 and Pro20 and hydrophobic bonds with Leu144, Leu63, Val30, and Val61. 
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Table 1. Molecular interactions of Manuka (M)/Heather (H) honey constituents showing the best 
ligand efficiencies for PaDsbA1 1 

Ligand (Origin) 
Docking Score 

(kcal/mol) 
Ligand 

Efficiency 
Interacting 
Residues 

Distance 
(Å) 

Category Type 

Benzoic acid (M, H) −5.4 0.60 

Tyr148 2.408 H-Bond Conventional 
Pro20 1.778 H-Bond  Conventional 

Leu144 3.456 Hydrophobic Pi-Sigma 
Val30 5.365 Hydrophobic Pi-Alkyl 
Val61 4.581 Hydrophobic Pi-Alkyl 
Leu63 4.592 Hydrophobic Pi-Alkyl 

5-methyl-3-furan-
carboxylic acid (M) −5.1 0.57 

Tyr148 2.414 H-Bond Conventional 
Pro20 1.953 H-Bond Conventional 
Val61 4.650 Hydrophobic Alkyl 
Leu63 4.838 Hydrophobic Alkyl 
Leu144 4.654 Hydrophobic Alkyl 
Val61 4.713 Hydrophobic Alkyl 
Leu63 4.688 Hydrophobic Alkyl 

Methyl-glyoxal (M) −2.8 0.56 

Ser22 2.996 H-Bond Conventional 

Ser22 3.512 H-Bond 
Carbon H-

Bond 

Ser22 3.509 H-Bond 
Carbon H-

Bond 

5-hydroxy-methyl-2-
furaldehyde (M) 

−5.0 0.56 

Tyr148 2.343 H-Bond Conventional 
Pro20 1.922 H-Bond Conventional 

Ser22 3.508 H-Bond 
Carbon H-

Bond 

Ser22 3.487 H-Bond 
Carbon H-

Bond 
Val30 4.982 Hydrophobic Alkyl 
Val61 4.529 Hydrophobic Alkyl 
Leu63 4.728 Hydrophobic Alkyl 
Leu144 4.541 Hydrophobic Alkyl 

1 The control had a docking score of −6.1 kcal/mol and a ligand efficiency of 0.41. 

 
 

(a) (b) 

Figure 3. (a) Docked pose of benzoic acid in the PaDsbA1 binding site showing molecular 
interactions—hydrogen and hydrophobic bonds shown as green and pink/purple dashed lines, 
respectively; (b) 2D plot of interactions between benzoic acid and key residues of PaDsbA1 generated 
by BIOVIA Discovery Studio visualizer. 
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(a) (b) 

Figure 4. (a) Docked pose of 5-methyl-3-furancarboxylic acid in the PaDsbA1 binding site showing 
molecular interactions—hydrogen and hydrophobic bonds shown as green and pink/purple dashed 
lines, respectively; (b) 2D plot of interactions between 5-methyl-3-furancarboxylic acid and key 
residues of PaDsbA1 generated by BIOVIA Discovery Studio visualizer. 

  
(a) (b) 

Figure 5. (a) Docked pose of methylglyoxal in the PaDsbA1 binding site showing molecular 
interactions—hydrogen and hydrophobic bonds shown as green and pink/purple dashed lines, 
respectively; (b) 2D plot of interactions between methylglyoxal and key residues of PaDsbA1 
generated by BIOVIA Discovery Studio visualizer. 

  

(a) (b) 

Figure 6. (a) Docked pose of 5-hydroxymethyl-2-furaldehyde in the PaDsbA1 binding site showing 
molecular interactions—hydrogen and hydrophobic bonds shown as green and pink/purple dashed 
lines, respectively; (b) 2D plot of interactions between 5-hydroxymethyl-2-furaldehyde and key 
residues of PaDsbA1 generated by BIOVIA Discovery Studio visualizer. 
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3. Discussion 

Heather honey has been the subject of a limited number of studies investigating its effect on 
bacterial biofilms. Only one study to date has reported its inhibitory activity on mixed Candida–
Pseudomonas biofilms [40]. This prompted us to test its activity against a range of Gram-positive and 
Gram-negative single-species biofilms. This was done using a crystal violet assay, a commonly-used 
indirect method of biofilm quantification [50], and in comparison with Manuka honey, already 
known for its ability to decrease bacterial biofilm formation [41–49]. The decrease in S. aureus, A. 
baumanii, E. coli, S. Enteriditis and P. aeruginosa biofilm formation observed for Heather honey is 
reported here for the first time. Manuka honey decreased biofilm formation in P. aeruginosa, E. faecalis, 
A. baumanii, and E. coli, in agreement with previous studies [45–49]. Its effect on K. pneumoniae and S. 
Enteriditis biofilms has not been previously reported. Heather and Manuka honey, both tested at sub-
inhibitory concentrations, increased biofilm formation in the Gram-positive bacteria E. faecalis and S. 
aureus, respectively. Such an effect has been observed in other investigations [29,51]. It has been 
suggested that the decrease in biofilm formation reported for Manuka honey could be linked to the 
presence of phenolic compounds, bee defensin-1 and/or MGO. The latter is able to inhibit biofilm 
formation by altering the structures of bacterial fimbriae and flagellae [29,36]. Oleanolic acid is known 
to decrease biofilm formation [52–55], but this is the first report of such an effect against E. faecalis, S. 
aureus, E. coli, K. pneumoniae, A. baumanii and S. Enteriditis biofilms. 

The DsbA enzymes of Gram-negative bacteria have emerged as attractive targets for the 
discovery and development of new antivirulence agents including from natural sources [56,57]. There 
are two main structural classes of DsbA enzymes, DsbA-I and DsbA-II. Both classes contain proteins 
that share highly conserved residues in their catalytic active sites, and also several identical 
hydrophobic amino acids adjacent to this site. DsbA-I proteins have a unique groove on their non-
catalytic face, opposite to the active site surface. PaDsbA1 was identified as the main DsbA-I type 
enzyme in P. aeruginosa [20]. Our molecular docking study was conducted to predict the binding 
affinity of honey constituents for the groove on the non-catalytic face the PaDsbA1 [11,20]. 

Our predictive in silico analysis revealed that benzoic acid, a constituent of both Heather [58] 
and Manuka honey [59], could bind with a high efficiency into the pocket of PaDsbA1 where the 
control ligand fits [20]. This binding occurs via H-bond interactions between the hydroxyl hydrogen 
of benzoic acid and the carbonyl oxygen of Pro20, and between the hydroxyl oxygen of benzoic acid 
and the phenolic hydrogen of Tyr148. Interestingly, previous studies reported that benzoic acid could 
attenuate the virulence of P. aeruginosa in plants and nematodes through inhibiting the production of 
virulence factors such as pyocyanin, and reducing total protease and elastase activity [60]. The latter 
exoenzyme plays a critical role in the virulence of P. aeruginosa and requires PaDsbA1 for its 
biogenesis [6,10,20]. In the case of Manuka honey, our predictions also revealed that MGO had a high 
binding efficiency for PaDsbA1. This could support the decrease in P. aeruginosa biofilm formation 
for this type of honey via alteration of fimbriae and flagellae. Further work is required to confirm this 
hypothesis and test MGO and other honey constituents showing high predictive binding efficiencies 
in our in silico screening for their ability to prevent biofilms in wild type bacteria and ΔDsbA mutants. 

4. Materials and Methods 

4.1. Bacterial Strains, Culture Conditions, and Inoculum Preparation 

Staphylococcus aureus (ATCC 43300), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli 
(ATCC 25922), Klebsiella pneumoniae (ATCC 700603), Enterococcus faecalis (ATCC 51299) and 
Acinetobacter baumanii (ATCC 19606) were obtained from the American Type Culture Collection. 
Salmonella enteriditis (NCTC 4444) was obtained from the National Collection of Type Cultures. In 
preparation for antibiofilm activity screening, each strain was grown in tryptone soya broth (TSB; 
Oxoid, UK) at 37 °C for 4 h (late exponential phase) under continuous shaking (250 rpm). 
  



Antibiotics 2020, 9, 911 7 of 12 

4.2. Honey Sources and Preparation of Samples 

Heather honey was kindly provided by the Scottish Bee Company. Manuka honey (UMF 10+) 
was obtained from Wilkin & Sons Ltd., Tiptree, UK. An exactly weighed amount (around 1 g) of each 
sample was dissolved in water and then filter-sterilised (0.22 μm disks, Sartorius, UK) to afford stock 
solutions of heather honey and Manuka honey (100 mg/mL). 

4.3. Antibiofilm Assay 
This was performed according to a previous method with some modifications [61]. Briefly, 100 

μL of each bacterial inoculum (2.5 × 105 CFU/mL) was added to the wells of a 24-flat well polystyrene 
plate, containing TSB (1.8 mL). Heather and Manuka honeys were tested at 0.25 mg/mL. Wells 
containing TSB only were used as the sterile controls. Oleanolic acid (Sigma-Aldrich, Gillingham, 
UK), a plant-derived triterpenoid which inhibits the formation of biofilms in Gram-positive and 
Gram-negative bacteria, was used as a positive control [52–55]. Following inoculation, the plates were 
incubated without shaking at 37 °C for 24, 48, 72, and 96 h to allow the formation of a biofilm at the 
bottom of the wells as well as to determine the time point at which the maximum formation of biofilm 
occurred. After this period, the supernatants were removed, and the biofilms were washed (×3) with 
sterile distilled water. The biofilms were then stained with 1% crystal violet for 5 min, and further 
washed (×3) with tap water. A de-staining step was performed using a 7:3 (v/v) mixture of ethanol 
and acetone and the OD of the suspension was measured at 550 nm. The percentage of biofilm 
inhibition was calculated as: (ODcontrol − ODsample) × 100/ODcontrol. 

4.4. Molecular Docking Experiment 

4.4.1. Protein Preparation 

BIOVIA Discovery Studio Visualizer v.4.5 (Accelrys) was used to remove all water molecules 
and hetero-atoms from the three-dimensional crystal structure of the PaDsbA1 protein (PDB 
ID:5DCH) which was retrieved, complexed with its ligand inhibitor (MIPS-0000851), from the RCSB 
Protein Data Bank (http://www.pdb.org). AutoDock Tools v. 1.5.6rc3 was subsequently used to 
prepare a PDBQT file of the target protein containing added polar hydrogen atoms [62]. 

4.4.2. Ligand Preparation 

Flavonoids, phenolic acids, and other miscellaneous compounds previously reported in Manuka 
and/or Heather honeys [35,37,58,59,63–74] were selected as ligands for the docking experiment. All 
chemical structures were retrieved from SciFinder (https://scifinder.cas.org/scifinder/login). Each 
structure was exported to ChemOffice v.16.0 and geometry-optimised using MM2 energy 
minimization [75]. The structure of the ligand inhibitor (MIPS-0000851) was obtained from the RCSB 
Protein Data Bank (http://www.pdb.org). Docking files for all ligands were prepared using AutoDock 
Tools v. 1.5.6rc3 [62]. Rigid docking was performed to minimise standard errors likely due to ligands 
with many active rotatable bonds [76]. Gasteiger charges were assigned [77] and the files were saved 
as PDBQT formats in preparation for docking. 

4.4.3. Grid Box Preparation and Docking Studies 

The size of the searching space around the PaDsbA1 binding site residues was defined with grid 
box parameters prepared using AutoDock Tools v. 1.5.6rc3, and the molecular docking was done 
with AutoDock Vina v. 1.1.2 [76]. The centre of the grid box was set to x = 21.7657, y = 35.6275, z = 
−2.0723. Its size was 22 × 22 × 22 points in the x, y, z dimensions. The spacing was set at 1 Å. MIPS-
0000851, a known PaDsbA1 inhibitor, was retrieved from its co-crystallised complex with the target 
protein and re-docked as a control against the enzyme to validate the docking conditions. Different 
orientations of the ligands were searched and ranked based on their energy scores. Upon visual 
inspection of all binding poses obtained, only poses with the lowest root mean square deviation 
(RMSD) value (threshold < 1.00 Å) were considered to provide a high accuracy of docking. The 
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default values set in Autodock Vina were used as the parameters for the rigid-ligand docking 
(exhaustiveness = 8). The docking scores were calculated as the predicted free energies of binding 
(ΔG in kcal/mol). Ligand efficiencies were calculated as the ratio of ΔG to the number of heavy atoms 
(NHA) for each ligand (LE = –(ΔG)/NHA) [78] (Tables 1 and S1). 

4.4.4. Protein-Ligand Interactions and Predictive Inhibition 

BIOVIA Discovery Studio Visualizer v.4.5 (Accelrys) was used to identify the H-bonds and non-
bonding interactions between the ligand docking poses and the binding site of PaDsbA1 (Table 1 and 
Supplementary Materials Table S1). 

5. Conclusions 

We have shown that benzoic acid (in Manuka and Heather honey) and other small molecules 
including MGO (in Manuka honey) have the potential to target virulence in P. aeruginosa. Further 
investigations should aim to analyse the effect of Heather honey on P. aeruginosa biofilm morphology 
using confocal laser scanning microscopy and identify the nature of its active constituent(s). 
Additional molecular docking could be performed to establish whether binding of honey constituents 
occurs in other DsbA enzymes that share a similarity with PaDsbA1 (e.g., Acinetobacter baumannii 
AbDsbA). As Manuka and Heather honeys display bactericidal activity against P. aeruginosa [79], 
they represent an interesting alternative/complementary option to treat persistent wounds infected 
with this pathogen. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-6382/9/12/911/s1, Figure 
S1: Time course assay for the determination of the optimal bacterial biofilm formation time, Table S1: Docking 
scores and ligand efficiencies of Manuka and/or Heather honey constituents towards PaDsbA1. 
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