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Abstract—We present a hardware-friendly deep learning 

architecture with one-dimensional convolutional neural networks 

(1D CNN) for fast analyzing fluorescence lifetime imaging (FLIM) 

data. A 1D CNN shows unparalleled advantages; they are more 

straightforward, quicker to train, and faster than high 

dimensional CNNs. 1D CNNs can be easily applied to 

multi-exponential fluorescence decay models. Compared with 

traditional least-square methods, superior performances of 1D 

CNNs on fluorescence lifetime image reconstruction have been 

validated using simulated data. We also employ the proposed 1D 

CNN to analyze two-photon FLIM images of functionalized gold 

nanoprobes in Hek293 and human prostate cancer cells. The 

results further demonstrate that 1D CNNs are fast and can 

accurately extract lifetime parameters from fluorescence signals. 

Our study shows that 1D CNNs have great potential in various 

real-time FLIM applications. 

 
Index Terms—Fluorescence, Microscopy, Machine learning, 

Image analysis, Fluorescence lifetime imaging 

 

I. INTRODUCTION 

LUORESCENCE lifetime imaging microscopy (FLIM) is a 

powerful tool for broad applications in molecular biology, 

analytical chemistry, and pharmacy; it can provide abundant 

information about cellular environments in living cells [1]. 

FLIM offers a unique quantitative way for monitoring 

intracellular parameters that are unattainable in intensity-based 

measurements, including ion concentrations, pH, and 

temperature [2], [3]. It is also insusceptible to experimental 

conditions such as optical setups and fluorophore 

concentrations. FLIM has been widely applied in drug delivery 

and drug discovery. FLIM of autofluorescence can also be used 

for cancer diagnosis [4]. Also, FLIM offers a straightforward 

way to assess Förster Resonance Energy Transfer (FRET) 

behaviours. FLIM-FRET is a vital technique for investigating 

metabolic sensing, protein-protein interactions, and protein 

conformational changes [5] [6]. Measurements of fluorescence 

lifetimes can be time-domain or frequency-domain based. 

Among them, the time-correlated single-photon counting 

(TCSPC) method has been the gold standard due to its superior 
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performances in the signal-to-noise ratio and temporal 

resolution [7]. In a TCSPC system, fluorophore-tagged samples 

are repetitively excited by an ultrafast laser pulse. A 

single-photon detector and a time-to-digital converter (TDC) 

are used to detect the fluorescence and time-tag the detected 

photons, respectively. Then a decay histogram is built, from 

which the lifetime is extracted [1]. Since FLIM is an indirect 

imaging technique, the data processing is a critical aspect. 

Traditionally to extract the fluorescence lifetimes, the 

measured fluorescence decay in each pixel needs to be fitted 

with single or multi-exponential decay models using nonlinear 

least-square fitting (NLSF) algorithms such as the 

Levenberg-Marquardt algorithm (LMA) and the 

trust-region-reflective algorithm (TRRA), or the maximum 

likelihood estimation (MLE) method. However, such iterative 

methods are computationally intensive and only suitable for 

off-line analysis. Prior knowledge of the lifetime parameters is 

also required for setting proper initial conditions. Furthermore, 

to obtain accurate fitting results with a high signal-to-noise 

ratio (SNR), it takes a long time to obtain a sufficient photon 

count. Some non-iterative fitting-free methods, such as the 

phasor analysis [8], [9] and the centre-of-mass method [10], [11] 

have been proposed to improve the analysis speed.  

Recent advances in deep learning (DL) have profoundly 

impacted on various fields such as computer vision, robotics, 

natural language processing, and speed recognition [12]. DL 

features hierarchical representation learning, possessing a 

much more robust ability to learn complex functions and high 

dimensional data and outshining conventional 

machine-learning techniques. Convolutional neural networks 

(CNNs) have been the most extensively used architectures for 

DL. Compared with fully connected dense neural networks, 

CNNs show distinctive features of sparse interactions, 

parameter sharing, and equivariant representations, making 

them efficient with excellent feature extraction capabilities and 

insensitive to noise and distortion [13]. Various CNNs such as 

AlexNet, GoogLeNet, and Microsoft ResNet have achieved 

remarkable breakthroughs in machine learning [14]-[16]. DL is 

also a game-changer in biomedical fields. A wide range of 

exciting DL-based applications has been reported such as brain 

circuits reconstruction, predictions of drug molecules, 

super-resolution fluorescence microscopy, and analysis of 

three-dimensional fluorescence images [17]-[19]. DL also 

opens a door for fitting-free fast lifetime calculation in FLIM 

applications [20], [21]. Recently, a 3D CNN architecture, 

FLI-Net, has been proposed to rapidly analyze FLIM images 
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with remarkable accuracy [22], [23]. Since CNNs are mainly 

designed for image analysis or speech processing, their 

architectures tend to be 2D, 3D, or even higher dimensions. The 

CNNs for fluorescence analysis also follow this principle, in 

which fluorescence data are treated as a 3D image with two 

spatial dimensions and one temporal dimension. CNNs can 

directly extract lifetime images without resorting to iterative 

fitting procedures. 

Despite the successes of 2D or 3D CNNs for fluorescence 

lifetime analysis, we argue that only temporal decay features 

need to be evaluated for FLIM data analysis without 

considering spatial positions during the analysis. In other words, 

FLIM data should be treated as a 1D time series instead of a 3D 

matrix. It is straightforward because, in both point-scan and 

wide-field fluorescence lifetime measurements, the lifetime 

calculation process fits decay curves in a pixel-by-pixel manner. 

In some cases, spatial binning is required to improve the SNR, 

but the fitting process still works similarly. Further examining 

the 3D CNN architecture such as FLI-NET, we can find that the 

convolutional kernel size is 1×1×N (N is an integer). The first 

two dimensions correspond to the spatial dimensions and the 

last one the temporal dimension [22]. It is shown that even in a 

higher dimensional CNN, the neural network only extracts time 

series features while neglects spatial features. Applying high 

dimensional CNNs not only massively increases the training 

and calculation complexity, but also requires hardware with 

much more computing power and larger memory. 1D CNNs, on 

the other hand, show unparalleled advantages in many aspects. 

1D CNNs have been widely used for real-time 

electrocardiogram monitoring and structural damage detection 

[24], [25]. The benefits of 1D CNNs are two-fold: 1) It is faster, 

as the complex matrix operations from high dimensional 

convolution are replaced by float-point additions and scalar 

multiplications in 1D CNNs. Thus, it is promising for real-time 

FLIM applications. The design and training of the neural 

network become easier as well. 2) It is easier to implement 1D 

CNNs on electronics hardware such as field-programmable 

gate array (FPGA) devices only requiring simple additions and 

multiplications [11], [26]. Simpler operations also guarantee 

simpler architectures and lower hardware resources required. 

Therefore, they are more hardware-friendly and suitable for 

cheap, portable devices with limited CPU computing power, 

memory, and power supplies. Besides, simple 1D CNN 

architectures allow processing multiple parallel series 

simultaneously, providing a fast and feasible way for 

processing FLIM images. They can work as embedded 

processors compatible with existing FLIM systems. 

This paper will demonstrate the potential of 1D CNNs for 

FLIM applications by designing a 1D convolutional residual 

neural network (1D-ConvResNet). 1D-ConvResNet was 

developed to extract the lifetime parameters at a faster speed. 

We show that 1D-ConvResNet has a simpler architecture and 

therefore requires less training time. It can achieve the 

state-of-the-art performances of its 2D or 3D counterparts. The 

performances of our designed neural network have been 

quantitatively evaluated using synthetic fluorescence images. 

The developed neural network was also applied to analyzing 

two-photon FLIM images of functionalized gold nanoprobes in 

Hek293 and human prostate cancer cells. 

 

II. ARCHITECTURE DESIGN 

Fig. 1 shows the topological structure of 1D ConvResNet for 

bi-exponential fluorescence decay analysis. The proposed 

neural network consists of two parts: the main branch for 

extracting the decay features and the sub-branches for 

reconstructing different parameters. For the network design, the 

first two CNN layers have a wider sliding window (larger 

kernel size) and a large stride so that they are expected to 

capture more general features of the decay curves. Following 

the CNN layers are two 1D residual neural networks (ResNet), 

through which the extracted features are learned by using 

residual learning [16]. Three output branches are designated for 

extracting three different lifetime parameters for bi-exponential 

decays (the short lifetime τ1, the long lifetime τ2, and the 

fraction ratio α; see (A1) in Appendix), which are composed of 

three 1D CNN layers with pointwise convolution (kernel size = 

1) and a decreasing neuron size. The purpose of using pointwise 

convolution is to implement feature pooling, thus effectively 

reconstructing the lifetime parameters in the final outputs. Two 

tricks were used to optimize our neural network: the ResNet 

and batch normalization (BN) [16], [27]. A ResNet is a network 

Fig. 1. The architecture of the proposed 1D ConvResNet for 

bi-exponential analysis. The detailed hyperparameters in each layer in 

parenthesis represent the neuron number, the kernel size, and the stride 

size, respectively. The input data is an N×256×1 time series, where N is 

an arbitrary integer. Y[t] shows the mathematic model of the 

bi-exponential decays. The outputs are three N×1 arrays. The 

architecture of the ResNet block is shown in a dashed box. The batch 

normalization (BN) layer and the nonlinear activation function rectified 

linear unit (ReLU) are added after the convolutional layers. 
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connection that adds a shortcut to reinject the past output to a 

later output. It aims to tackle two common problems: 1) the 

vanishing gradients and 2) representational bottlenecks during 

the network training [16]. The BN layer is included after each 

convolutional layer and before the activation function, which 

can adaptively normalize data to reduce the shift of internal 

covariance and accelerate network training [27]. The proposed 

1D-ConvResNet was developed using TensorFlow2.0 [28]. 

The loss function of our designed neural network L is: 

 

,    (1) 

 

where F is jth (j=1,…, M) end-to-end mapping function and M is 

the number of the output branches (M=3 for bi-exponential 

decays). Y is the input signal and is the corresponding 

ground-truth target of the jth output branch. N is the batch size 

number. ϴ is the hyperparameter of the network, e.g., the 

trainable parameters of convolutional layers and BN layers. 

The activation function is rectified linear units (ReLU), and the 

optimizer used the root mean square propagation (RMSprop) 

algorithm with a learning rate of 1e-5 [13]. Other 

hyperparameters such as the kernel size and the stride of 

different convolutional layers were optimized based on the 

exhaustive searching method. The detailed hyperparameters of 

the network configuration are shown in Fig. 1. 

The acquisition of the training data is critical for training a 

robust neural network. Since the mathematical model of the 

fluorescence decay curves and noise characteristics have been 

well developed, the training data can use synthetic decay curves 

with known parameters (see details in Appendix). The synthetic 

measured decay Y[t] is the true decay y[t] convolved with the 

instrument response function (IRF) plus noise: 

 

,      (2) 

 

where IRF[t] refers to the IRF function and y[t] = ∑αie-t/τi (i = 1, 

2, …, n) is the exponential decay model with n lifetime 

components. The asterisk * denotes the continuous convolution 

operator in the time domain. In a TCSPC system, shot noise is 

dominant and therefore ε(t) follows a Poisson distribution [7]. 

The signal-to-noise ratio (SNR) of the decay curves is the 

square root of the total photon counts: 

 

         (3) 

 

where N is the time bin number. 

 

III. NETWORK EVALUATION 

Fig. 2 shows the training and testing results of two different 

sample datasets: Datasets A and B. Both training datasets 

contain 40000 decay curve samples, in which 20% of the 

samples are used as the validation subset. The batch size of the 

training is 128 and the training epochs is 500. An early stop 

callback with 25 patient epochs (5% of total epochs) is included 

to prevent overfitting. In Dataset A, τ1 ~U[0.1, 1] ns and τ2 ~U[1, 

3] ns. In Dataset B, τ1 has a relatively narrower range as τ1 

~U[0.1, 0.5] ns whereas τ2 remains unchanged. Here U denotes 

uniform distribution. Our training lifetime range covers a wide 

range of commonly used fluorophores and fluorescent probes 

in biomedical applications. The SNR of the training datasets 

follows a uniform distribution as SNR~U[20,160], covering a 

wider range of noise levels. Figs 2 (a) and (b) show the mean 

square error (MSE) loss of the training and validation data 

changing with the training epochs for Datasets A and B, 

respectively. All three parameters converged at a minimal loss 

level. Compared with Figs 2 (a) and (b), the loss of τ1 is 

relatively large if trained by a dataset with a wider lifetime 

range. As a result, the predictions of τ1 would have large 

deviation. Figs 2 (c) shows the boxplot of the mean average 

error (MAE) of the predicted results of the testing datasets 

using the trained network as shown in Fig. 2(a). The testing 

dataset contains four datasets of samples with SNR ranging 

from 20 to160. Each dataset contains 4000 decay curves that 

were never seen by the neural network before. The lifetime 

range was kept the same as the training dataset. In Figs 2 (c), 

the mean MAEs of all three lifetime parameters decrease 

significantly as SNR increases, indicating more precise results. 

Fig. 2 (a) and (b), the mean absolute error (MAE) of the training and 

validation for τ1, τ2, and α using training Dataset A (a) and B (b), 
respectively. (c) and (d), the MAE of predicted results of the testing 

datasets for the three parameters when the network is trained by the 

Datasets A (c) and B (d), respectively. (e) and (f), the corresponding fitting 
results of the testing datasets using TRRA when the network is trained by 

the Datasets A (e) and B (f), respectively. 
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A noisier dataset (with a smaller SNR) has wider error 

distributions. 

To improve lifetime extraction precision, one approach is to 

narrow the lifetime range of interest. It is applicable if we have 

prior knowledge of the lifetime distribution. As demonstrated 

in Fig. 2 (d), when τ1 is restricted to 0.1~0.5 ns, the median 

MAE of τ1 and the corresponding error distribution range have 

smaller values in comparison with Fig. (c). The MAE 

distributions for τ2 and α are also confined within a smaller 

range for datasets with the SNR from 20 to 160. Further 

decreasing the lifetime ranges for τ1 and τ2 can obtain a lower 

MAE, showing that a narrower resolvable lifetime range could 

lead to higher prediction precision for all three parameters. For 

better comparison, the lifetime parameters of testing datasets in 

Fig. 2 (c) and (d) are also resolved using a traditional fitting 

algorithm. TRRA can solve a bound-constrained optimization 

problem (lsqcurvefit in MATLAB).  The constrained bounds 

for τ1, τ2, and α were set the same with their ranges in the 

training datasets. Figs. (e) and (f) show the corresponding 

results for the testing datasets in Figs. (c) and (d), respectively. 

In the whole SNR range, the performance of TRRA is poorer 

than that of 1D-ConvResNet. The performance of 

1D-ConvResNet for all lifetime parameters has notable 

improvement as the SNR increases. However, the performance 

of TRRA has no significant change when SNR varies from 55 

to 160. This further demonstrates the robustness and accuracy 

of the 1D-ConvResNet. It is worth noting that the proposed 

neural network has an excellent ability to resolve the factional 

ratio α for a wide lifetime range. α plays a vital role in 

evaluating the energy transfer efficiency in FRET applications. 

In contrast, dense neural networks usually fail to extract this 

parameter [21]. Besides, no deconvolution is needed because 

the effect of the IRF on lifetime estimations is automatically 

considered. Although only one IRF is considered in the training 

data, 1D-ConvResNet shows a robust performance for IRF with 

a wide range of the full width at half maximum (FWHM) 

(Section B in Appendix).  

The quantitative analysis of the MAE for τ1 and τ2 under 

different conditions was carried out to understand further the 

lifetime resolving capability of the 1D-ConvResNet. The 

neural network was trained using Dataset B. The new testing 

data have more comprehensive lifetime ranges with τ1 and τ2 in 

the range of 0.1-1ns and 1-4 ns, respectively, to investigate the 

lifetime resolving performance beyond the scope of training 

data. Fig. 3 shows the results for SNR ranging from 20 to 160 

and α ranging from 0.1 to 0.9. For both τ1 and τ2, MAE has a 

larger mean and standard deviation values for a smaller SNR, 

which agrees with the previous analysis. The resolving 

capability of the neural network highly depends on the training 

data. The neural network has a homogeneous resolving 

capability for the lifetimes within the range of the training data. 

However, the MAE of predicted results increases linearly when 

the lifetime exceeds the range of training data. Therefore, the 

resolving capability of the neural network is tunable according 

to the chosen training data. Also, α can affect the predicted 

results of τ1 and τ2. When a lifetime component has a 

predominant weight (for example, α ~ 1 for τ1), it has better 

precision whereas others have lower precision. 

The proposed 1D-ConvResNet can be easily modified for 

p-exponential decay models (p is the number of lifetime 

components) by having 2p – 1 sub-branches without 

redesigning the CNN architecture. Fig. 4 shows an example for 

resolving a tri-exponential decay, i.e., p = 3, with three different 

lifetime components τi (i =1, 2, 3), two independent fraction 

ratio αi (i =1, 2), and α3 = 1 – α1 – α2. Shown in Fig. 4 (a), each 

parameter is assigned to a branch. The hyperparameters of the 

main branch and sub-branches remain the same as Fig. 1. The 

training dataset contains 40,000 different samples. The 

parameter ranges of the training dataset are: τ1~U[0.1, 0.4], 

τ2~U[0.9, 1.2], and τ3~U[1.8, 2.2]. α1, α2, and α3 obey a uniform 

marginal distribution in the range from 0 to 1 and subject to α1 + 

α2 + α3 = 1. Fig. 4 (b) shows the training and validation MAE 

for the five parameters. All of them are well converged at MSEs 

below 0.01 after 200 epochs. The testing results of new data 

with the same ranges as the training data are shown in Fig. 4 (c). 

Astonishingly, the 1D-ConvResNet has high prediction 

precision for all parameters with SNR ranging from 20 ~ 160. 

In contrast, in Fig. 4(d), TRRA delivers poor results for all 

parameters, especially the α1 and α2. The performance of TRRA 

nearly keeps unchanged within the whole SNR range.  

We further quantitatively investigate our proposed neural 

network’s gains in terms of the precisions of different 

parameters and the computational speed compared with TRRA. 

Since the performances of both CNN and TRRA have a large 

variation for resolving fluorescence decays with different 

lifetime parameter combinations and SNR, it is meaningless to 

compare their performances case-by-case. Here the 

Fig. 3. The mean and deviation of MAE for τ1 (a)-(c) and τ2 (d)-(f) 

under different conditions. SNR takes the values of 20, 60, and 100; α 

takes the values of 0.1,0.5, and 0.9. In the analysis, τ2 is fixed at 2.5 ns 

in (a) – (c) and τ1 is fixed at 0.3 ns in (d) – (f). The dashed areas denote 

the lifetime ranges of training data. In each subplot, the mean and 

standard deviation of the MAE of 50 random-generated decays are 

represented by a dashed line and shaded area, respectively. 
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figure-of-merit (F-value) was introduced as an indicator to 

compare the overall precision of different algorithms. F-value 

is defined as [29]: 

 

,          (4) 

 

where x is lifetime parameters (τi or αi) and δx is the standard 

deviation of the lifetime parameter determination. F is a 

normalized value for measuring the sensitivity of the lifetime 

parameter acquisition algorithm. A low value of F indicates a 

high precision. Hence, the precision gain can be simply defined 

as [29]. Table I summarized the 

fitting/prediction performance and calculation speed 

comparison for bi- and tri- exponential decay models. The 

F-values are obtained from the testing datasets for the bi- and 

tri- exponential decay model with 40,000 samples in Figs. 2(d) 

and 4(c).  It is demonstrated that our proposed CNN algorithm 

significantly outperforms traditional TRRA with large 

precision gains. Besides, in comparison with TRRA, CNN 

shows a 300-fold increase in average calculation speed under 

the same hardware platform (Intel i7-4790 CPU). 

 

TABLE I 
 FITTING PERFORMANCE COMPARISON 

bi-exponential decay model 

Parameter τ1 τ2 α 

F (CNN) 35.5 5.0 79.8 

F (TRRA) 82.6 19.7 640 

Precision Gain 5.3 15.2 25.0 

tri-exponential decay model 

Parameter τ1 τ2 τ3 α1 α2 

F (CNN) 35.1 7.5 3.7 905.5 1.75e3 

F (TRRA) 403 44.3 36.3 6.7e3 4.2e3 

Precision Gain 132.3 34.8 96.0 54.8 5.8 

average speed (ms/sample) 

CNN 0.12 

TRRA 37.5 

Speed Increase ≈ 300 

 

Unlike the training of 2D or 3D CNNs that usually relies on 

high-performance GPUs with a massive number of parallel 

processors or cloud computing, the proposed 1D-ConvResNet 

for both bi-, tri-, or even multi-exponential decay models can be 

performed much more quickly with desktop computers. This is 

due to the efficient neural network architecture. Table II 

summarized the architecture comparison with previously 

reported high dimensional CNN and feed-forward dense neural 

network. The total parameter is only about 4.5% of the 3D 

FLINET, indicating that a large memory and floating operation 

can be saved. The whole training procedure only took tens of 

minutes on a laptop with the Intel i7-4790 CPU. In contrast, 

higher-dimensional CNN architectures usually take several 

hours even with GPU acceleration [22], [23]. Shorter training 

time is beneficial because it ensures that CNN can be rapidly 

re-trained and deployed for different FLIM applications. 

TABLE II 

 ARCHITECTURE COMPARISON 

 1D-ConvResNet  
FLINET 

[22] 

DENSE 
NET 

[21] 

Total Parametersa 48,675 1,084,045 149,252 

Resolving 
multi-exponential 

decay models? 

Yes Yes No 

Training platform CPU GPU CPU 

Training timeb (h) 0.5 4 4 

a For a fair comparison, the time bin is set to be 256 for all three 

networks. The neuron number of the 4-layer DENSE NET is set as 
256,256,256, and 4, since the author did not show explicit neuron 

numbers in [21]. 
b The training processor is Intel i7-4790 CPU for our network 
NVIDIA TITAN Xp GPU for [22], and Intel(R) Xeon(R) E31245 

for [21] 

 

Compared with 2D or 3D CNNs, 1D-CNNs are more 

suitable and flexible for analyzing fluorescence images as a 

hardware-embedded processor. In higher dimensional CNNs, 

the neural network should process all pixels in a fluorescence 

image at once. However, in many applications, a fluorescence 

Fig. 4 (a) The modification of 1D-ConvResNet for tri-exponential 

decay model analysis. (b) The MSE loss of training and validation for a 

testing dataset with tri-exponential decays. The SNR of the testing 

dataset is from 26dB to 44dB. (c)  and (d), The corresponding predicted 

results for τi (i  = 1, 2, 3) and αi (i = 1, 2) of new testing samples using 

1D-ConvResNet and TRRA, respectively. 
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image has a sparse feature that contains a large background area 

with no useful information. The pixels in this area are also 

included in such a neural network to produce reconstructed 

lifetime images, leading to low calculation efficiency. In 

contrast, 1D CNNs have multiple parallel series processing 

capabilities that allow arbitrary pixels to be processed 

simultaneously (see Fig. 1). It is easy to set a threshold or 

choose regions of interest for faster analysis. More importantly, 

the data readout of sensors such as photomultipliers (PMTs) 

and single-photon avalanche diodes (SPADs) in FLIM systems 

usually follows a pipeline principle, i.e., the measured raw data 

is sorted pixel-by-pixel and frame-by-frame. 1D CNNs can 

directly process the output data without extra data conversion. 

The image processing procedure is shown in Fig. 5. The 

embedded CNN processor can focus on the pixels with 

intensities above the threshold. Those below the threshold are 

considered as background pixels, and their lifetimes are 

ignored.  

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed neural network was further employed to 

analyze two-photon FLIM images of functionalized gold 

nanoprobes in living cells. Gold nanorods (GNRs) support 

shape-dependent localized surface plasmon resonance, leading 

to tunable optical properties and strong two-photon 

luminescence [30]. GNRs are efficient and stable fluorescence 

quenchers for organic fluorophores [31]. Gold nanoprobes are 

GNRs functionalized by fluorophore-labelled hairpin 

oligonucleotides, which have found various biomedical 

applications including RNA detection for cancer diagnosis, 

research of energy transfer behaviours, and recognition of 

analytes [32], [33]. In this study, GNRs were functionalized by 

Cy5 labelled thiolated single-strand DNAs (Cy5-ssDNA-GNRs) 

via ligand exchange and salt aging processes [32]. To identify 

the locations of endocytic gold nanoprobes in living cells, 

FLIM images of Cy5-ssDNA-GNRs labelled Hek293 cells and 

human prostatic cancer cells were evaluated. Briefly, the cells 

were treated with gold nanoprobes solution for incubation; then, 

the samples were washed with phosphate-buffered saline (PBS) 

and fixed with paraformaldehyde. The sample was dispersed on 

a glass slide after staining with 4’-6-diamidino-2-phenylindole 

(DAPI), then the coverslips were mounted for microscopy with 

a ProLong antifade solution. FLIM images were acquired by a 

two-photon FLIM system. It includes a confocal microscope 

(LSM 510, Carl Zeiss, Oberkochen, Germany), a femtosecond 

Ti: sapphire laser (Chameleon, Coherent, Santa Clara, USA), 

and a TCSPC acquisition system (SPC-830, Becker & Hickl 

GmbH, Berlin, Germany). The laser excitation wavelength is 

Fig. 5. Workflow of 1D-ConvResNet for calculating 2D FLIM images 

obtained from a sensor. The data readout of the sensor follows the 

pipeline principle. The raw output data flow is arranged pixel-by-pixel 

and frame-by-frame. Pi refers to the pixel in the sensor. 1D CNN can 

directly work as an embedded processor to process the data. 

Fig. 6. FLIM images of Cy5-ssDNA-GNRs labeled Hek293 cells. (a) 

Intensity image; (b) phasor plot, the red line is the fitted line of the 

phasor pixels. A threshold with 20% the maximum photon counts is set 

for fitting the line. A and B are the intersection points between the fitted 

line and the semicircle. Two dashed ellipses indicate two clusters; 

(c)-(d) the phasor projection cluster maps; Cluster 1 and 2 denote the 

cell and gold nanoprobes, respectively. (e)-(f) α maps and (g)-(h) τave 

maps calculated by TRRA and CNN. 
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850 nm, and the laser pulse width is less than 200 fs with an 

80MHz repetition rate. The bin width of the TCSPC is 0.039ns, 

and each measured histogram contains 256-time bins. The 

emission light was collected by a 60× water-immersion 

objective lens (N.A =1.0) with a 500-550 nm bandpass filter.  

The first case is the FLIM image of Cy5-ssDNA-GNRs 

labelled Hek293 cells. Fig. 6 (a) shows the gray-scale 

fluorescence intensity image. Compared with cell tissues, gold 

nanoprobes show higher intensities due to their strong 

two-photon luminescence. However, it is difficult to precisely 

identify their locations solely from intensity images because the 

amount of gold nanoprobes is relatively small. The 

fluorescence intensities of cells have a large variance. The 

two-photon luminescence of GNR has ultra-short lifetimes 

around tens of picoseconds [34]. The free state Cy5 has a 

lifetime around 2 ns. When Cy5 is bounded in a closed hairpin 

oligonucleotide structure attached to a gold surface, Cy5 is in a 

quenched state. It has a short lifetime in the sub-nanosecond 

range because of the intense energy transfer between Cy5 and 

GNRs. Hence, gold nanoprobes show complex ultra-short 

lifetimes. Fig. 6 (b) shows the corresponding phasor plot of the 

FLIM image. A threshold of 100 is set to filter out low-intensity 

pixels. Two clusters can be observed from the phasor plot. 

Cluster 1 with majority pixels is the primary cluster located 

near B, showing that these pixels have longer lifetimes. Another 

cluster with a tail extending to the right bottom can also be 

found. The number of pixels in Cluster 2 is smaller, and the 

lifetimes are shorter. The whole phasor pixels nearly show a 

straight-line distribution, suggesting that a bi-exponential 

decay model can analyze the FLIM image. Before conducting 

CNN or TRRA analysis, the phasor orthogonal projection and 

cluster images of the FLIM data were calculated (see details in 

Appendix). Since there is no ground truth for experimental data, 

the phasor and cluster images can serve as a reference for 

comparing the TRRA and CNN results. Fig.6 (c) shows the 

pseudo-colour image of the phasor projection score β, in which 

each phasor pixel is projected on the line segment between A 

and B with β being the relative distance from point B. The two 

points A and B are the intersection points between the fitted line 

for the pixels and semicircle. β changes from 0 to 1 as the 

projected position shifts from B to A. When the projected 

position is out of the line segment, β is set to 0.  

It should be noted here that β has a different meaning to α 

because the pixels in the phasor plot follow a nonlinear spatial 

distribution from Fourier transform. Nevertheless, β is 

sufficient to distinguish gold nanoprobes from cell tissues in 

Fig. 6 (c). Meanwhile, β can also be used as a criterion to 

segment Clusters 1 and 2. Fig. 6 (d) shows the corresponding 

cluster image for β = 0.4; the pixels in Cluster 1 are attributed to 

the autofluorescence of cells, whereas Cluster 2 are attributed 

to the endocytic gold nanoprobes. Figs 6 (e)-(f) and (g)-(h) 

show the calculated α maps and amplitude-weighted average 

lifetime (τave) maps using TRRA and CNN, respectively. The 

intensity threshold is 100 photon counts. Since the pixels of 

nanoprobes should have a larger α value, the red pixels in Figs 6 

(e) and (f) indicate the gold nanoprobes’ locations. Compared 

with the results in Fig. 6 (d), both TRRA and CNN can obtain 

similar conclusions about the gold nanoprobes’ locations to the 

phasor cluster analysis. However, CNN’s α map can more 

accurately identify gold nanoprobes, whereas TRRA -estimated 

images are noisier due to a more extensive deviation range. It 

becomes worse for TRRA to resolve τave. Fig. 6 (g) shows the 

τave map calculated by TRRA; the blue pixels with shorter 

lifetimes indicate the gold nanoprobes’ locations. It is difficult 

to identify gold nanoprobes form Fig. 6 (g), suggesting that 

TRRA has worse performance in resolving τave. In contrast, 

CNN-estimated τave and α maps agree with the phasor cluster 

analysis, locating gold nanoprobes more accurately.  

The second case shown in Fig. 7 is the FLIM image of a 

single human prostatic cancer cell with endocytic 

Cy5-ssDNA-GNRs. Unlike Hek293 cells in Fig. 6, the average 

intensity is lower and there are abundant endocytic gold 

nanoprobes. The intensities of gold nanoprobes are generally 

higher than 1000 similar to the first case. In contrast, only a few 

Fig. 7. FLIM images of a single human prostatic cancer cell with endocytic 

Cy5-ssDNA-GNRs. (a) Intensity image; (b) phasor plot. (c)-(d) phasor 

projection and cluster maps; Cluster 1 and 2 denote the cell and gold 

nanoprobes, respectively. White pixels mean that α is beyond [0, 1]; (e)-(f) 

α maps and (g)-(h) τave maps obtained by TRRA and CNN. 
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hundred average photon counts were collected from the cell in 

the second case. Fig. 7 (b) shows the corresponding phasor plot. 

The threshold is set to 100 counts. The pixel number in Cluster 

2 shows a significant increase, attributed to an increased 

number of endocytic gold nanoprobes. Besides, the pixel 

distribution spreads to a broader range in Cluster 1 due to a low 

SNR level. Again, the phasor projection and cluster maps are 

shown in Fig. 7 (c) and (d), respectively. β is set to 0.4 to 

segment the two clusters, the gold nanoprobes and the cells. 

The TRRA - and CNN-estimated α maps are shown in Fig. 7 (e) 

and (f), respectively. However, TRRA fails to find converged 

estimations in many pixels (white pixel areas) in Fig. 7(e). 

These pixels correspond to higher concentrated gold 

nanoprobes and have ultra-short decays, leading to divergent 

solutions in the deconvolution procedure. The TRRA 

-estimated τave map shown in Fig. 7 (g) also fails to identify gold 

nanoprobes robustly. Instead, CNN provides more precise τave 

map in Fig. 7 (h), more accurately identifying gold nanoprobes. 

The autofluorescence background in the cell was also resolved 

compared with Fig. 7 (g). It is shown that CNN is more robust 

under low count conditions. 

 

V. CONCLUSION 

In summary, we present the design and training of 1D 

ConvResNet for FLIM data analysis. The proposed method is 

more straightforward, requires fewer hardware resources, and 

is faster than traditional 2D/3D approaches. 1D ConvResNet 

can be easily trained using synthetic FLIM data for different 

FLIM applications. The simulated FLIM data analysis shows 

that CNN has superior performances in analyzing FLIM images 

with a wide range of intensity levels. The trained CNN was then 

employed to analyze two-photon FLIM images of 

functionalized gold nanoprobes in Hek293 and human prostate 

cancer cells. The results also suggest CNN’s superior 

performances and robustness. Currently, the calculation time of 

the proposed 1D ConvResNet architecture for a 256×256 image 

takes several seconds on a laptop for a quick proof-of-concept 

demonstration. However, it can be further optimized using 

quantized neural network architectures and can also be 

implemented in FPGA devices to accelerate the analysis for 

video-rate FLIM applications. 1D ConvResNet is promising for 

a broader range of FLIM applications. 
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APPENDIX 

A. Preparation of training data 

The simulated FLIM datasets for training the neural network 

were generated using home-made code in MATLAB 

(MathWorks Inc., Massachusetts, USA). In our simulation, the 

number of time bins N is set as 256. The bin width h is 0.039 ns 

and the observation period T is 10 ns. One can specify the 

simulation parameters according to different FLIM systems. 

The multi-exponential decay mode is described by: 

 

,  t = 1,…,N   (A1) 

 

where the fraction ratio αi (i=1,…, n) obeys a uniform marginal 

distribution in the range from 0 to 1 with a fixed sum 1. IRF(t) 

is fitted with a Gaussian function and expressed as 

, where t0 is the peak 

position. To mimic the laser jitter, t0 has a uniform distribution 

within 13 – 15th time bin. The FWHM is 167.3 ps. The 

convolution result of the decay curves and IRF(t) was 

normalized to 1 and then multiplied by peak intensity K 

(maximum photon counts). ε(t) is the Poisson noise. For larger 

photon counts (generally > 20), ε(t) can be approximated by a 

normal distribution and expressed as: 

 

,   (A2) 

 

where  represents a normal distribution with zero 

mean and standard deviation of 1. To generate specified SNR, 

the peak intensity K can be set as 

 

 .     (A3) 

 

Fig. A1 shows examples of generated bi- and tri-exponential 

decays with different peak intensities.  

 
Fig. A1 (a) Examples of simulated bi-exponential decay curves with 

different peak intensities. The parameters (τ1, τ2, α, SNR) of y1, y2, and y3 are 
(0.4, 2.8, 0.6, 20), (0.3, 2.3, 0.5, 60), and (0.3, 2, 0.7, 100), respectively. The 

dashed line represents the Gaussian IRF. (b) Examples of simulated 

tri-exponential decay curves with different peak intensities. The parameters 
(τ1, τ2, τ3, α1, α2, SNR) of y1, y2, and y3 are (0.2, 0.9, 1.8, 0.2, 0.3, 20), (0.2, 

1.1, 2.0, 0.2, 0.6, 60), and (0.1, 1.1, 2.0, 0.6, 0.3, 100), respectively. The 
dashed line represents  the Gaussian IRF. 

 

B. FWHM of the IRF  

Fig. A2 further investigates how the FWHM of the IRF 

affects the training and prediction of the neural network. A new 

dataset was generated with the same parameters as Dataset B in 

the main context. But the FWHM of the convolved IRF in each 

decay sample was randomly selected from 100~300 ps. This 
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FWHM range is typical in most laboratory FLIM systems. In 

Fig. A2 (a), the MAE curves of all three parameters are well 

converged at slightly higher values than those in Fig. 2. But the 

predicted results for test datasets are nearly the same as Fig. 2. 

It shows that the designed 1D ConvResNet is robust for varied 

IRFs. 

 
Fig. A2 (a) MSE loss of the training and validation for τ1, τ2, and  using the 

training dataset with τ1 and τ2 in the range of 0.1~ 0.5 and 1~3 ns. (b)  

Predicted results using the test dataset for τ1, τ2, and , respectively. The 

lifetime parameters are τ1 ~U[0.1, 0.5] ns, τ2 ~U[1, 3] ns, and ~U[0, 1]. 

 

C. Phasor analysis 

The phasor analysis is to transform the FLIM data in the 

temporal domain to the phasor domain (g-s-plane) through 

Fourier transform [8]:  

 

,     (A4) 

 

where i, j are the coordinate indices of a FLIM image. The 

phasor analysis was performed using a home-made code 

written in MATLAB. Each pixel with the intensity over the 

predefined threshold was transformed to the phasor plane. The 

angular frequency is kω= 2π/T. Besides, the effect of IRF 

distortion is also taken into consideration. The convolution of 

IRF in the temporal domain is equivalent to the rotation of 

phasor points in the phasor plane. The calibration of IRF in the 

phasor plane is expressed as: 

 

, (A5) 

 

where gc(ω) and sc(ω) are the calibrated phasor coordinates. 

gIRF(ω) and sIRF(ω) are the real and imaginary parts of the 

Fourier transform of the IRF. 

For the phasor orthogonal projection analysis, firstly, a linear 

model s = ag + b is used to fit the phasor points (gn, sn): 

 

,      (A6) 

 

where a, b are the slope and intercept of the linear model, N is 

the total phasor points. It is worth noting that a threshold in the 

phasor plot is critical for the linear fitting because a massive 

number of pixels with low photon counts would heavily bias 

the result, especially for low-SNR conditions. The coordinates 

of the two-intersection points A (G1, S1) and B (G2, S2) can be 

derived as: 

 

.    (A7) 

 

When the orthogonal projection of the phasor point is within 

the AB segment, a projection score β can be defined as: 

 

,  (A8) 

 

where L = ‖A – B‖2 is the length of the AB segment. When an 

orthogonal projection is outside the AB segment, β = 0.  
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