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Abstract The role of water quality, particularly its impact on health, environment,
and wider well-being, are rarely acknowledged in the water—energy—food (WEF)
nexus. Here we demonstrate the necessity for including water quality within the
water dimension of the WEF nexus to address complex and multi-disciplinary
challenges facing humanity. Firstly, we demonstrate the impact of water quality on
the energy and food dimensions of the WEF nexus and vice versa at multiple scales,
from households to cities, regions and transboundary basins. Secondly, we use
examples to demonstrate how including water quality would have augmented and
improved the WEF analysis and its application. Finally, we encourage hydrological
scientists to promote relevant water quality research as addressing WEF nexus
challenges. To make tangible progress, we propose that analysis of water quality
interactions focuses initially on WEF nexus “hotspots”, such as cities, semi-arid

areas, and areas dependent on groundwater or climate change-threatened meltwater.
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1 Introduction

The water—energy—food (WEF) nexus 1s a framework increasingly used by
researchers and promoted for policy making to address complex grand challenges facing
humanity that require a multi-disciplinary approach (Liu et al. 2017, McGrane et al.
2019). An example 1s the United Nations Sustainable Development Goals, SDGs, (United
Nations 2015) which include zero hunger (SDG 2), good health and well-being (SDG 3),
clean water and sanitation (SDG 6), atfordable and clean energy (SDG 7), sustainable
cities and communities (SDG 11), combating climate change and its impacts (SDG 13)
and life below water (SDG 14). All these goals are underpinned individually and also
mterlinked by water (UN-Water 2016, United Nations 2018, Connor et al. 2020). Detailed
analyses of water quality interlinkages with the SDGs (Alcamo 2019) and the synergies
between SDGs 2, 6 and 7 (Fader et al. 2018), have demonstrated how cross-sectoral
efforts to improve water quality can bring mutual benefits in addressing other SDG
targets. However, the synergies between goals relating to economic, energy, food and
water security, and the essential role of water quality in these, are less prominent in
national policies and laws that principally drive water quality management.

National and regional policies and laws relating to water management rarely
mention the WEF nexus specifically, such as the EU Water Framework Directive (WEFD)
(Venghaus and Hake 2018). Nevertheless, interdependencies between water and other
sectors are considered i some key policy instruments. For example, to improve the
ecological status of waterbodies (which includes water quality) the WFD requires the
establishment and implementation of River Basin Management Plans and Programmes of
Measures over a 6-year planning cycle (EU Directive on Water Policy 2000). To ensure

compliance with the U.S. Federal Water Pollution Control Act (often referred to as the
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Clean Water Act, CWA; U.S. Government 1972), the U.S. Environmental Protection
Agency (EPA) has established various programmes or regulations, such as the National
Pollutant Discharge Elimination System to control point sources discharging pollutants
and the CWA Section 319 Program to prevent nonpoint-source pollution from agricultural
and residential areas, livestock and husbandry. In China, the “3 Red Lines” water policies
implemented in 2012, includes a target to reduce industrial water use such as in energy
generation, and the Water Pollution Prevention and Control Action Plan (“10-Point Water
Plan”, April 2015) aims to improve surface and groundwater quality (Qin et al. 2015),
including by ecological protection and controlling agricultural nonpoint source pollution
(Han et al. 2016). In India, the National Water Policy (Government of India 2012)
recognises the need for integrated water resources management to meet different water
needs, particularly domestic, agricultural and ecological, and the draft National Water
Framework Bill (Government of India 2016) specifically mentions wastewater reuse and
the consideration of water- and energy-efficiency in agricultural crop production. Both
water quality and the WEF nexus are recurrent themes within these and other policy
frameworks, yet they are rarely integrated explicitly with each other.

Water quality 1s defined as “the physical, chemical, biological and organoleptic
properties of water” (WMO 2012), which includes water temperature. Here we also
consider the processes that control these properties, operating over time and space. When
examining the nteraction of water with the other dimensions of the WEF nexus, the focus
15 often on water quantity (van Vliet et al. 2017). Yet, food and energy production need
water of a suitable quality as well as in sufficient quantity. Conversely, energy and food
production can damage water quality. In this paper, we consider “food” to encompass
food produced by agriculture as well as by aquaculture and fisheries in rivers, lakes, and
freshwater-influenced estuaries and coastal zones. Although fish can be considered as

both a food and a component of water quality within ecological assessment schemes, here

3



we highlight food production and security aspects of agriculture, aquaculture and fisheries
because: (1) they are directly affected by water quality and (2) effects of water quality on
human health through bioaccumulation in the food chain are primarily expressed in these
two pathways.

The role of water quality, and in particular water quality aspects of health,
environment, and wider well-being, are rarely acknowledged specifically in discussions of
the WEF nexus (Varis and Keskinen 2018). However, the adverse effects of poor water
quality are mcreasingly well documented worldwide. Inadequate drinking water caused an
estimated 485,000 deaths due to diarrhoea in low- and middle-income countries in 2016
(Priiss-Ustiin et al. 2019). GDP growth is reduced by a third in regions downstream of
heavily polluted rivers, and use of saline water for crop watering results in a yield
reduction equivalent to feeding 170 million people each year (Damania et al. 2019).
Contributions from the hydrological sciences to addressing WEF challenges include
hydrological tools and models (Liu et al. 2017, Scanlon et al. 2017, Cudennec et al. 2018)
and combined socio-hydrologiec modelling approaches (e.g. van Emmerik et al. 2014) to
operationalising the WEF nexus, but do not explicitly encompass “water quality”. Greater
contributions from the hydrological sciences are anticipated through ongoing mitiatives
led by the International Association of Hydrological Sciences, notably the “Panta Rhei -
Everything Flows™ Scientific Decade 2013-2022 (McMillan et al. 2016, Montanari et al.
2013) and the 1dentification of 23 “Unsolved Problems in Hydrology” (UPHs) (Bloschl et
al. 2019), which include water quality and wider WEF nexus issues.

Even though water quality has been included in the conceptualisation of WEF
mterlinkages in three large Asian drainage basins (Keskinen et al. 2016), attempts to
describe the issues quantitatively were limited to water quantity indicators. This highlights
a very important reason for the lack of attention to water quality, i.e. that appropriate

surface and groundwater global water quality data sets are not yet available to support
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such assessments (UNEP 2016). A further reason for the lack of attention to water quality
m the WEF nexus 1s that many different conceptualisations of the nexus exist, including
the number of sectors considered in it, the scale of application, and the aim of using a
nexus framework (Keskinen et al. 2016). Within different conceptualisations of the WEF
nexus, water quality 1s often used interchangeably with considerations of ecosystems, and
human and ecosystem health. Nevertheless, UNECE uses a Water-Food-Energy-
Ecosystems nexus to analyse transboundary issues, which does include consideration of
water quality (de Strasser et al. 2016, UNECE 2018).

In this paper we aim to demonstrate how explicit inclusion of water quality in the
water dimension of the WEF nexus enhances the value of the WEF approach for policy
making and helps advance water quality research. This 1s particularly important for low-
and middle-income countries such as those in Africa, Asia and Latin America, which are
often disproportionately affected by pressures on the WEF nexus (Schlor et al. 2018). Tt
will also become increasingly urgent under global change, including climate change,
accelerated extreme events (Diffenbaugh 2020) and increased demands for water, energy

and food (Ceola et al. 2016, Yillia 2016).

2 Identification of water quality as a key component of the different dimensions

of the WEF nexus

In this section we discuss examples of water quality 1ssues with respect to energy, food
production, water quantity, and tripartite water—energy—food interactions. Due to the
breadth and depth of water quality research in many areas - such as biogeochemical
cyeling, eco-hydrology, limnology - we do not attempt to include all water quality-related
research within the current analysis, but note the availability and relevance of this
foundational literature to support water quality integration into WEF research. Informed
by an initial review of published papers (described in the Supplementary Material and

summarised in Table S1), we identified examples of water quality interactions with the
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WEF nexus dimensions and classified these by spatial scale (Fig. 1). This exercise
revealed that water quality research was only referred explicitly to the WEF framework
nexus in a few themes (numbers in black italic font in Fig. 1). We therefore refer to a
large number of existing studies that are relevant, but do not make this connection
explicit, to demonstrate how water quality 1s embedded 1n all three dimensions of the
WEF framework. First, water quality aspects of each WEF nexus dimension are examined
sequentially in three sub-sections (water quality-energy, water quality-food, water quality-
water quantity). Within each sub-section we first discuss how that WEF dimension affects
water quality (e.g. how energy production affects water quality) and then how water
quality affects that dimension (e.g. how water quality affects energy production). Next,
examples are presented of more complex water quality interactions with all three
dimensions of the WEF nexus. The section coneludes by highlighting water quality-WEF
nexus interactions within and across spatial scales. The examples selected from the
literature rarely mention WEF explicitly, but they demonstrate the significant impact of
water quality included within the “water”” dimension on the energy, food and water

dimensions of the WEF nexus and vice versa.

[insert Figure 1 here]

2.1 Water quality and energy

2.1.1 Energy impacts on water quality

All forms of energy production have impacts on water quality (WWAP 2014). Water
quality can be affected at every step in the extraction, refining and combustion of fossil
fuels, including shale gas development using hydraulic fracking, through both regular
operations and accidental releases, such as leaks from surface underground storage tanks.

Approximately 15-18 billion m’ of freshwater resources worldwide are affected by fossil
6



fuel production every year (Allen et al. 2012), with significant implications for
ecosystems and communities dependent on this water. For example, national demand for
coal in the USA has been met partly by mountaintop mining with valley fills in
Appalachian Kentucky resulting in contamination of domestic supply wells and selenium
concentrations exceeding the threshold for toxic bioaccumulation i more than 90% of
streams surveyed (Table S1 #9; Palmer et al. 2010). Atmospheric emissions from thermal
power plants can include mercury, sulfur and nitrogen oxides which when transported and
deposited across a range of scales may impair water quality and threaten aquatic
ecosystems and human health (Peterson et al. 2007). Several pathways of surface water
contamination are associated with unconventional shale gas development and hydraulic
fracking (Table S1 #9; Vengosh et al. 2014). They involve flowback fluids (fluids
returned to the surface after hydraulic fracturing) and produced waters (fluids extracted
during production together with the natural gas), which are typically hypersaline and
contain elevated concentrations of bartum, strontium, radioactive radium and total
dissolved organic carbon. Examples of deteriorating surface water quality downstream of
treated wastewater disposal from shale gas operations include: increased concentrations of
total trithalomethanes (THMSs), especially brominated THMs, in municipal drinking water
which might compromise disinfection processes (States et al. 2013); and potential
environmental risks of radium bioaccumulation in downstream sediments in which **°Ra
concentrations may be ~200 times greater than background (Warner et al. 2013).

While other sources of energy, such as hydropower, solar (both photovoltaic and
concentrating solar power plants), or wind, have significantly lower greenhouse gas
emissions than fossil fuel power plants, they are not without consequences for the
environment and water quality. Aside from manufacturing of materials and disposal of old
units, maintenance and operation of energy production units can also impact water quality

(e.g. application of pesticides and cleaning agents). Their very existence impacts on the
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land use and thermal balance in the local area. For example, wind farm developments may
necessitate forest felling, resulting in a reduction in downstream river water quality due to
increased soluble reactive phosphorus concentrations (Heal et al. 2020).

Hydropower reservoirs completely change the characteristics of water bodies from
fast flowing to mostly stagnant waters upstream of dams, and their storage and release of
water changes the hydrological regime and sediment and nutrient supply, and hinders fish
movement. The principal effects on water quality are: an altered thermal regime; lowered
dissolved oxygen but increased concentrations of the reduced forms of iron and hydrogen
sulfide, limiting the capacity for pollutant breakdown; altered availability of the nutrients
phosphorus, nitrogen and silicon; and habitat alteration (Table ST #10; Winton et al.
2019). Water quality and environmental effects can be damaging and cumulative in river
networks, particularly for biodiversity, which underpins fisheries in rivers, lakes, and
freshwater-influenced estuaries and coastal zones and livelihoods in many low- and
middle-income countries. The additional ~450 dams planned for the Amazon, Mekong
and Congo river basins, which together contain one-third of the world’s freshwater
species, pose a threat to freshwater fish diversity and migration and thus to communities
reliant on wild fish (Winemuller et al. 2016).

A number of energy-water quality interactions may be exacerbated by climate
change and measures to mitigate against it. For example, warmer temperatures due to
climate change can exacerbate water temperatures increased by cooling waters from
thermoelectric plants and impoundment of water for hydropower production (Table S1
#26; Lugg and Copeland 2014) and lead to biological impairments (Stewart et al. 2013).
The recent mcrease in large hydropower dams planned principally in low- and middle-
mcome countries is partly attributed to the Paris Agreement of December 2015, with the
aim of supporting low greenhouse gas emissions (Hermoso 2017). Increased forestry

operations to produce biomass as a substitute for fossil fuels can amplify the transfer of
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mercury from soil to water, enhancing mercury bioaccumulation in food webs (Eklot et al.
2016).

Another reported impact on water quality of energy policies is the effect of
promoting biomass production on soil erosion and nonpoint source pollution. For
example, 1f the US congressional biofuel production mandate is met without enacting
nutrient management measures, a 45% increase in total phosphorus loading in the Upper
Mississippi River basin is projected to oceur, resulting in declining river water quality and
an mcrease 1n size of the Gulf of Mexico hypoxic zone (Table S1 #20; Demissie et al.
2012). Conversely, in a study focusing on nitrate, which behaves very differently from
phosphorus, crop choice was found to have positive benefits for water quality. For
example, modelling of a watershed in Illinois, USA, indicated that adoption of second-
generation biofuel crops (e.g. Miscanthus) over-corn and soybean would help reduce
stream nitrate load, although irrigation water demand was predicted to increase (Table S1
#2; Ng et al. 2011). However, the local water quality improvement arising from replacing
food-related crops with biofuel crops could be offset by increased food production and
associated degradation in water quality in other regions, particularly where freshwater

resources are limited and rainfall is insufficient for rainfed crops (Healy et al. 2015).

2.1.2 Water quality impacts on energy

Water quality, or the need to meet certain minimum water quality requirements, also
affects the production of and demand for energy. Water temperature can act as a
constraint on power production, with elevated water temperatures resulting in reduced
power plant efficiency and shutdowns when water temperatures approach threshold values
for environmental regulation (Miara et al. 2013). Measures taken to reduce the negative
impacts of hydropower dams on fish, such as dam removals, the installation of fish

passages, and turbine shutdowns during fish migration periods, result in lower electricity
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generation (Song et al. 2019). Partly because of more stringent water quality regulations
for drinking water and wastewater treatment, the total electricity demand for water and
wastewater treatment in the USA increased by more than 50% between 1996 and 2013
(Table S1 #30; EPRI and Water Research Foundation 2013).

Water scarcity in arid, coastal and island locations often necessitates the use of
lower quality water sources, such as wastewater and saline water, requiring more
extensive treatment or desalination. Desalination not only has high energy requirements to
meet water quality use standards, but also produces hypersaline brine that can have
negative environmental impacts if not disposed of properly. Currently, desalinated water
production for human use totals ~100 million m® day™' worldwide and generates ~140
million m’ day™ of brine (Jones et al. 2019).

The drive for water sensitive practices in cities may also lead to increased
concentrations of sediment, nutrients, and organic matter in sewers due to water efficiency
measures, resulting in higher treatment costs (Table S1 #7; Murali et al. 2019). However,
cost-benefit analyses for 13 wastewater treatment plants in Spain showed that the higher
energy costs of treating wastewater can be economically viable when external benefits

(e.g. reduced nmitrogen and phosphorus pollution of receiving waters) are considered

(Table S1 #15; Molinos-Senante et al. 2011).

2.2 Water quality and food

2.2.1 Food impacts on water quality

Since agriculture accounts for the majority of water withdrawals worldwide (70%, FAO
2013), 1t 1s not surprising that food production in agriculture and aquaculture has major
mmpacts on all aspects of water quality, including the transfer of emerging contaminants.
As the global demand for food (including fish protein from aquaculture) continues to

icrease at an unprecedented pace there 1s significant pressure on farmers to intensify
1



production, resulting in continued growth in demand for fertilisers (FAO 2017) and
antimicrobials i livestock and aquaculture systems (Van Boeckel et al. 2015). Increased
antimicrobial use, including antibiotics, in these sectors results in rising concentrations in
surface waters and groundwater due to excretion and manure application (Charuaud et al.
2019), contributing to spread of antimicrobial resistance and human health impacts (Table
S1 #22, Baquero et al. 2008). Increasing use of plastic mulch films in many regions of the
world as an agricultural practice to enhance crop yield, quality and water-use efficiency,
amongst other benefits, also mcreases concentrations of micro(nano)plastics in
agricultural runoff which additionally transport adsorbed micropollutants, such as
pesticides and PTEs, into surface and groundwaters (Steinmetz et al. 2016). For example,
runoff from tomato plots covered with polyethylene film contamed 3 times the sediment
concentration and 19, 6, and 9 times the total load of the pesticides chlorothalonil and
alpha- and beta-endosulfan, respectively, compared to a vegetative-mulched control (Rice
etal. 2001).

Meeting the water quantity demands of food production in agriculture and
aquaculture 1s frequently associated with deteriorating water quality, particularly
saliisation. Over-pumping of groundwater for crop irrigation and mismanagement of
irrigation water often has undesirable impacts on potable water supplies and crop yield if
water and soil saliisation occurs, and on freshwater ecosystems due to drying up of rivers
(Table S1 #23; Currell et al. 2012, Jayasekera et al. 2011, Libutti et al. 2018, Qureshi et
al. 2010, Singh 2016, Singh 2018). However, in some situations the sources of
contaminants in groundwater are geological, e.g. arsenic and fluoride in aquifers of the
Indo-Gangetic basin, which can pose a greater water quality threat to groundwater use
than over-pumping (MacDonald et al. 2016). Use of saline water in aquaculture can have
similar impacts; rapid expansion of shrimp farming using saline water in Bangladesh led

to the increase of average soil salinity by 6 to 15 times from 1984 to 2014 (Table S1 #24;
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Islam and Tabeta 2019). In the same study, yields of other crops and livestock were
reduced significantly due to salinity intrusion caused by shrimp farming.

Food-water quality interactions also occur through the greywater component of
water “footprinting” (defined in this use as the amount of water needed to dilute pollution;
Liu et al. 2019) and virtual water trade. The few studies that have explored this suggest
that food trade may contribute to reducing the global greywater footprint (i.e. reduce total
water pollution worldwide) because major food exporting countries had lower pollutant

loss 1ntensity than food importers (Liu et al. 2019).

2.2.2 Water quality impacts on food

The use of water of inappropriate quality in crop agriculture 1s the principal way in which
water quality impacts food quality and security, since irrigation with contaminated water
reduces crop yields and poses a risk to human health. However, there are also
opportunities for wastewater reuse in crop production (when done properly) to enhance
yields and reduce pollution of aquatic ecosystems, particularly in areas facing an acute
water crisis. Recovery of phosphorus from wastewater can have a strong positive impact
on water quality and (reduced) nutrient loads, and substitute for manufactured mineral
fertilisers in crop production (Table S1 #14; Schoumans et al. 2015). Due to the sheer
volumes involved, wastewater utilisation is crucial for meeting the irrigation and fertiliser
requirements of food crops since 1t contains many nutrients, but the practice also raises
environmental and public health concerns (Table S1 #18; Hanjra et al. 2012). The
reduction of the water footprint of crop production is a clear benefit, but there are
potential risks to health and environment, that require adequate policies.

In addition to PTEs such as chromium, cadmium, copper, arsenic and zinc,
effluents from wastewater treatment plants contain micropollutants, including o-

phenylphenol, chlordane, polychlorinated biphenyls, atrazine, and dioxins, which are
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endocrine disruptors that can be transferred to soil and subsequently to aquatic
environments via wastewater irrigation. Both treated and untreated wastewater contain
concentrations of microplastics in ranges of 0-125,000 and 1000-627,000 items m™ that
could result in the estimated application of 2 x 10°-10° ha™ plastic items per cropping
season to wastewater-irrigated cabbage and maize crops (Bldsing and Amelung 2018).
Although uptake of microplastics into the roots and translocation to shoots of edible plants
has been demonstrated, the risk to human health of ingestion of plastics from this
exposure pathway 1s not yet known (Q1 et al. 2020). Wastewater 1s also an important
source of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), which
have become a serious public health concern worldwide (Berglund 2015). A high
diversity of ARGs 1s reported in municipal wastewater treated effluent that can serve as a
potential hotspot for horizontal gene transfer and selection of ARBs (e.g. Agga et al.
2015, Rizzo et al. 2013). Reuse of wastewater in agricultural irrigation can increase soil
concentrations of antibiotics and ARGs. For example, irrigation with untreated
wastewater has resulted in soil accumulation of pharmaceuticals and sulfonamide
resistance genes in the Mezquital Valley, central Mexico (Table S1 #18; Dalkmann et al.
2012). Contamination of food plants with pathogens can occur through surface contact
with contammated wrrigation water, livestock and wildlife faeces, or soil during harvest,
posing a health risk if the plant is not properly washed (Allard et al. 2019). Although
uptake of pathogens from irrigation water into plant internal tissues has been
demonstrated in greenhouse studies (Solomon et al. 2002), uptake of ARGs and faecal
pathogens was not evident in plants grown in soils in central Mexico irrigated with
untreated wastewater (Table S1 #18; Broszat and Grohmann 2018). The risk to human
health from pharmaceutical and personal care products (PPCPs) consumed in the edible

plant tissues from crops that were 1rrigated with wastewater has been suggested to be



minimal, although the risk from mixtures of PPCPs requires further assessment (Prosser
and Sibley 2015).

A further, more indirect, impact of water quality on crop production may occur
when environmental flows set to improve water quality result in lower yields through
reduced irrigation water allocations. This 1s exemplified in the Murray-Darling basin,
Australia, which provides 40% of Australia’s agricultural production by value and almost
all of Australia’s rice production. In this case, proposed reductions in the average annual

water use to allow more environmental flows were projected to cause annual agricultural

production to fall by 13-17% (Table S1 #25; Leblanc et al. 2012).

2.3 Water quality and water quantity

Although we have so far highlighted water quality interactions with the energy and food
dimensions of the WEF nexus, we discuss below some examples of the interaction

between water quality and water quantity to demonstrate that they are mextricably

coupled (Nilsson and Renofilt 2008).

2.3.1 Water quantity impacts on water quality

Dams constructed on river systems for the purpose of water abstraction have similar
impacts on downstream water quality and river health as hydropower dams, already
discussed 1 Section 2.1.1. Urban water management 1s another example of how
management for water quantity impacts water quality. In many parts of the world in the
20™ century, urban water management initially focused on flood risk reduction within
cities through combined or separately-sewered piped systems, which managed flood risk
by transporting stormwater runoff rapidly downstream, but resulted in water quality
deterioration through combined sewer overflows or washoff of pollutants from urban

surfaces. In the early 21*' century nonpoint source stormwater runoff was identified as the
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leading source of water pollution in the USA (Lee et al. 2007). The more recent adoption
of distributed source control approaches to urban flood risk reduction in many parts of the
world under various names (including: Best Management Practices — BMPs, Low Impact
Development — LID, Water Sensitive Urban Design — WSUD, Sustainable Urban
Drainage Systems — SUDS, and Blue Green Infrastructure - BGI) has provided co-benetfits
in improving water quality as well as water savings (Barbosa et al. 2012, Ossa-Moreno et

al. 2017, Alves et al. 2019).

2.3.2 Water quality impacts on water quantity

The quality of water also defines the quantity of water available for a particular use,
mcluding potable water supply, toilet flushing, car washing, fire extinguishing, and
managed aquifer recharge. For example, elevated nitrate concentrations in Vermilion
River in [llinois, USA, limit the usability of river water for drinking water supply for the
city of Pontiac, requiring use of an off-stream reservoir blending system (Hecht et al.
2014). The growing threat of cyanobacteria dominance in rivers and reservoirs can also
limit use of water that would otherwise be available (He et al. 2016). Ever more stringent
water quality regulations in many countries are also impacting water quantity, both in
constraining the availability of water of sufficient quality, but also in increasing the
demand for water to dilute contaminated flows and/or provide environmental flows
(Pittock and Lankford 2010). Thus, increasingly water resource management options are
being investigated which resolve both water pollution and water scarcity issues. For
example, managed aquifer recharge with treated wastewater and urban river water has
been demonstrated as a feasible way to address growing water demands and the lack of
treatment of wastewater in cities such as Addis Ababa, Ethiopia (Table S1 #17; Abiye et

al. 2009) .



2.4 Water quality and tripartite water—energy—food interactions

Water quality can be embedded in complex tripartite interactions involving all three
dimensions of the WEF nexus, as demonstrated at a range of spatial scales in the case-
studies presented below.

Lightly polluted water (e.g. from showers, baths, and hand-basins, also referred to
as “greywater”) can offer another unconventional option for non-potable water reuse at
the household/community scale (Table S1 #4; Boyjoo et al. 2013) and 1s suitable for on-
site treatment, reducing demands on water resources and energy requirements of
wastewater treatment systems. It is important to develop low energy and low maintenance
greywater treatment systems that provide critical amenities and micro-climate benefits to
cities facing water crises (Connor et al. 2020, Wong and Brown 2009). Biofiltration
systems, such as green walls which require only a small land area, potentially represent a
low cost, low maintenance on-site greywater treatment approach for use in dense urban
areas (Pradhan et al. 2019). A number of studies have demonstrated the effectiveness of
green walls for greywater treatment (Table S1 #4, e.g. Masi et al. 2016), with choice of
plants (Table S1 #4; Fowdar et al. 2017), growing media and maintenance shown to be
important considerations for optimal performance. Despite the reported contamination of
greywater, health risks of bacterial pathogens from greywater are negligible where
treatment recommendations have been followed (Table S1 #4; Benami et al. 2016).
Furthermore, studies in Australia and Tsrael investigating if greywater use increases the
risk of gastrointestinal illness, identified no significant differences in risk between
greywater-exposed and control groups (Table S1 #4; Busgang et al. 2015).

At the larger drainage basin and regional/national scales, activities targeted to
boost one or more dimensions of the WEF nexus and improve livelihoods can have
negative consequences for the other dimensions, including water quality deterioration. For

example, i the semi-arid area of Pernambuco, Brazil, tilapia fish farming has been
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encouraged in the [tacuruba reservoir dammed for hydropower production, to meet the
growing demand for fish protein in Brazil and improve the economic situation of local
people affected by the dam construction (Table S1 #24; Marques et al. 2018). However,
phosphorus-containing effluent from intensive tilapia cage fish farms in the reservoir
poses a risk to the already scarce water resources through eutrophication of the dam
waters. In Egypt, the country’s water availability has been increased by 20% by reusing
agricultural drainage water, but only by increased energy demand for large pumping
stations and small diesel pumps to return water from drainage ditches to rigation canals.
Moreover, water availability has been achieved at the expense of water quality
deterioration in the country’s irrigation network due to the inereased concentration of
salinity and pollutants m dramage water (Table S1 #29; Barnes 2014).

Water quality can also be the vector of conflicting interactions between the
individual dimensions of the WEF nexus in drainage basins within countries, and in
transboundary basins. For example, reservoirs constructed in the Upper Mahaweli
Catchment, Sr1 Lanka, generate ~27% of the country’s electricity through hydropower and
provide irrigation water for 3000 km? of agricultural land (Table S1 #21; Diyabalanage et
al. 2017). However, high soil erosion rates in the catchment (up to 700 t km™ y™*, 100
times greater than background soil production rates) attributed to intensive cultivation of
crops on steep land have caused rapid sedimentation within the reservoirs and reduced
water storage capacity to 56% over 17 years after impoundment in one reservoir and 72%
over 3 years in another (Hewawasam 2010). At the transboundary scale, it 1s estimated
that the construction of the 11 proposed dams on the main stem of the Mekong River
primarily for hydropower energy production, but also for increased irrigation and flood
control, would result in a 75% reduction in nutrient loading which supports the
productivity of floodplain agriculture and fisheries downstream (Table S1 #31; ICEM

2010). A 21-42% reduction in fisheries production is projected, which could cause

1



nutritional deficiencies in an additional 2-8 million people in the Lower Mekong Delta by

2030 (Golden et al. 2019).

2.5 Scale is a key consideration in water quality interactions in the WEF nexus

As has become apparent from the examples discussed above and summarised in Table S1,
water quality interactions within the WEF nexus play out across a range of spatial scales.
Water quality-WEF nexus interactions not only occur from the very local (individual
households and fields) to international transboundary drainage basins, but complications
occur because the impacts of these interactions may cross scales. Activities at the
household/farm scale can affect WEF-water quality interactions at larger scales. For
example, farmer decisions to replace food crops with biofuel crops are predicted to
improve water quality locally, but displace intensive food crop production and associated
water quality deterioration to other locations (Table S1 #2; Zhong et al. 2018).
Conversely, national WEF-related policies can cause localised water quality impacts, as
exemplified by national demand for coal in the USA resulting in significant surface and
groundwater quality impairment in Appalachian Kentucky (Scott et al. 2011).
Furthermore, there can be transboundary physical effects propagated from upstream to
downstream, e.g. when management of hydropower dams impacts downstream water
quality and river health, or virtual water embedded in commodities consumed in one
country impact on water availability and quality in other countries (O'Bannon et al. 2014,
Liuet al. 2019). The multi- and cross-scale nature of water quality-WEF interactions

suggests that different data and analysis approaches are needed for different scales.



3 Perspective and outlook to better integrate water quality research into WEF

issues

3.1 Including water quality in the WEF nexus helps to achieve SDG targets

Applying a water quality lens to the WEF nexus can help to identify appropriate solutions
required to achieve the SDG targets. Environmental problems associated with poor water
quality generally lead to other social and economic issues (Ghodsvali et al. 2019), driving
complex feedbacks between social cohesion, land and water resource management and
environmental conditions (Thanh et al. 2020). The myriad of water quality 1ssues, and
diversity of pollutants, leads to highly site-specific manifestations of these feedbacks,
making them difficult to generalise. Here two of the most prominent water quality issues
to the WEF nexus are discussed: eutrophication and sediments. We focus on these for the

sake of brevity, noting that similar reasoning can be applied to other important water

1ssues such as salinisation, micropollutants and hazardous substances. plastics, pathogens

and antimicrobial resistance, and aquatic ecosystem health more broadly.

Eutrophication is a particularly instructive issue to analyse in this context as it
spans several WEF nexus axes, 18 relevant across multiple SDGs, and i many cases 1s
multi-scale and cross-boundary (Biermann et al. 2016, Le Moal et al. 2019). Existing
annual fluxes of nitrogen and phosphorus already exceed the “planetary boundary” values
estimated to define “a safe operating space for humanity” (Steffen et al. 2015). A primary
driver has been the food production system based on crop and livestock agriculture that
releases organic and inorganic nutrients into aquatic and terrestrial ecosystems. A call to
end world hunger (SDG 2) through increasing agricultural food productivity amplifies
eutrophication pressures 1f mitigation approaches are not adopted. Within cities, urban
stormwater drainage practices and inadequate sanitation and wastewater treatment also
significantly contribute to eutrophication, most notably in low- and middle-income

countries. On the other side of the WEF nexus, controlling and reducing these nutrient



releases into the environment consumes energy. Construction, maintenance, and operation
of conventional centralised wastewater treatment systems contribute to achieving SDG
Target 6.3 (improved water quality), but lead to increasing energy demand. The increasing
adoption of blue green infrastructure, such as reducing wastewater at source, designing
facilities to generate their own energy, and decentralised treatment technologies, such as
constructed wetlands (Alcamo 2019), is helping to alleviate this increased energy demand.
Another water quality issue recognised at a global level, and as a defining feature
of the Anthropocene, 1s altered river sediment regimes (Syvitski and Kettner 2011).
Human activities have resulted in an estimated 160% increase in land-ocean sediment
flux, whilst reservoirs trap 66% of the sediment flux within river systems (Walling 2008).
Accelerated soil erosion has been linked to human activaties, primarily agriculture,
although other causes can be locally important (e.g. deforestation or construction). The
loss of nutrient-rich top soil through erosion reduces agricultural productivity, thereby
mcreasing demands for resources to sustain food production (FAO 1996). Dams, many of
which are used for hydropower production or water supply for drinking or 1rrigation, also
upset the river sediment balance. Sediments deposit in reservoirs due to the long residence
time and low veloeities encountered behind dams, slowly diminishing the capacity of the
reservolr and reducing water security. While sediment management in reservoir systems 1s
possible (Annandale et al. 2003), it can be difficult in practice and requires energy (Coker
et al. 2009). In addition, flows from reservoirs may become sediment-starved (Kondolf
1997), leading to increased channel erosion or beach erosion and a loss of productive
agricultural land or fisheries downstream of dams (Owusu et al. 2017). Unfortunately,
downstream effects of dams (as also discussed above in Sections 2.1.1 and 2.4) are not
always fully considered during the evaluation of dam proposals. Accordingly, river
sediment regimes should be considered in devising appropriate solutions to several SDGs,

such as zero hunger (SDG 2), clean water and sanitation (SDG 6), affordable and clean
2



energy (SDG 7), combating climate change and its impacts (SDG 13) and life below water
(SDG 14).

Although our recommendation 1s that water quality should become intrinsic to all
WEF studies, it 1s recognised that this is seriously hindered by the limited availability of
suitable water quality data in many situations (discussed in Section 2.3.2). This 1s
especially a problem at smaller scales where management efforts are often targeted, since
national, regional, or global estimates from statistical analyses, remote sensing, or coarse-
scale hydrological models, must be relied upon for setting policy at larger scales.
Therefore, for the scientific community to make tangible and rapid progress towards
achieving the SDGs, we propose that efforts to collect water quality data and analyse
water quality interactions with WEF should initially target nexus “hotspots” where WEF-
related stresses are most severe and are anticipated to grow most rapidly. Such hotspots
have been 1dentified as: (1) urban areas (e.g. Grimm et al. 2008); (2) areas of intensive
groundwater use for agricultural food and energy production (e.g. the North China Plain —
Zheng et al. 2010); (3) semi-arid and arid areas where climate change and the use of
scarce water resources threaten water quality (e.g. the Mediterranean region, where nexus
projects are already planned — Global Water Partnership — Mediterranean 2019; Egypt —
Abdel-Dayam 2011; Australia — Davis et al. 2015; and Texas, USA — Daher et al. 2019,
Mohtar and Daher 2019); and (4) other areas particularly vulnerable to climate change,
such as drainage basins heavily dependent on meltwater from snow and glaciers (Huss et
al. 2017). Explicit inclusion of water quality in the WEF nexus 1s also essential for
addressing transboundary issues, for which UNECE has proposed a water-food-energy-

ecosystems nexus methodology (de Strasser et al. 2016, UNECE 2018).

3.2 The need for coordinated and open water quality datasets

In order to better integrate water quality research within WEF 1ssues, there is a clear need
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for water quality data suited to addressing nexus challenges (Cudennec et al. 2020,
Scanlon et al. 2017). Relevant water quality monitoring 1s required to reflect changing
environmental, climate and anthropic conditions, including emerging contaminants. In
water quality-WEF interactions related to human and ecosystem health, this monitoring
must be rapid and reliable, for example, to ensure the safety of food crops irrigated with

recycled wastewater. However, despite several efforts to compile water quality data at a

global scale (e.g. GEMStat (https://gemstat.org/), the Global River Chemistry Database
(GLORICH, Hartman et al. 2014), and the Water Quality Database of the Global Open

Data Index (https://index.okin.org/dataset/water/), water quality data are sparse in many

parts of the world where the pressures are the greatest. One of the aims of the newly
established World Water Quality Alliance co-ordinated by UNEP, within the framework
of UN Water, is to build upon the Global Envireonment Monitoring System for Water
(GEMS/Water) that includes water quality measurements in groundwater, rivers, lakes
and reservoirs, and wetlands, to improve the availability of data that 1s fit-for-purpose for
water quality assessment (UNEP 2016). Opportunities for this may be enhanced by
mcreasing use of remote sensing for some parameters (e.g. chlorophyll-a to indicate
eutrophication in lakes and large rivers; Alikas et al. 2015), and water quality monitoring
using affordable and wireless sensors and smart phones including by citizen scientists
(e.g. Liao et al: 2020); though this approach is not without challenges (Buytaert et al.
2014). Large-scale models can be augmented to include water quality components to
harvest the information from monitored basins for estimating water quality in ungauged
catchments as estimates of long-term values (e.g. Cohen et al. 2013) or at a finer temporal
resolution using hydrodynamic models (e.g. Bartosova et al 2019).

In addition to data describing ambient water quality, the quality of municipal and
industrial wastewater effluents, agricultural return flows with irrigation water sources and

types, drinking water sources, wet atmospheric deposition, and urban stormwater require
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specific attention to generate additional information critical to understanding water quality
1ssues within the WEF nexus. New indices and analyses are also needed to fully harness
the rich data provided by ever-increasing water quality monitoring (Hipsey et al. 2015).
These include development of holistic water quality and river/lake/groundwater health
mdicators supported by enhanced remote sensing capabilities, novel in sifu water quality
sensors, and the necessary hydro-informatics approaches associated with data analytics
(Tauro et al. 2018). Many new indicators are being developed to assess progress towards
multi-faceted and interlinked challenges, such as the SDG indicators, water footprinting
and virtual water, or the quantification of ecosystem services. A challenge for
hydrologists 1s to articulate conventional water quality assessments with these new WEF

related use requirements.

3.3 Moving beyond case-studies: research needs for including water quality

within WEF nexus analyses

We have used a number of examples to demonstrate how including water quality within
the WEF context would have augmented and improved the analysis and 1ts application.
The case-studies demonstrate that the WEF nexus cuts across scales (household/field,
dramage basin, region, and impacts at a distance through trade and transportation), 1s
highly trans-diseiplinary, and displays dynamics that can evolve over time. There 1s no
doubt this complexity will continue to create seemingly endless opportunities for studies
mto local 1ssues and solutions, but the pressing challenge 1s to develop generalised
conceptualisation and analysis frameworks that allow us to transcend the anecdotal.
Indeed, this challenge 1s reflected in the recent compilation of “Unsolved Problems in
Hydrology” (Bloschl et al. 2019).

The need for more integrated WEF nexus analyses 1s increasingly pressing with

growth in demands for water, energy and food. Methods for identifying an optimum



solution space in the nexus — that also consider water quality constraints — are necessary to
understand the trade-offs and synergies that exist in the system. Prior approaches to this
problem for allocation of water quantity in drainage basins to multiple users include
multi-objective optimisation models (Roozbahani et al. 2014), analytical methods such as
bankruptcy rules (Mianabadi et al. 2014) and game theory (Madani 2010). The goals are
to maximise the net benefit or production of allocated water to agriculture (food),
domestic and industrial users (water supply), and hydropower (energy), whilst minimising
water shortage, sewage drainage, and the amounts of polluted water (Liu etal. 2012).
Game theory provides a framework for the study of the strategic behaviours of individual
decision makers with which to develop more broadly acceptable solutions (Madani 2010),
and has been integrated into a general systems analysis for water resources exploring
solutions with both cooperative and non-cooperative actors (Madani and Hooshyar 2014,
Roozbahani et al. 2014, Wei et al. 2010). Further research is required to develop these
methods for diverse application contexts and extend their ability to account for the
changing drivers of water, energy and food, such as population and economic growth,
urbanisation, improvements in living standards, and changes in diets and consumption
patterns (Yillia 2016).

A further practical challenge remains in identifying suitable metrics for
summarising the water quality attributes that drive change; for example, how do we
quantify aquatic system “health”. Risk assessment methods represent one approach to
quantify in a tangible way the impacts of water quality within the WEF nexus, translating
diverse water quality data to human health or ecological risks. These methods relate the
quantity of the water quality substance of interest, its characteristics, and its use, to a
quantifiable dimensionless risk that can be evaluated alongside economic indicators for
impact assessment and comparison of alternatives across substances. For example, the

U.S. EPA recommends four steps to assess health risks (U.S. EPA 2014): (1) exposure
2



assessment that quantifies pathways, duration, frequency, and other factors of exposure;
(2) hazard 1dentification that specities the type of impact that can be associated with the
substance (e.g. cancer, birth defects); (3) dose-response assessment that defines a
relationship between the exposure dose and the probability of the hazard; and (4) risk
characterisation that quantifies the magnitude and uncertainty of risk. These general steps
are also applicable to assessing ecological risks. The risk-based assessments can evaluate
impacts of different water quality substances and express the impacts in a comparable
way, although significant information about the substances needs to be available for such
quantifications.

The WEF nexus is not static, and needs to consider the changing nature of global
change drivers, which affect demands for water, energy and food, individually as well as
their interactions. The effects of climate change in particular increase the relevance of
water quality in shaping key WEF nexus issues. For example, the decade-long drought in
California i 2007-2016 caused an increasing reliance on groundwater resources for
irrigation. The intense pumping of groundwater in the Central Valley to sustain crop
yields resulted in seawater intrusion into aquifers near the coastal zone, thus reducing the
quality and availability of potable water resources (Goebel et al. 2017). Climate change
will also contribute to increased cyanobacterial dominance in polluted waterways (Carey
et al. 2012), further challenging water supply systems and river health, with implications
for water quantity, treatment costs and reuse. Further, increasing water temperatures due
to climate change are projected to impact freshwater fish populations, though the impacts
can be spatially variable due to the nonlinear relationships between fish survival and water
temperature and their interaction with water management activities, such as reservoir
operation (Zhang et al. 2019). Whilst climate change and other global drivers for food and
energy tend to intensify water quality related problems, there is also evidence that this can

drive innovation, resulting in increased overall resilience of the nexus to stressors (e.g.
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Low et al. 2015). Identifying opportunities to integrate WEF analyses with research on
new and emerging water quality management technologies can assist decision makers to
undertake cost-benefit calculations and identify economically viable solutions.

The non-stationarity in global, regional and local drivers of water, energy and food
sectors, plus the myriad of complex feedbacks linking communities with their
environment requires continued advancement in integrated earth-human system modelling
frameworks (e.g. Elshafei et al. 2014, Di Baldassarre et al. 2019). The need for WEF
nexus analysis of multi-disciplinary, multi-scale and multi-model frameworks integrating
physical, chemical, ecological and socio-economic processes and feedbacks has already
been identified (Liu et al. 2017) with examples increasingly emerging (Howells et al.
2013, van Emmerik et al. 2014, Zhang et al. 2019, Zhang et al. 2020). Great opportunities
exist to expand these earth-human system modelling frameworks to more coherently
include water quality dynamics and feedbacks. In parallel, there have been advances in
local and regional to global scale water quality modelling (Hofstra et al. 2019, Hipsey et
al. 2020). Efforts to improve mtegration of these modelling approaches to account for
energy and food drivers will allow for more comprehensive tools able to operate over a
range of scales relevant to decision making within the nexus.

The complex external drivers and internal processes within these models also
create challenges for addressing uncertainty, such as in model inputs, structures and
validating datasets, which will further grow given the future myriad of potential scenarios
and plausible trajectories (Maier et al. 2016). Convincing relevant stakeholders of the
utility of WEF analyses and model predictions requires transparent communication of the
risks and uncertainties in the recommended solutions that aim to balance competing
mterests. New practical approaches dealing with the treatment of uncertainty relating to
water quality within the various axes of the WEF nexus will help facilitate the uptake of

these analyses by decision makers.



4 Conclusions

Through discussion of a number of examples, we have highlighted the significant impact
of water quality on the energy, food and water dimensions of the WEF nexus and vice
versa. We advocate that including water quality explicitly will increase the ability of the
WEF framework to generate integrated policies and management approaches, not only for
water quality improvement, but most importantly for balancing and meeting demands for
water, energy, food, and ecosystem needs. Including water quality adds themes of health,
well-being and environment that are not often explicitly covered within the nexus, and
helps to address some of the power and social inequalities in the WEF nexus
conceptualisation (Wiegleb and Bruns 2018).

Ultimately, societal needs have driven the development of hydrological science
(Sivapalan and Bloschl 2017) and, given the importance of water quality in the
Sustainable Development Goals (SDG 6 in particular), addressing this need may be an
overlooked opportunity for the hydrological sciences community. For example, meeting
the SDG Targets 6.3 (improve water quality) and 6.5 (implement integrated water
resource management) requires the understanding of pollution sources and mobilisation
through hydrological pathways into rivers, lakes and aquifers that the hydrological
sciences can provide. Given that only ~30% of the journal papers cited in this paper are in
the “Water Resources” journal subject category of Web of Science, we conclude that
water quality-WEF studies in water-related journals are under-represented and suggest
that hydrological scientists could do more to ensure that their research contributes to
addressing complex nexus challenges. So that water quality does not remain an
overlooked component of the WEF nexus, we encourage hydrological scientists to label
and promote relevant water quality research as addressing WEF nexus challenges during

both the research design and publication stages.



We have demonstrated that water quality within the WEF nexus cuts across scales
(households and fields, cities, drainage basins, regions, transboundary and distant through
trade and transportation). This scale-independency demonstrates the generic appeal of the
WEF nexus approach and its flexibility when put into practice for generating innovative
and impactful measures to improve water quality for addressing grand challenges in
different settings. Nevertheless, the generic approach to considering the role of water
quality in the WEF nexus taken here should be implemented within specific country or
dramage basin contexts so that resource constraints and other local conditions are

considered, such as cultural practices and ecosystem services relating to water.
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Figure caption

Figure 1. Overview of some themes that are relevant to water quality issues within the
WEF framework. Numbers refer to case-study themes in Table S1. Themes in which the
WEF framework is mentioned (black italic font) are distinguished from themes where it is
not explicitly mentioned (red font). Studies are classified by scale in tables along the
WEF dimensions using spatial scale definitions for hydrology which are loosely based on
the four scales identified in Bloschl and Sivapalan (1995). “HF”, “CAD”, “RN” and
“TB” refer to the scales of “Household/Farm field plot”, “City/Aquifer/Drainage basin”,
“Region/Nation” and “Transboundary” respectively. The figure format is based on Fig. 1
in Liu et al. (2017), with the orange envelope around the WEF nexus indicating that WEF

mteractions occur within (and also influence) climate and land use change.
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Description of the initial review of published papers

The starting point for researching this opinion piece was a literature search in Web of
Knowledge in November 2017 using topie “water quality and energy food nexus” for
the period 1900-2017. This mnitial literature review helped to identify the case-study
themes in Fig. 1, and was followed by further literature review targeting these themes.
The initial search identitied 32 results, all from 2011 or later, apart from one result in
1995. Of these, only seven journal papers explicitly related water quality to the WEF
nexus. These are indicated by the case-study numbers in black italic font in Fig. 1. The
numbers 1n red font in Fig. 1 represent other published studies that are relevant to water
quality 1ssues within the WEF framework, but in which the WEF framework 1is not
explicitly mentioned. From the dominance of red numbers in Fig. 1, 1t 1s clear that water
quality issues are not widely acknowledged or well integrated mto WEF research,
despite the obvious significance of water quality issues and volume of relevant studies
in non-WEF literature.

A high proportion of the existing WEF studies that explicitly mention water
quality were focused on urban areas, which were identified as nexus hotspots because of
the pressures of meeting large and concentrated demands for water, energy and food.
Investigating the relative effects of future water quality and climate change scenarios on
energy use in two water treatment plants, life-cycle analysis showed that energy use
increased when lower quality water inputs were used, due to increased treatment
chemical usage (Table S1 #12; Stang et al. 2018). However, n the water treatment
plant located in a humid continental climate, this increase may be partially offset by
future global warming, which would reduce the energy demand for heating the plant.
Miller-Robbie et al. (2017) (Table S1 #16) analysed wastewater treatment and reuse for
irrigation of food crops in the city of Hyderabad, India, through a WEF lens. One of
their conclusions was that, due to the dilute nature of wastewater effluent, to fully utilise
the nutrients contained in treated wastewater, large areas of cropland are required within

4



or near to the city, which may not be available due to the other land demands of a
rapidly growing urban population. Surprisingly, additional energy invested in treating
wastewater before reuse did not have the full expected benefit in reducing pathogen



contamination of food crops in this study. This was attributed to crop contamination
arising from farmer harvesting practices, in which there was frequent contact between
the harvested crop and the pathogen-contaminated soil, and harvested crops were placed
under sacking moistened with wastewater to prevent wilting. However, other water
quality issues associated with urban wastewater or sludge, such as potentially toxic
elements (PTEs), pharmaceuticals, polycyclic aromatic hydrocarbons or plastics, to
name just a few, and any long-term impacts from their application on agricultural land
were not evaluated.

Agricultural landscapes are also critical geographies for the WEF nexus, as they
produce food and energy crops that both require water resources and also have a
number of impacts for surrounding aquatic environments, particularly in regions where
treshwater resources are limited and raintall is insufficient for rainfed crops (Healy et
al. 2015). In all regions the application of pesticides, herbicides and fertilisers
(including as manures) to both food and energy crops can result in subsurface leaching
and runoff of nutrients and agro-chemicals during rainfall events, contaminating surface
water bodies and groundwater. This hinders their capacity to be used in supporting
downstream demands such as drinking water provision, irrigation water or sustaining
aquatic habitats (Table S1 #1; Jayasekera et al. 2011, Yao et al. 2018). In extreme
situations, the excess runoff of nutrient-laden sediment can result in eutrophication and
the development of harmful algal blooms (HABs) in both freshwater and coastal
environments, posing a significant threat to aquatic habitats (Table S1 #20; Reddy et al.
2018, Le Moal et al. 2019). The choice of crop type can affect the water quality
outcomes for downstream users and ecosystems. For example, economic modelling
showed that conversion of food-related crops to switchgrass for cellulosic ethanol
biofuel in west Tennessee, USA, would reduce nitrate loading to groundwater locally
(Table S1 #2; Zhong et al. 2018). However, whilst promotion of energy over food crops
may result in local improvement in water quality, the concern remains that “more
polluting” crops could be displaced to other areas.

A notable feature of Fig. 1 1s that several water quality case-studies (4, 21, 24,
29, 31) occur in all three dimensions of the WEF framework, demonstrating how water
quality can be embedded mn complex tripartite nexus interactions. The large number of
existing studies that are relevant to water quality in a WEF framework, but do not make
this connection explicit, demonstrates that these water quality dimensions occur across
scales, from individual farms to cities and their hinterlands, and link not only surface
water and groundwater, but also upstream and downstream users in drainage basins.
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