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Abstract: Cyber situational awareness has been proven to be of value in forming a comprehensive
understanding of threats and vulnerabilities within organisations, as the degree of exposure is
governed by the prevailing levels of cyber-hygiene and established processes. A more accurate
assessment of the security provision informs on the most vulnerable environments that necessitate
more diligent management. The rapid proliferation in the automation of cyber-attacks is reducing
the gap between information and operational technologies and the need to review the current
levels of robustness against new sophisticated cyber-attacks, trends, technologies and mitigation
countermeasures has become pressing. A deeper characterisation is also the basis with which
to predict future vulnerabilities in turn guiding the most appropriate deployment technologies.
Thus, refreshing established practices and the scope of the training to support the decision making of
users and operators. The foundation of the training provision is the use of Cyber-Ranges (CRs) and
Test-Beds (TBs), platforms/tools that help inculcate a deeper understanding of the evolution of an
attack and the methodology to deploy the most impactful countermeasures to arrest breaches. In this
paper, an evaluation of documented CR and TB platforms is evaluated. CRs and TBs are segmented
by type, technology, threat scenarios, applications and the scope of attainable training. To enrich the
analysis of documented CR and TB research and cap the study, a taxonomy is developed to provide
a broader comprehension of the future of CRs and TBs. The taxonomy elaborates on the CRs/TBs
dimensions, as well as, highlighting a diminishing differentiation between application areas.

Keywords: Cyber-Ranges; Test-Beds; Cyber-Security; threat simulations; training; education;
scenario; virtual environment; cyber-situation awareness; taxonomy

1. Introduction

In the recent past, a proliferation in the number and complexity of cyber-security incidents
with deeper consequences has become evident as attackers become more skilled, sophisticated and
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persistent. The extent of cyber-incidents targeting critical infrastructures and the public has been
fueled by global events such as the Stuxnet worm [1]. This attack targeted numerous centrifuges in
Iran’s Natanz uranium enrichment facility from where it spread across many countries, impacting
numerous organisation’s critical infrastructure and fueling a clear and immediate need for increased
and new dimension in cyber-situational awareness [2]. The consequences of these types of attack
brought in what the cyber-security research community referred to as a ‘game changer’ in
cyber-attack dynamics, highlighting the strong need for personnel training [3–5]. Furthermore,
in the recent past, the cyber-security industry has undergone a significant shift in respect of
acknowledging the importance of security training of users, transitioning from “users are the
weak link of cyber-security” towards “users can be trained like muscles hence, improving a
company’s overall security posture” [6,7]. The evolving change of stance is a fundamental trigger for
change in cyber-security procedures, in turn stimulating a growing demand for training platforms.
Cyber-Ranges (CR) are defined by the National Institute of Standards and Technology (NIST) as
“interactive and simulated representations pertaining to an organization’s local network, system,
tools, and applications” [8], whereas Test-Beds (TB) are defined as “a configurable and extensible
cyber range with simulated industrial processes” [9]. CR provide real-world platforms for training
Information and Communication Technology (ICT) professionals against a wide range of cyber-attacks
and cyber-warfare scenarios. TB enable the training of Operational Technology (OT) network personnel
facing cyber-attacks to improve cyber-situational awareness. CR and TB are complementary as OT and
ICT networks are interlacing with advances in communications, adoption of the Internet of Things (IoT)
and Industrial IoT (IIoT) across various sectors [10,11]. Scenarios replicating a spectrum of cyber-attacks
can be established, enhancing the training of operators and users within recognisable environments
in the identification of, and mitigation strategies to arrest cyber-breaches. Training in an emulated
environment accelerates effective learning of best practice and the ‘real-time’ dynamic interaction
promotes a deeper understanding of the consequences of any action [12]. CR/TB facilitate the
establishment of an extended range of attack scenarios with varying levels of complexity, governed by
the stage of training. Groups of users can also train on a remotely accessible platform to define,
optimise and evaluate the impact of a coordinated response to cyber-attacks, e.g., ‘blue team’, ‘red team’,
back and ‘front office’ of (say) a bank. Group training involving multiple teams comprising varying
knowledge sets enhance the cyber-situational awareness of the organisation and improve the response
time to identify and arrest a cyber-attack.

In response to the pressuring demand to respond to exponentially evolving cyber-attacks,
this paper presents an extensive and thorough analysis of CRs and TBs based on the recent prominent
research and manuscripts. To the best of the authors knowledge, this thorough analysis is not
available in the literature, thus limiting the presence of an adequate resource for researchers.
Moreover, to complete the study, two taxonomies targeted towards the different dimensions of CRs
and TBs are developed and presented in this manuscript.

The remainder of the paper is organised as follows. Section 2 details the methodology applied
to execute on a review of the state-of-the-art in CRs/TBs; Section 3 presents a summary of existing
knowledge in the disciplines. Section 4 provides a critical assessment on reported CRs/TBs classified
by the domain of applications, user classes, method of experimentation and implementation. Section 5
covers the scenarios and applications of CRs/TBs. Section 6 focuses on CR/TB taxonomies informed
by the findings of the review. Section 7 describes the training methods implemented through CRs/TBs.
Section 8 elaborates on the future evolution and use of CRs/TBs, providing evidence of the narrowing
gap between their different application areas. Conclusions are drawn in Section 9.

2. Methodology

This section provides detailed of how the review was conducted and method used.
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2.1. Overview

The review presented here adopts a systematic methodology based selection, extraction,
and execution in line with the guidance prescribed by Okoli and Schabram in [13] and Okoli in [14].
The review is stand-alone focusing on existing knowledge, evaluation, and synthesis in the domains of
CR and TB, the principle aim being to provide evidence of the growing density of cyber-attacks
automation using modern technologies with increasing levels of stealth and sophistication in
both landscape and execution. Furthermore, the increasing degrees of network inter-connectivity
as a consequence, for example, of emerging Industry 4.0 ‘smart-everything’ scenarios and the
concomitant changes in the dynamics and scope of the threat surface, translates into a major
challenge in determining evolving cyber situational awareness for researchers, educators, and trainers.
The prediction of future trends, scenarios, and possible application areas using current operational
environments presents significant challenges. Therefore, this paper, a study with these aims has not
been reported to date. This paper, hence projects the training requirements for cyber situational
awareness within these evolving infrastructures by utilising the existing knowledge within the
literature and current sector practices as the seed.

2.2. Aim and Objectives

The literature review aims to identify and analyse the current state-of-the-art in the use and
applications of CRs/TBs within cyber-security training and map the range of applications provisioned
by these platforms. The objectives are as follows:

• Survey recent CR and TB research.
• Analyse and review state-of-the-art trends, scenarios and applications.
• Establish a taxonomy for future CRs/TBs.
• Equip cyber-security professionals with the relevant skills to combat cyber-threats in

next-generation highly inter-connected, multi-domain infrastructures.

2.3. CRs and TBs Survey

A comprehensive literature review of the state-of-the-art in CRs/TBs disciplines was carried
out to establish a reference of current platform features and training tools, the foundation for the
development of the main contributions presented in the paper.

2.3.1. Classification and Research Criteria

As CR and TB migrate towards convergence, the literature search used the following keywords to
surface the most relevant publications:

1. “Cyber-ranges” + (“Military” + “Defense” + “Intelligence”) or (“Industry” + “Commercial”)
or (“Education” + “Research”)

2. “Test-bed” + (“IoT” or “Smart Grid” or “Cloud”) + cyber

Furthermore, the review only considered papers published within the last 5 years of 2015–2020.

2.3.2. Selection Criteria

Searches in five databases were executed: ScienceDirect, IEEE Explore, Springer, Wiley, and ACM.
However, fundamental research relevant to the study outwith the specified search period were taken
into consideration. The graphs presented in Figure 1a–c depict the evolution of the number of
publications from 2015 to 2020 on Test-beds in the Internet-of-Things (IoT), Smart Grid and Cloud
disciplines. Increases in the number of publications for all domains is clearly evident, demonstrating
extensive research in cyber-security and Test-beds [15].
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2.3.3. Extraction Criteria And Results

The review was restricted further to consider only the current dominant area of application for
TBs—Smart Grids—and the future area of IoT/smart devices, driven by the goal of predicting future
requirements seeded by the current state-of-the-art.

Figures 1d–i and 2a–c present the results of the review; Figure 1d–i summarise the publication
types in Test-bed within the Springer and ScienceDirect databases. The percentage of papers on
IoT Test-beds from the Springer database in Figure 1d shows that 25% of publications are journal
articles, while 44% are conference papers; 11% of papers were published in conferences proceedings
in Smart Grids (Figure 1e); those published in the Cloud domain represent the highest percentage at
(80%) (Figure 1f).
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(a) TBs in IoT-based papers.
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(b) TBs in Smart Grid-based papers.
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Figure 1. Types of publications in TBs between 2015 and 2020 in Springer and ScienceDirect
database respectively.

Similarly, the review for CRs was restricted to the current prominent applications areas within
Military, Defence and Intelligence (Military), Education and Research (Education), and Industry
and Commercial sectors (Industry). The data targeted focused on gaining insights on threat
dynamics/proliferation, and emerging countermeasure strategies, a foundation for predicting future
trends, technologies, and application areas.

On inspection of Figure 2, it is evident that ACM publishes a greater number of papers in relation
to CRs with progressive growth in number from 2015 through to 2019 (Figure 2a). Journal articles
account for 64% of publications, book chapters 25% and conference proceedings 11% (Figure 2b).
Also clear is that researched-based articles are more readily accepted for publication at a rate of 82%
compared to other types of articles such as Book Chapters at 13% and Review articles at 5% (Figure 2c).
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Figure 2. Evolution and classification of CRs publications.

Further, ACM has published more Cyber-range related papers in the three domains of Military,
Education, and Industry, followed by Wiley, ScienceDirect, Springer and IEEE (Figure 3). Cyber-range
papers published in ACM are predominately in Education, followed by Industry and then Military.
Wiley, ScienceDirect, Springer, and IEEE published more Industry-related Cyber-range papers than
those in Education and Military.
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Figure 3. (a) CR in ACM (b) CR in ScienceDirect (c) CR in Springer (d) CR in IEEE (e) CR in Willey.

3. Related Work

CR and TB solutions have been applied in both commercial and public settings such as the
military/defence, intelligence, education, research, and training [16]. The extensive usage is driven
by the need to be cyber-security prepared against persistent threats to critical infrastructures and
businesses. The first publicly reported CR was the National Cyber-Range (NCR) [17], created by the
US Department of Defence. However, as described in [17], other ‘stealthy’ CRs and TBs existed across
the world for cyber-warfare training in advance of the NCR.
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Leblanc et al. [18] surveyed the state-of-the-art of 13 simulation-centric CRs categorising them
into private, academic or public sector research. The review, while useful, dates back to 2011 and given
the significant advances in the functionality of technologies and complexity of threat dynamics limits
the value of their findings in the goal of predicting the future evolution.

Davis and Magrath in [16] conducted a survey of CRs in the public domain focusing on 30 existing
systems in 2013. The review focused primarily on the merits of each approach in respect of their
functionalities with emphasis on cost-effectiveness. The classification was segmented in terms of
military and government; academic; and commercial and further categorised as either simulation or
emulation-driven implementations. The authors concluded that emulation-driven CRs utilised TBs and
were proven to be effective environments for training and test. The trade-off between highly functional,
robust training environments and the concomitant cost implications as a result of the complexity of
the implementations was stressed. Inherent within the trade-off, is the provision for the sharing of
resources and/or virtualisation. Conversely, simulation-based CRs are implemented solely through
software that model real world scenarios, and are thus easily scalable. However, emulation-driven
CRs can be validated more readily for performance [16].

As the review [16] was carried out considering CRs and TBs before 2013, the conclusions on the
trade-off between functionalities and cost-effectiveness has limited value in the determination of the
future evolution of the platforms.

Priyadarshini [19] also reported the results of a review on CRs in 2018, culminating in the
definition of the features and capabilities of an ‘Ideal CR’; the components, scenarios, and capabilities
of the CR at the University of Delaware (CRUD) were used as the foundation for the definition of the
future platform. The bench-marking did not consider the needs of the applications viz. to facilitate
training, education, and research addressing recent and future threat profiles, their proliferation and
modes of attack.

The most recent literature by Yamin et al. [20] reviews unclassified CRs and security TBs.
The authors propose a taxonomy with reference to the architecture, scenarios, capabilities, roles,
and tools as the criteria. The main output is a proposed baseline to aid the development and evaluation
of CRs.

The above reviews provided valuable insights into CR/TB technologies with potential to facilitate
training in the management of persistent cyber-threats, their changes in perspective, execution,
and patterns. However, as a consequence of the dynamic and rapid development of technologies
and the enhanced capabilities they provide, the conclusions are limited in the goal of predicting the
evolution of future CR/TB platform capabilities and the scope of training they support. The taxonomy
that captures these dynamic trends needs to be re-established in the light of advances made in the
recent past.

4. Systematic Review

A systematic review to bring to fore the context of this paper is presented using this section.

4.1. Cyber-Ranges and Test-Beds

Table 1 is a summary of CRs and TBs covering a period of five years, the basis for a systematic
review to predict the threat landscape, dimension and proliferation taking into consideration
continual technological advancement. The Table is segmented into a number of categories viz.
Military, Defense and Intelligence (MDI), Academic (Aca), Enterprise and Commercial (EC),
Service Providers (SP), Open Source (OS), Law Enforcement (LE), Government (Gvt), Mode of
Deployment (Deploy), Area of Specialties (Specialty), Types (Type), The Team it supports (Team),
The Testing Environment (TE) and Method of Experimentation (ME).
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Table 1. Summary Table of Related Works.

Categories Ref

M
D

I

A
ca EC SP OS LE

G
ov

t

D
ep

lo
y

Sp
ec

ia
lt

y

Type

Te
am TE ME

NCR
[17]
[16]
[19]

Y N N N N N Y
C,

VPN
ST, NS Fed

R, B,
Gy

VM E

Virginia CR
[21]
[19]

N Y N N N N N C ST
Pub,
Prv

R, B VM N

Michigan CR [19] N Y N N N Y N
C,

VPN
ST, AS,

CSE
Pub,
Prv

R, B
VM,
SB

N

Pinecone CR [19] N N Y N N N N N N N N N N

IBM X-Force [19] N N Y N N N N C N Prv R, B
VM,
SB

N

Cyberbit CR [19] N N N Y N N N N N N N N N

Arizona CWR [19] N N N N Y N N N CSE N N N N

CRATE
[22]
[19]

Y N N N N N N
C,

VPN
N Fed R, B VM N

Cisco CR [19] N Y Y N N N N
C,

VPN
N

Pub,
Prv

R, B,
Gn

VM N

NATO CR
[23]
[19]

N Y N N N N N
C,

VPN
N Fed

R, B,
G,
W,
Y

VM,
SB

N

DoD CR
[24]
[19]

Y N N N N N N
C,

VPN
N Fed R, B

VM,
SB

N

Raytheon CR [19] N N Y N N N N
C,

VPN
N Fed R, B N N

Baltimore CR [19] N N Y N N N Y
C,

VPN
N

Pub,
Prv

R, B N N

Florida CR [19] Y Y N N N N Y C
PT, EH,
NS, SS

Fed,
Pub,
Prv

R, B N N

CRUD [19] N Y N N N N N N N N
R, B,

P
VM N

Regent CR [19] Y Y Y N N N N N
RA, M,
TV, DF

N N N N

Wayne CR [19] N Y Y N N N N C
EH, CTF,
PT, EH

N N SB N

Arkansas CR [19] N Y N N N N N C PT N N VM N

Georgia CR [19] N N Y N N N Y N N N N N N

SIMTEX [16] Y N N N N N Y N CSE Pub N N S

CAAJED
[25]
[16]

Y N N N N N N N CSE Pub N N S

SAST
[26]
[16]

Y N N N N N N N CSE Pub N N S

StealthNet
[27]
[16]

Y N N N N N N N CSE Pub N N S

SECUSIM
[28]
[16]

N Y N N N N N N CSE Pub N N S

RINSE
[29]
[16]

N Y N N N N N N CSE Pub N N S

NetENGINE
[30]
[16]

N Y N N N N Y N CSE Prv N N S

ARENA
[31]
[16]

N Y N N N N N N CSE Pub N N S

OPNET-based
[32]
[16]

N N N N N N N N NA Pub N N N
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Table 1. Cont.

Categories Ref

M
D

I

A
ca EC SP OS LE

G
ov

t

D
ep

lo
y

Sp
ec

ia
lt

y

Type

Te
am TE ME

LARIAT
[33]
[16]

Y N N N N N N N CSE Pub N N S

VCSTC
[34]
[16]

N Y N N N N Y N CSE Pub N N S

Breaking Point [16] N N Y N N N N N Training Prv N N S

Exata [16] Y N Y N N N N N Training Prv N N S

PlanetLab [16] N N N N N N N N
Training,

CSE
Fed,
Pub

N N O

X-Bone [16] N N N N N N N N CSE Prv N N O

JIOR [16] Y N N N N N Y N
CSE,

Training
Fed N N E

INL
[35]
[16]

Y N N N N N Y N
CSE,

Training
Fed N N E

Emulab
[36]
[16]

N Y N N N N N N
CSE,

Research
Fed N N E

DETER [16] N Y N N N N N N
CSE,

Research
Fed N N E

Virtualised CR
[37]
[16]

N Y N N N N N N
CSE,

Research
Fed N N E

Reassure
[38]
[16]

N Y N N N N N N Research Pub N N E

Northrop G [16] Y N Y N N N N N
CSE,

Training
Prv N N E

Counter HC [16] N N Y N N N N N
Training,

CSE
Prv N N NA

Detica [16] N N Y N N N N N Training Prv N N N

ATC
[39]
[16]

N N Y N N N N N Training Prv N N LS

Testbed@ TWISC
[40]
[20]

N Y N N N N N C
Research,

ST
Prv N SB E

INSALATA
[41]
[20]

N N N N Y N N C
NS,

Research
Prv N

H
yb

ri
d

E

CyberVan
[42]
[20]

Y N N N N N N C ST, NT Pub N

H
yb

ri
d

S

SoftGrid
[43]
[20]

Y N N N Y N N C
ST, NT,

AS
Prv N H E

Legend:
Aca: Academic or Research H: Hardware RA: Ransomware Attacks
AS: Attack Simulation LE: Law Enforcement S: Simulation
B: Blue M: Monitoring SB: Sandbox
C: Cloud MDI: Military, Defense and Intelligence SP: Service Provider
CSE: Cyber Security Exercise ME: Method of Experimentation SS: System Security
CTF: Catch-The-Flag N: No/Not Available ST: Security/Software Testing
DF: Digital Forensic NS: Network Security TE: Testing Environment
E: Emulation O: Overlay TV: Threat and Vulnerability
EC: Enterprise and Commercial OS: Open Source VCN: Virtual Clone Network
EH: Ethical hacking P: Purple VM: Virtual Machine
Fed: Federated Prv: Private VPN: Virtual Private Network
Gn: Green PT: Penetration Testing W: White
Govt: Government Pub: Public Y: Yellow
Gy: Grey R: Red Y: Yes/Available
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• Application Domains: A total of 44 CRs were categorised, including the CRs surveyed by [16,19].
Figure 4 shows that CRs have been predominantly used for academic purposes in education
and research at 31%. The result differs from that of Davis and Magrath [16] of 2013, where the
predominant use of CRs was in the training for cyber-security, a paradigm shift in the main
application. The trend is also consistent with the findings presented in Section 2; that the
bulk of CR papers were published by the academic community reporting on applications in
teaching, learning, and research; followed by Enterprises and Commercial organisations, as well
as, Military Defence and Intelligence for training purposes such as cyber-defence preparedness
both at 24% respectively. The use in of CRs in Government was at 15% rate, while other application
areas such as Law Enforcement, Service Providers, and Open-Source constitute only 2% of the
manuscripts surveyed.

24%

31%

24%

2%
2%

2%

16%

 

 

MilDef&Intel
Academic
Commercial
LawEnfor
OpenSource
Service Provider
Govt

Figure 4. Cyber-Range Domain of Applications.

Only five TBs were identified (Table 1), of which three were applied in academia for the
purposes of education and research; Testbed@TWISC [40], CyberVan [42], and INSALATA [41].
SoftGrid [43] and systems such as LARIAT [33,44], have been applied in defence and
intelligence training.

• Types: Figure 5 shows that public and federated CRs are predominant in use at 30% respectively,
private at 24%, a combination of Public-Private at 11%, a combination of Federated-Public-Private
at 3% and Federated-Public at 2%. A link between the cyber-security preparedness application
with the type of technology is evident. The predominant domain of application is for academic
purposes and the institutions that provide education and research are mostly public with
international collaborative perspectives, thereby suggesting an inter-relationship.

24%

30%

30%

11%

3%3%

 

 

Private
Public
Federated
Public−Private
All
Federated−Public

Figure 5. Cyber-Range Types.

CyberVan [42] is a public type of Test-bed, while Testbed@TWISC [40], INSALATA [41],
SoftGrid [43] and LARIAT [33,44] are private TBs.

• Team Formation: Team formations are central to training through exercises emulating operations.
Teams are formed depending on the type of exercise; (1) Red team acts as adversaries by launching
attacks on the network system; (2) Blue team is responsible for defending against an adversary
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attack; (3) White team for administrative management; (4) Purple team sets objectives for offensive
and defensive strategies; (5) Green team is responsible for maintaining network efficiency; (6) Grey
team conducts non-malicious activity; and (7) Yellow team acts as a motivator during each exercise.
From the survey Red-Blue team formation is most prominent at 67%, an indication that many CRs
are dedicated to cyber-attack and defence training and exercises, followed by Red-Blue-Grey teams
at 9% and others such as Red-Blue-Green, Red-Blue-Green-White-Yellow and Red-Blue-Purple
with 8% each as shown in Figure 6. The training of teams on operational environments is restrictive
in the scope of threat conditions that can be established as it compromises business continuity.

67%

9%

8%

8%

8%

Figure 6. Cyber-Range Teams.

• Methods of Experimentation: Figure 7 highlights that simulation is the most common
implementation methodology at 60%, followed by emulation at 38%, overlay at 8%, and finally
live scenario demonstrations at 4%.

38%

50%

8%
4%

 

 

Emulation
Simulation
Overlay
Live Scenario

Figure 7. Cyber-Range Methods of Experimentation.

Testbed@TWISC [40], INSALATA [41], SoftGrid [43] and LARIAT [33,44] all use emulation
techniques except CyberVan [42] that is based on simulation.

4.2. Technologies

Figures 8 and 9 summarise CR Core technologies segmented as virtualisation, simulation,
containerisation, and physical hardware; some CRs provide a combination of these technologies
such as virtualisation with physical hardware. TB implementations target the training of cyber
situational awareness for domain experts in the areas of control and information technology networks.
The platforms also enable training in operational technologies with few employing simulation and
emulation but the bulk are based on physical hardware. Table 2 presents an overview of CRs/TBs
technologies used based on the available literature with focus on the selected application areas.

4.2.1. Core Technologies

The modelling of certain infrastructures underpinning a particular application require the use
of a combination of methods, in effect a hybrid implementation as shown in Figure 10, where the
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combination of Virtualisation with Physical Hardware technologies is presented. These combinations
enhance the capabilities of CR—by allowing operational and information technologies to be part of a
scenario—embody features of both CR and TB.

Containerisation such as Docker is summarised in Figure 11. Containerisation is a light-weight
approach to virtualisation, a uniform structure in which any application can be containerised (stored),
transported, and deployed (run). Hardware virtualisation, on the other hand, implies Virtual
Machine (VM) deployment i.e., a layer between the hardware and the host operating system,
managed by a hypervisor as shown in Figure 12. The use of containers is more scaleable compared
to VMs, but the latter provide a more flexible and secure system. Their application depends largely
on need but there is the possibility of VMs and Container technologies merging into a form of
cloud portability.

Figure 8. Architectural Design of a Cyber Range.
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Figure 9. Architectural Design of a Test-Bed.

Figure 10. Hybrid Computing Stacks.

Emulation replicates the operations within the target infrastructure through a mirror system,
while simulation replicates the behaviour of the target system through a model; thus, simulation is
preferred in virtual training applications.
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Figure 11. Containerisation Technology.

4.2.2. Infrastructure Technologies

Technologies that establish, manage, and control CRs are located between the core and front-end
layers (Figure 8). Their selection vary widely based on CR developers’ preference and the goal
application of the CR. The range of technologies are readily available, example being virtualisation
management solutions such as vSphere and Wisper.

A number of CR implementations [17,24] utilise a combination of physical servers with virtual
solutions. In these cases, the physical server has direct and exclusive access to the physical hardware,
and the virtualisation has virtual hardware emulated by the hypervisor, which in turn controls all access
to the underlying physical hardware. Virtualisation acts as a layer in between the hardware and the host
operating system. Two types of hypervisor are in routine use, referred to as Type 1 and Type 2. Type 1
hypervisor runs directly on the host machine’s physical hardware, while Type 2—more commonly
known as a hosted hypervisor—is installed on top of an existing operating system. A hypervisor
employs four main virtual resources; vCPU, vMemory, vNetwork (vSwitch), and vDisk.

Figure 12. Virtualisation Technology.
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SCADA-based TBs employ Human Machine Interfaces (HMI) server software, software-based
Relay Terminal Units (RTUs) and Relay Programmers, as a consequence of the need to reproduce an
exact model of the inter-dependencies between components. Accuracy of the model is essential in the
evaluation of the effectiveness of cyber-attacks and their corresponding countermeasures [45,46].

Since many CR articles do not reveal the underlying infrastructural technology in use,
e.g., vSphere, Wisper in their design and implementation, the use of ‘Available’ in the Table 2 indicates
an infrastructure technology in use that cannot be specified, while ‘Not Available’ indicates that no
information on the infrastructure technology was reported. Both are included for completeness.

4.2.3. Front-End Technologies

The bridge between end user and the CR—Core and Infrastructure—is the Front-End; the Core,
infrastructure and user type determine the features of the Front-End. The basic elements of a web server
as shown in Figure 13 represent the Hardware and Software components, the former is the physical
server used by the hosting providers and the latter comprises an operating system and Hyper-Text
Transfer Protocol (HTTP) server databases and scripting languages that enhance the capabilities of the
web server. A Web server such as Apache or Nginx is deployed at the back-end coupled with a Content
Management System (CMS) compiling results from scripting languages, databases, and HTML files to
generate content for to the user. Web technologies provide the front-end interface as shown in Figure 8
such as HTML5-based console simulators.

TBs, on the other hand, rarely use front-end technologies as the environments being modelled
are predominately Operational and Information Technology (OT/IT) systems on Human Machine
Interface (HMI) servers, Historians, Software-based Remote Terminal Units (RTUs) and Relay
Programmers [45]. Table 2 provides an overview of the available literature on CR Core, Infrastructure
and Front-end technologies. In the same vein, Table 3 are the characteristics of two different types of
available Test-Beds.

Figure 13. A Simple Web Server Architecture.
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Table 2. CR and TB Technologies.

ine Classification Ref. Year Core Technology Infrastructure Technology Front-End Technology

ine Cyber-SHIP [47] 2019 Live Scenario Not Available Not Available
ine ICSRange [9] 2019 Simulation Not Available Not Available
ine Clusus [48] 2019 Simulation Available Available
ine Testbed@TWISC [40] 2018 Emulation Available Available
ine CYRAN [49] 2018 Hybrid Available Available
ine INSALATA [41] 2017 Emulation Available Available
ine Virginia CR [21] 2017 Simulation Available Available
ine CyberVan [42] 2016 Simulation Available Available
ine SoftGrid [43] 2016 Emulation Available Available
ine SCADA-SST [50] 2016 Simulation Available Available
ine KYPO [51,52] 2015 Simulation Available Available
ine CRATE [22] 2015 Emulation Available Available
ine DoD CR [24] 2014 Simulation Available Available
ine SCADAVT-A [53] 2013 Live Scenario Available Available
ine StealthNet [27] 2011 Simulation Available Available
ine NCR (DARPA) [17,24] 2011 Emulation Available Available
ine PowerCyber [45] 2010 Simulation Available Available
ine Reassure [38] 2009 Simulation Available Available
ine ATC [39] 2008 Live Scenario Not Available Not Available
ine CAAJED [25] 2008 Simulation Available Available
ine DETER [54] 2006 Emulation Available Available
ine RINSE [29] 2005 Simulation Not Available Not Available
ine ViSe [55] 2005 Emulation Available Available
ine NetENGINE [30] 2003 Simulation Available Available
ine LARIAT [33] 2002 Hybrid Available Available
ine

Table 3. Offline and Real-Time Test-Beds.

Real-Time Offline

Expensive Less expensive
Complex Easy implementation
Time-gain Extended time

Integrate generators controllers Cannot integrate hardware systems

5. Scenarios and Applications

Different scenarios and application areas of CRs and TBs technologies will be the focus of
this section.

5.1. CRs and TBs Scenarios

Scenarios are simulated or emulated networks comprising traffic as well as potential threats
in the network layer (PAN, LAN, MAN, WAN), software and hardware implemented through
virtual machines (VMs), Containers or Sandboxes. In a bid to comprehensively represent target
networks, the scenario can also feature other system peripherals and appliances. The simulated
network environment is injected with traffic representative of user activities e.g., web surfing, email,
and other server communications and real-life attack scenarios such as in Control or Data centres
(Figure 14) are deployed. A predefined attack scenario library as well as custom-built scenarios are
integral to the platform.

Yamin et al. [20] state that scenarios consist of Purpose, Environment, Storyline, Type,
Domain and Tools, features to appropriately classifying a scenario aligned with the objectives of
the exercise/training. The major differences between TB and CR scenarios are in the attack scenarios
being simulated or emulated (Figure 14). TBs predominately simulate attacks in critical infrastructures
such as energy sub-stations e.g., re-configuring a relay systems/devices Denial of Service (DoS),
modifying/disrupting valid alarms, producing fake alarms, sending incorrect commands to the relay,
manipulating readings from a relay, and injecting incorrect data to historian [45], whilst CRs most
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often simulate multi-connected network such as Control Centres, Data Centres, and Internet-enabled
IT/OT system attacks e.g., SQL Injection, Apache Shutdown, Web Defacement, Trojan Data Leakage,
Java Network Monitoring System (NMS) Kill, Database (DB) Dump via File Transfer Protocol,
Ransomware, DDoS, Synchronise (SYN) Flood, SCADA Human Machine Interface (HMI).

Figure 14. Attack scenarios types.

Scenarios depend largely on the application and the architecture of the network and adapt to the
training goals. The relationship between the goals of the training and the optimum scenario remains
fundamental in the assessment of the positive value of CR or TB.

Table 4 presents a list of attacks and their associated settings in the last five years. Attacks are
classified by scenario complexity and type; ‘Low’ for scenarios with at least one attack test; ‘Medium’
for scenarios with two classical attacks; and ‘High’ for sophisticated or more than two attacks.

Scenario Design, Validation and Deployment

• Design: The definition of functional and non-functional as well as user and team-related
requirements are essential pre-requisites in the design of a CR scenario. While the functional
requirements pertain to the services the system provides, non-functional requirements describe
how the system reacts to inputs and its dynamic responses. The team-related requirements are the
tools and resources inherent within the exercise for use by teams [56]. Furthermore, ab initio a set
of attack trees based on an understanding of how an attacker can gain access to the domain under
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study is imperative to an effective attack scenario design. Thus a comprehensive vulnerability
assessment must be established, and coupled with the impact scenarios, are combined produce a
set of attack trees, the foundation for establishing a representative real-life breach condition and
in turn enabling an evaluation of the optimum countermeasures to arrest the attack [45,57].

• Validation: Russo et al. [58] report on a framework for automating model validation of scenarios
through a Scenario Definition Language (SDL) on the OASIS Topology and Orchestration
Specification for Cloud Application (TOSCA) [59]. SDL/TOSCA based implementations automate
the validation of the scenario against specified design errors, such as incorrect hardware/software
bindings. The approach translates a SDL design into a Data Log specification, before verifying if
the specification satisfies the goals of the scenario. A design modification is triggered whenever
the validation fails, otherwise the scenario is automatically deployed. While developed for CR
applications, the solution is also applicable to TBs but is dependent on the domain of study,
most relevant in attack scenarios in targeting Control Centres (Figure 14).

• Deployment: A number of other approaches to activating scenarios have been reported.
CRACK [60] are a SDL/TOSCA scenario definition, design and deployment languages and
Automated Deployment of Laboratory Environments Systems (ADLES) [61], an open source
specification language and associated deployment tool, achieve the same goals. ADLES provides
an instructor a tool-set to design, specify, and semi-automatically deploy the training scenario
together with tutorials as well as competitions. Furthermore, efficient sharing of classes
together with the associated computing environment are provisioned to participants. The ADLES
deployment begins with the verification and fixing of Master instances by converting them
into templates followed by the use of these instances to clone services, create virtual networks
and folders. The full exercise scenario on the specified virtualisation platform is then deployed.
While these implementations are current state-of-art deployments, it is important to acknowledge
that within the foreseeable future, the effectiveness of these tools will be diluted as the
sophistication and complexity of cyber-attacks evolve powered through AI-based and Bio-Inspired
attack strategies, motivating the need to migrate to Real-Time Auto-configurable systems.

5.2. CR and TB Applications

Figure 14 illustrates a clear trend in the convergence of CRs/TBs cyber-awareness training.
While it is acknowledged that CRs cover a broader applications than TBs in the recent past, a number of
domains where CRs are in particular use is becoming more evident, such as in industries for commercial
purposes, education and research for academic purposes, military, defence and intelligence and in
the defence of critical national infrastructure. TBs, although in use within these domains, are applied
more extensively in Smart Grids and IoT architecture due to the embedded nature of HMI, Historian,
RTUs, Relays implementations which better define the type of attack scenarios witnessed in these
specific domains.

• Industrial and Commercial: IBM X-Force Command Centre [19] is the first commercial malware
simulator that tests for the security of systems. At the heart of the simulator is a mobile Command
Cyber Tactical Operations Center (C-TOC) that provides cyber-range and watch floor services.
The C-TOC can be configured both as an immersive training CR, a platform for Red teaming
and capture-the-flag competitions, as well as a watch floor for special security events. The Ixia
Breaking Point, advertised as providing CR capabilities [16], is also a commercially available.
The single rack-mountable appliance provides traffic generation and a ‘Strike Pack’ of network
security and malware attacks. Exata is yet another commercially available simulation-based CR.
A number of emulation-based CR are currently on offer, a good example being the ATC [39].

• Education and Research: Cohen [62] presents the development of SECUSIM [63], a highly
customisable system with integrated Graphic User Interface (GUI) capabilities, the first example
of the education and research community creating a training platform for simulating the impact
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of attacks on computer networks [16]. The University of Illinois has developed the Real Time
Immersive Network Simulation Environment (RINSE) in 2006, also primarily for training [29].
Other implementations in academia for modelling computer networks and intrusion detection
systems (IDSs) attacks include the Virginia CR [21], Emulab [36], Virtualised CR [37], ARENA [31].
NetENGINE [30] has been designed for training on the strategies to combat cyber-attacks in large
IP networks comprising a Virtual Cyber-Security Testing Capability (VCSTS) for the automated
testing of new devices to assess its security robustness before deployment [34].

• Military, Defence and Intelligence: Davis and Magrath [16] assert that the USA Air Force (USAF)
used CR around 2002, an element of the Simulator Training Exercise Network (SIMTEX) referred
to as the Black Demon. The first reported CR was the Defence Advanced Research Projects
Agency (DARPA)’s National Cyber Range (NCR) representing the foundation in the training of
their military, defence and intelligence agencies on cyber warfare initiated by the United State
military in 2009 as a consequence of the US Department of Defence classified military computer
networking infrastructure being significantly compromised in 2008 [64]. Although NCR was
largely a military-sponsored initiative, its use and application cut across the military, commercial,
academic, and Government sectors [16,17]. Fourteen (14) CR applications in Military, Defense and
Intelligence have been recorded to date ranging from CRATE [22], DoD CR [24], CAAJED [25],
SAST [26], StealthNet [27], LARIAT [33] to INL [35]. Their role is not only to train the security
agencies of sovereign countries on counter cyber-terrorism and warfare, but also to protect the
nation’s critical infrastructure such as Naval, Power and Aviation. SoftGrid [43] and CyberVan [42]
are examples of TBs found in these application sectors.

• Smart Grids: The predominate area of application for TBs is Smart Grids owing to the reliance
for the effective operation of an ever-evolving power network on an enabling communication
network with information flow managing the power delivery. Consequently, the security of
equipment and the critical signals that control the power system becomes essential for the safe,
flexible and uninterrupted provision of the supply of energy.

A Smart Grid Test-bed can be cast as two simulation environments (Figure 15), one for the power,
the other for the cyber/communication network. Co-simulator segmentation is a necessity as
a hacker can target operations within both networks [12]. Here, TBs are classified into two
categories; off-line and real-time. An off-line environment is the most prevalent approach realised,
most readily, by SCADA systems [65]; refer to Table 3 for details. OMNET++ or NS2 are invariably
at the core of most cyber simulators, with the TCP/IP protocol used to communicate between
simulators. Synchronisation is central to the co-ordination of operations in the two domains.
Real-time TBs have been proven to facilitate efficient training outcomes [66].

• IoT Devices: In the recent past, Internet-of-Things (IoT) architectures have evolved rapidly
characterised by a growing complexity of inter-connections of an ever-increasing number of
nodes (‘things’). The proliferation of highly connected environments translates into an enhanced
spectrum of vulnerabilities/opportunities for cyber criminals. Furthermore, IoT-inspired
data-driven solutions have been adopted by key industry sectors as a means to implement
business transformation. Securing network infrastructures consisting for example, of medical
records, financial credential information against breaches becomes even more challenging.
The training of security operators in these new classes of threats is essential. IoT Test-beds
that can simulate different kinds of attacks play an important role in supporting the delivery
of dynamically changing training requirements. Example IoT Test-Beds have been reported
in [67–69].
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Table 4. Some Cyber-Attacks and their Domain in the last 5 years.

Ref Year Domain Tool Complexity Attack Type Commentary

[70] 2020 Smart Grid OPAL-RT Medium test-bed cyber events Cyber attack needed to
validate

[67] 2020 IoT Open source platform High Extensive
analysis/Automated
tests

Time analysis needed to show
the efficiency of Test-bed

[65] 2019 Smart Grid
(PSCADA)

OMNET Low DoS/FDI Lack of testes and scenarios

[71] 2019 IoT (SCADA) – Medium DNS attack security tests required

[72] 2019 IoT QEMU emulator Low DDOS attack Few attacks are tested

[73] 2018 Water storage
(SCADA)

– High Packet injection/ARP
spoofing/DoS

Real-time implementation
discussion missed

[74] 2018 Information
centric network

CONET High Input traffic pattern Adding further experiences

[66] 2017 Smart Grid OPAL-RT High Access to communication
link

Real-time implementation of
OPF model

[75] 2017 IoT FIT/IoT LAB Low No attack tested lack of security tests

[76] 2017 Cloud Open source Low No attack tested lack of security tests

[77] 2017 Industrial control
system (SCADA)

– Medium Availability
attack/Integrity attack

Detection tool should be
implemented

[69] 2017 IoT(SCADA) Hardware-based test
bed

High 5 kinds of attack Test bed with IDS

[78] 2016 IoT Software-based
OpenFlow switches

Low No attacks Software defined networking
testbed

[79] 2016 Smart Grid Real Time Digital
Simulator

Low Man-in-the-Middle
attack

Test bed with Attack Resilient
Control algorithm

[50] 2016 SCADA C++ Low Denial of Service attack Test-bed based on SCADA
simulation environment
(SCADA-SST)

[80] 2016 SCADA – Low Man-in-the-Middle
Attack

Test-bed using CPS topology

[81] 2016 Power System Real Time Digital
Simulator (RTDS)

Medium Aurora Attack/Network
Based Cyber-Attacks

WAMS cyber-physical test-bed

[82] 2015 Power System Real Time Digital
Simulator (RTDS)

Medium Measurement
attack/Control attacks

PowerCyber CPS security
Test-bed

NS-2
NS-3
OMNET
OPNET
RINSE

PSCAD
OPEN DSS
OPAL-RT
RTDS
PSLF

Electrical Power 
System

Communication 
Network

Figure 15. Co-Simulation Test-bed.

5.3. CR and TB Realisation

The flowchart in Figure 16 describes the steps in its realisation;

1. Evaluate the weaknesses in the infrastructure; the architecture of the local network, past attacks,
and the current security strategy should be examined.

2. Map the basic solutions; e.g., a firewall or control of external devices.
3. Asses current security policies; to enhance the security level of an infrastructure.
4. Training by simulation of attack exercises and scenarios; the definition of an appropriate virtual

TB for training should adopt the following steps;

Step 1

A classification of the infrastructure is an essential step in advance of the realisation of the TB.
Validation tests on the infrastructure may are required for an accurate classification.
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Step 2

The vulnerabilities of the infrastructure should be identified; the localisation of vulnerabilities is
important in informing on the security deficiencies within the infrastructure.

Step 3

Selection of the most appropriate software dependent on the application domain and the
infrastructure. As an example, in the Smart Grid environment, OPAL-RT can be chosen to simulate
the electric power and a discrete event network simulator to simulate the communication network.

Step 4

A modular approach is adopted to describe the infrastructure, with the input/output of each
module verified.

Step 5

A database of different tests and scenarios is created, fundamental for the validation of the TB.

Step 6

Users are trained to respond to a range of attacks and threat scenarios, with the relevant reports
being extracted from the interface module of the TB.

Step 1: Classification /
  Real-time tests of the infrastructure

Step 2: Analyzing the vulnerabilities
of the infrastructure

Step 3: Selection of adequate software

Step 4: Modelization of the 
infrastructure

Step 5: Creating test database and 
scenarios

Step 6:Validation and test attacks

Verification

1. Evaluating the cyber-security risks 
and the weakness of the infrastructure

3. Elaborating security policies and rules

2. Implementing basic protection 
(Firewalls/ Device controls access…)

4. Training strategy and virtual environment 
creation/ Test-Bed realization

Figure 16. Cyber-range/Test-bed flowchart.
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6. Analysis and Taxonomies

Two taxonomies in Figures 17 and 18 for treating CRs/TBs have been established based upon
the reviewed literature. Current taxonomies encompass both CR and TB due to the close coupling
between platforms, however, each offers different services governed by their implementation and
training aims. The differentiation is captured in order to compile evidence demonstrating that CRs are
mostly applied in IT while TB are preferred in OT environments. Moreover, CR are orientated towards
end-users with a general understanding of the simulated architecture, while test-beds often require
domain knowledge. The differentiation confirms the need for two separate taxonomies. In order to
build the core of a CR, a scenario must be defined. The scenario must cover the following elements:
(I) A narrative, enabling the user to evolve. (II) A domain of application, these domains can be broad
or constrained (e.g., cyber training Vs maritime cyber training). (III) The education mechanics are
core to the scenarios as they inform the platform mechanics during the scenario (i.e., collecting or
displaying educational data for self reflection, case studies, etc.). (IV) These mechanisms further rely
on the gamification. (V) The scenario can be of two types; dynamic or static.
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Figure 17. Cyber-Range Taxonomy.
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Figure 18. Test-Bed Taxonomy.

6.1. Cyber-Ranges

The definition of the cyber-range taxonomy is informed by future developments as inferred from
the reviews conducted in this paper.

6.1.1. Management

The management layer presents a range of interfaces to various users, administering the collection,
storage and analysis of the data describing scenarios and user-interactions. Information is presented to
users through a dashboard along with the available scenarios and attack types per scenario. The layer
also administers users and their roles as well as being responsible for reporting.

6.1.2. Monitoring

The component monitors users on the platform, capturing progress and assessing performance
throughout the different scenarios as well as being responsible for connections of remote users to the
platform, their actions, inputs paths selection and team formations. This component also validates the
health of the platform and the various services and scenarios provisioned.

6.1.3. Econometrics

Understanding the impact of the actions taken by an user is essential, especially to estimate the
level of situational awareness. The component executes an evaluation of the economic impact of
actions taken by users within the various scenarios.

6.1.4. Types

Hardware based CRs allow training on operational technologies such as programmable logic
controllers. Simulation/Emulation based CRs allow an infrastructure to be replicated, are scalable
and cost effective, however, it is often challenging to replicate architecture accurately due to software
limitations. A federated approach may be adopted where multiple CRs are clustered, each CR
dedicated to simulating a single environment e.g., Large Enterprise Network and a Power Network
and creating scenarios that span across all CRs. The hybrid solution, while similar, often depicts CRs
composed of Hardware and Software solutions to provide both scalability, and affordability.
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6.1.5. Teaming

Teams are at the heart of managing cyber protection services for organisations and consequently
CRs are required to provide the appropriate environments for appropriate training. The Yellow team
comprises application developers and software architects managing the CR. The Green team focuses
on enhancing the security provision, the automation of tasks and ensure that the code is of the highest
quality. The Orange team facilitates the education and is responsible of the creation and development
of scenarios. The Blue team focuses on developing defensive actions, to protect the network and define
the most effective countermeasure to arrest the breach. The Red team adopts an offensive stance,
often competing against the Blue team. Finally, the Purple team is composed of users with both Blue
and Red team skills, with knowledge of both defensive and offensive tactics.

6.1.6. Recovery

The recovery component ensures that all policies and patches remain up to date. The component
maintains the operational state of the CR during an exercise, executes regular back-ups and
restricts cyber-attacks spilling from the CR. The function is central for digital forensic purposes
post incident/cyber-attack.

6.1.7. Attack Types

The component encompasses descriptions of the different attacks including the security
configurations for the vulnerabilities within scenarios. A database of the vulnerabilities, as well
as a high/low level description of each mapped against the OSI model is established.

6.1.8. Scenarios

The scenario component is subdivided in five sub-components focusing on (I) the Narrative—it
is essential for a scenario to have a target goal as well as the consequences of any action. A desire,
dilemma and conflicts can also be added to enrich the learning environment. (II) the Domain defines the
context in which the scenario is currently being simulated. (III) the Education supports users to navigate
and learn the skills necessary to complete the scenario through tutoring, scoring, demonstration,
analysis and review of actions with the user in a role base fashion or through a specific case study.
(IV) Gamification is used to embed game mechanics to drive and maintain the level of user engagement
e.g., encourage users to engage with the platform and/or to perform a specific task by enticing with a
lure aligned to user behaviour/preferences. (V) the type of scenario can be either static with a single
goal or dynamic evolving with each action of the user.

6.2. Test-Beds

In line with the CR taxonomy discussed earlier, the focus of the proposed TB taxonomy is also
informed by future developments/technologies.

6.2.1. Education

The Education component is used to explore new security scenarios, most often utilised by the
evaluation team to develop and confirm the scenario for the optimum learning outcomes best students.
Such exercises may include the evaluation of the formative assessment and ease of implementation.

6.2.2. Model

The Modelling component provides control as well as directs process on the innovation cycle.
A model of the innovation is created and processed in a controlled environment satisfying a set
of constraints.
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6.2.3. Generation

The Generation component provisions comprehensive information on the underlying technology
and vendors, inputs that inform the features of the innovation and its deployment.

6.2.4. Execution

Real-time, configuration-based remote creation of innovation provide insights into its impact on
the behaviours of the system being modelled or tested. Essential to the test of the resilience of the
targeted system is an evaluation of the behaviour at different execution scenarios, optimally executed
within a controlled environment as that provided by a test-bed.

6.2.5. Evaluation

Evaluation of model within a TB can be done manually or automatically. The former is executed
with human intervention, the latter harnesses an algorithm established with considerations of the key
variables of the system.

6.2.6. Management

The Management components like CRs, present a number of interfaces as a function of the
type of users. The services ranging from managing human-machine interface between the user and
the TB helping to mitigate the limitations of these interactions, to managing the traffic for anomaly
detection and representative domain traffic. The module also provides log statistics of user activities,
generates reports and feedback. For example, SCADA-based TBs employ Human Machine Interfaces
server software, software-based Relay Terminal Units and Relay Programmers. An accurate model of
the inter-dependencies between the energy and cyber components is essential to the evaluation of the
impact of cyber-attacks and in informing on the most effective countermeasure.

6.2.7. Types

Cyber-based TBs test innovation in an Internet-enabled environment; stand-alone physical TBs
operate within an controlled environment, isolated from an operational network. The hybrid TB
solution is a combination of Cyber and Physical TBs, comprising hardware and software in a networked
as well as an isolated environment to provide training in OT, scalability, and affordability.

6.2.8. Post-Incident

The component ensures the integrity of the post incident procedures, the basis for an investigation
of the performance of an innovation as well as confirming the validity of the process used in testing
an attack or a failure of an innovation. Standard and Forensics are two types of Post-Incidence
investigation, the former used to provide a detailed review that helps to understand each phase
of an incident, from start to finish. In a situation awareness review, such components are one step
in the incident response process that requires a cross-functional participation from all individuals
to determine the root cause and full scope of the attack. Forensic, on the other hand, enables a
scientifically derived and proven method to collect, validate, identify, analyse and interpret evidence
derived from digital sources. An evidence-based review that characterises an incident from start to
finish is generated.

6.2.9. Recovery

Recovery ensures that all policies are up to date, that the operational state is maintained and that
regular back-ups are being carried out. The component is also of use for digital forensic purposes after
an incident, helping to mitigate further failure or attack. Furthermore, in the process of surfacing the
root causes of failures, it helps in isolating and disconnecting the system under investigation.
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6.2.10. Attacks

The Attack component encompasses descriptions of potential attacks including the security
configurations for the vulnerabilities within scenarios. A database of the vulnerabilities is created
together with a high/low level description of each vulnerability mapped against the OSI model.

6.2.11. Trainee

The Trainee component contains specific domain knowledge required for and records the progress
of each trainee with regard to specific modules and performance measures. A report is usually
displayed in the trainee dashboard.

7. Training Methods

The spine of the training is founded on strategies informed by educational methodologies and
is most often segmented into two classes. The first is centred on the relationship between coach and
trainee using classical training methods characterised by the use of a number of support tools such as
online courses, certification, training, and presentation. The second method relies more heavily on
new elements such as gamification and video-assisted techniques.

Classical Training:The fundamental goal is to train trainees to acquire new skills. In the
cyber-security context, the theoretical background and knowledge of security terminologies is
considered the minimum level of achievement. In general, the information flow between a coach and a
trainee is one-way. For instance, online courses and presentations which, for example, describe the
architecture of an infrastructure is such a case, the trainee being a passive information recipient.

Classical training methods adopt a three-prong approach to learning ranging from getting
acquainted with facts, followed by logical tools for the organisation of facts, culminating in the
ability to critically analyse and draw conclusions [83]. The methodology inculcates the ability to
comprehend and take timely and appropriate actions in dealing with cyber-related malicious activities
both at the technical and operator level. The resultant knowledge on the successes and failures inherent
in cyber defence scenarios, is central to a comprehensive cyber situation awareness training program
in both the public and private sectors [84].

Training Methods: Simulation environments implemented through CRs are one of principle routes
to establishing realistic scenarios of target systems, facilitating training through a rich illustration of
real-life security incidents and threats dynamics, thereby preparing and equipping operators in the
selection of the most appropriate responses. The predominant training role of TBs is to emulate the
impact of a range of attack scenarios and test the strategies to arrest such attacks. The trainee is able to
modify the parameters of attacks, test the effectiveness of responses and extract an analysis from the
output reports. The result is an assessment of the security level of the infrastructure as a function of
different attack scenarios. TBs are the foundation of the practical elements of the overall training.

The commonly used strands of the training scope can be classified as:

• Gamification: Gamification has been adopted to make cyber-security training more engaging and
motivating [85]. The principle is to enhance exercises through a compelling experience utilising
graphics and play. The aim is to enrich the challenge, engagement, as well as motivating the
trainees owing to increased levels of interaction. The concept of ‘Attacker-centric Gamification’
was introduced by Adams and Makramalla in [86] with the goal empowering trainees to assume
the roles of attacker combining gamification with entrepreneurial perspectives with an emphasis
on surfacing their abilities, skills, knowledge, motivation, and resources [87].

• Mock Attack Training: The training method, developed by Sadeh et al. [88], embodies an
approach that senses user actions which expose that user’s infrastructure to cyber threats.
The action could be as a result of a mock attack delivered to the user through a messaging service
from any device, a wireless communication service or a fake malware application. The system
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selects the most appropriate training from a list of available training routines based on the users’
reaction to the message in so ding delivering the most targeted training.

• Role-Based Training: One practical training approach through CR-enabled scenarios is to assign
unique roles to trainees. Such roles, for example emulating or taking the place of a hacker in
a real life situation, cyber offensive operator, cyber defender, or training instructor [89] can be
dynamic depending on the exercise, defined or selected using databases that contain predefined
roles. Furthermore, customisation to better emulate real-life enterprise is also possible.

• Exercises: Competitions such as [90–94], are aimed at developing problem solving techniques,
proficiency, teamwork and cyber defense skills by providing the participants with sets of hands-on
cyber-security exercises in real-world scenarios to the participants. ‘Catch-The-Flag’ is an example,
a distributed, wide-area security hacking competition involving multiple teams. ‘Cyber Defense
Exercise (CDX)’ is another form of such an exercise in a larger setting where an inter-agency
academy of an institution competes in the design, implementation, management and defend a
network of computers. CDX is established by setting objectives, selecting an approach, defining a
network topology, creating a scenario, stipulating the rules and choosing the right metrics with
which to determine the lessons learnt [95].

8. The Future of CRs and TBs

8.1. Future Trends

• Real-Time Auto-configurable Systems: MIT’s Lincoln Laboratory developed an
advanced tool for cyber-ranges referred to as Automatic Live Instantiation of a Virtual
Environment (ALIVE), [96], a range application extension to LARIAT. ALIVE has the capability of
ingesting configuration files from Common Cyber Event Registration (CCER) to automate the
building out of Virtual Machines and networking infrastructure of the CR [97]. In addition to the
capability to create virtual networks, it can also automate most of the system network build-outs,
creating end hosts, routers, firewalls, and servers needed to support traffic generation. The host
software packages and user accounts can also be installed.

The Cyber-Range Instantiation System (CyRIS), an open source tool for facilitating cyber-range
creation [98], can execute efficient instantiation of cyber-ranges automatically. CyRIS automatically
aids in the preparation and management of CRs using a pre-defined specification provided by
the scenario managers or instructors. The tool contains both basic functions for establishing the
infrastructure as well its security settings.

ALPACA [99] is one of the modern auto-configurable CR with the facility to set user-specified
constraints to generate complex cyber-ranges. The core of the implementation are an AI planning
engine, a database of vulnerabilities and machine specific configuration parameters with the
ability to generate a VM that includes the sequences of vulnerabilities and exploits.

• Smart, Mobile and Integrated Technologies: Pharos [100], a TB for Mobile Cyber-Physical
Systems, is aimed at supporting mobile cyber-physical system evaluation in live networks. It is a
networked system of independent mobile devices with its fundamental building block based on
Proteus (an autonomous mobile system with highly modular software and hardware), with the
capability of relating with each other and with networks of embedded sensors and actuators.
Push-button repeatability facilitating the recreation of the same scenarios multiple times is an
important feature of the TB.

Cybertropolis [101] is aimed at breaking the paradigm of CRs and TBs by providing what is
referred to as Cyber-electromagnetic (CEMA) range facilities, which merges the features of CRs
and TBs to yield a hybrid type of cyber-security training system. Cybertropolis was developed as a
one-of-kind cyber-range that can be used in the areas of industrial control systems, cyber-physical
devices, IoT and wireless systems. The platform provides the ability to create a heterogeneous



Sensors 2020, 20, 7148 27 of 35

network consisting of virtual Information and Communication Technology (ICT) systems with
integrated live cyber-physical systems, live Radio Frequency (RF), and Internet of Things (IoT)
systems into a virtual environment.

• Training with Augmented Reality Technology: Augmented Reality (AR) is increasingly viewed
as an important dimension in learning in different domains and is being considered as another
impactful technology in future CR and TB training. AR offers the possibility of interaction with
different parts of the systems, in so doing enriching the training owing to enhanced visualisation.
Augmented reality TB or CR create a new interactive experience able to modify the trainee view
of the progression of attacks. AR solution also gates portable solutions, as an example, the attack
reaction could be modelled anywhere without infrastructure dependence. The environment can
be modified and the programmer can add new attack scenarios.

8.2. Future Technologies

• 5G/6G Technologies: 5th and 6th Generation (5G, 6G) networks will transform services using
mobile and wireless network infrastructures by provisioning connections with advantageous
features ranging from low latency with high network bandwidth capability through to
machine-to-machine communication. 5G solutions enable better services using Virtualisation
and Cloud technologies [102], extending to Network Functions Virtualisation (NFV) which
enhances server virtualisation to network devices. Tranoris et al. [102], utilised these capabilities to
demonstrate real-time remote monitoring and video streaming between Vehicle-to-Vehicle (V2V)
in an assisted overtaking application [103], showcasing the potential impact from emerging 5G and
beyond. Mitra and Agrawal [104], described a highly futuristic connected society—“smart living”:
Vehicle Ad-hoc Networks (VANET) cloud for network connected transport systems managing
dynamic real-time traffic demands; and massive M2M communications. West [105] also added
that the revolution will bring about IoT-enabled health services while Letaief et al. [106]
postulate that 6G will bring about ubiquitous AI-based services. The self-same capabilities
present leveraging opportunities for CR and TB engineers and users to provide a seamless,
faster, and low latency-based CR and TB deployments using virtual machines, sandboxes or
containerised technologies.

• Containerisation Technologies: The impact of hypervisor-enabled virtualisation technology in
CRs/TBs cyber-warfare training has been highly beneficial. VMs provide the required isolation
from operational networks but present users with real-life training scenarios. The deployment
of applications to implement VMs on data centres needs a dedicated guest operating system on
each VM, on occasion different from the host operating system. Containerisation technology has
been introduced as light-weight virtualised technology to that of VMs in order to manage these
concomitant accrued overheads. A study conducted by Bhardwaj and Krishna [107] compared
the use of the pre-copy VM migration scheme with that of the LXD/CR container migration
technique, concluding that the use of latter reduces system downtime by 76.66%, migration time
by 65.55%, scalability (volume of data transferred) by 76.63%, throughput (number of transferred
pages) by 76.78%, overhead costs were reduced with regards to CPU utilisation by 55.89% and
RAM utilisation by 76.52%. Thus, containerised technology costs less, guarantees more system
up-time and saves times. Other studies that highlight the benefits of containerised technologies
are Lovas et al. [108], on their software container-based simulation platform in order to achieve
scalability and portability; Mucci and Blumbers [109] to gain flexibility, reduce complexity while
providing extensibility; and Kyriakou et al. [110], to ease deployment, management and resilience
of their cloud-based environment.

8.3. Future Application Areas

• Smart Cyber-Physical Systems: Smart Cyber-Physical Systems (sCPS) are large-scale
software intensive and pervasive systems, that are intelligent, self-aware, self-managing and
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self-configuring [111]. In line with other data driven artificially intelligence powered systems,
sCPS utilise multiple data streams to manage real-world processes efficiently and through these
offers a broad range of new applications and services in housing, hospital, transportation and
automobile applications.

In recent times, cyber-attackers have up-skilled their skills through AI techniques to automate
attacks, augment their strategies, launch more sophisticated attacks and by implication increase
the success rates [112,113]. ICT tools and AI techniques have not only enriched the opportunities
for cyber-attackers as a new form of threat landscape has suddenly emerged. There is a pressing
obligation for cyber-range based training to evolve as a consequence implementing the detection
as well as informing on optimum mitigation of these new threat dynamics.

• Smart Cities and Industry 4.0: The 4th Industrial revolution, also referred to as Industry 4.0,
are data driven, network connected, digitalised industrial systems, heralding an era of automated
manufacturing and service delivery with strong potential of process optimisation, imbued with
new business practices. The evolution is, however, not without its attendant new cyber-threats.
CyberFactory#1 [114] is designed to proffer a solution between future digital factories and
security threats gated by digitalisation. The principles on which the environment is established
are conscious design, development, and demonstration of a System-of-Systems embracing the
technical, economical, human and societal dimension of future factories [12]. The platform
demonstrates sets of major enabling capabilities that foster optimisation and resilience of next
generation manufacturing and service delivery industries. As the evolution unfolds, there is
a need to continue to propose new solutions capable of mitigating the dilemma between the
deployment of future factories/smart cities and cyber-threats.

A body of available literature stresses that cyber threats and privacy concerns will increase
significantly in smart systems due to high degrees of network inter-connectivity; Reys et al. in [115],
Baig et al. in [116], Vitunskaite et al. in [117], Mylrea et al. in [118], Srivastava et al. in [119],
Aldairi et al. in [120], Cerrudo et al. in [121], Alibasic et al. in [122] and Braun et al. in [123].
Wang et al. in [124] and Farahat et al. in [125] focused on data security as well as threat modeling
for smart city infrastructures. Vattapparamban et al. in [126] expect that drones will be used
in service delivery in highly connected smart cities environments of the future and hence will
become a factor in defining the scope of cyber-attacks. Li et al. in [127] report on the intelligent
management of network traffic to avoid congestion while reducing cyber-security concerns in
Smart cities.

• Aerospace and Satellite Industries: The evolution of the aerospace and satellite industries and
the significant contribution the sector makes to the health of the economy has made them a central
interest for cyber-attacks. CRs and TBs are essential to model the impact of cyber-attack effects
and enhance the ability of protecting this critical infrastructure. The goal is to understand and
overcome the spectrum of possible attacks by taking into account the sensitivity of information
used. Virtualisation using a simulation-based system is a potential solution to implement
TBs, but a total recognition of several parts of such critical infrastructure should be studied.
The prediction of the hacker’s strategies and aims remain the core to understanding the optimum
countermeasure against class of attack.

9. Conclusions

The rapid proliferation in the automation of cyber-attacks is diminishing the gap between
information and operational technologies and in turn stimulating an increased reliance on training to
inculcate robust cyber-hygiene knowledge for cyber-security professionals, trainers and researchers.
Cyber-Situational awareness is now viewed as a central spine in the effective provision of practices
that protect organisations/infrastructures against a cohort of more sophisticated cyber-attackers.
From necessity, the training must be delivered through non-operational environments that provide
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real-time information on cyber-threats, their early identification/characterisation and effective
countermeasures. This paper presents an evaluation of prominent CR and TB platforms segmented
by type, technology, threat scenarios, applications and the scope of attainable training. Furthermore,
a novel taxonomy for CRs and TBs is presented which represents the foundation for the prediction of
the evolution of CRs/TBs. In all, this automation has accentuated a rapidly diminishing differentiation
between CRs and TBs respective areas of application.
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