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ABSTRACT The introduction of electric heat pumps as a low carbon option for space heating offers a
potential pathway for reducing the carbon emissions resulting from domestic heating demand in the UK.
However, the additional power demands of heat pumps over conventional domestic loads have the potential
to significantly erode network headroom, particularly at the distribution level. The uptake of this technology
within the UK is currently limited and the effects of widespread adoption on distribution networks are not
well characterized due to the sparse availability of operational heat pump demand data. This paper outlines
a methodology for quantifying the demand impact of heat pumps on Low Voltage networks sensitive to
local temperature by deriving fundamental thermal relationships from real heat pump electrical demand
data. These relations can then be applied to predict demand for new studies independent of the geographic
specifics of the original dataset. The strength of this model is in the ability to predict an aggregated hourly
heat pump electrical demand profile that reflects local temperature conditions and intra-day usage as well
as population size, thereby also accounting for diversity effects that are difficult to capture in physics
based models. This work augments the usability of limited existing data by facilitating demand analysis
sensitive to local temperature conditions, rather than blanket rescaling of existing customer data as has been
performed in previous studies. This creates future opportunities for examining heat pump demand sensitivity
for different geographic locations against existing heat pump assessments, as well as performing studies
which incorporate multiple low carbon technologies connected to a Low Voltage network.

INDEX TERMS Load modelling, heat pumps, data analysis.

I. INTRODUCTION
Reducing the contribution of heat to the UK’s greenhouse gas
emissions presents one of the largest challenges in achieving
long-term emissions targets set by government policy. The
contribution of domestic heating is estimated to average a
third of household emissions [1]. In order to achieve 2050 net-
zero goals this must be reduced by a further 95% from
2017 levels [1]. Decarbonisation of the UK’s heating sector
will require a radical shift in the current status quo, expected
to necessitate widespread adoption of low carbon heating
with improved efficiency measures.

Electric Heat Pumps (EHP) offer one potential low car-
bon alternative, reducing CO2 emissions of up to 25% per
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unit of heat generated [2]. In combination with a fully
renewable electricity source, this can reduce the effec-
tive household heating CO2 emissions to zero. Advantages
include acting as a low-regret option for off-gas grid house-
holds [3], and as a low-cost option for newer well-insulated
builds.

The growth of heat pump technology has been supported
by UK government policy [4] and industry trials [5] but
despite this, overall deployment remains low – 76,388 domes-
tic heat pumps were registered with the RHI (Renewable
Heat Incentive) scheme in the UK by the end of 2019 [6].
In contrast, the UK advisory body the Committee for Cli-
mate Change (CCC) has recommended the installation of
one million heat pumps annually by 2030 in order to meet
decarbonisation targets [3]. This level of growth presents a
major challenge for distribution network operators as heat
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pump loads at maximum output are significant both in terms
of energy and power compared to existing domestic Low
Voltage (LV) network loads.

A. THE CHALLENGE AROUND HEAT PUMP DEMAND
MODELLING
The increase in network load contributed by heat pumps
presents a serious threat to the existing thermal and voltage
limits of LV network assets. In order to maintain quality of
service for customers whilst minimising the need to incur
costly network reinforcement, network operators require a
clear view of how heat pumps will impact networks at a local
level.

For this purpose, predictive demand models that use oper-
ational demand data have an advantage over conventional
physical demand models, in that they can capture individual
household behavioral and diversity effects that are difficult to
parameterize in physical models. However, there is currently
very limited availability of UK-based operational heat pump
data to draw on for examining heat pump network effects.
Furthermore, heat pump demand is highly sensitive to local
temperature conditions; conditions can be highly divergent
even within a limited geographical area due to factors such as
local topography and level of urbanization. This necessitates
a model that captures the full temperature to demand relation-
ship rather than relying on operational maximums.

Traditionally, load prediction at LV level has been limited
to modelling peak annual demand and rating physical assets
appropriately in order to ensure there is sufficient headroom
to meet this modelled peak [7]. The need to decarbonize the
energy sector necessitates the further uptake of LV-connected
low carbon technologies such as heat pumps, alongside wind,
PV and EVs. The inherent stochasticity of these load types
with potential for new failure modes demands new prediction
approaches beyond the historic method of modelling bulk
aggregations.

On this basis, the contribution of this paper is a method-
ology for quantifying the impact of heat pump demand on
LV networks sensitive to local weather conditions by deriv-
ing fundamental thermal relationships from real heat pump
electrical demand data. These relations can then be applied
to predict heat pump electrical demand for new studies inde-
pendent of the original dataset, thereby maximising the utility
of sparsely available heat pump demand data.

This methodology extracts electrical demand versus hour
of day and electrical demand versus temperature relation-
ships from individual customers in an operational dataset and
translates these relationships into a format that can be then
used to probabilistically predict heat pump demand through
a black-box type approach. Linear scaling factors are derived
from the operational dataset to act as a proxy for the variation
in building type, heat pump type and system efficiency that
would be seen in a typical UK population. By directly mod-
elling these relationships versus electrical demand, the need
to transform a heating demand into an electrical demand is
circumvented.

Themajority of previous heat pump demand impact studies
have focused on predicting demand for extreme cold tem-
peratures rather than fully capturing the temperature/demand
relationship [8], [9]. A key strength of this model is the ability
to generate a heat pump demand profile that is sensitive to
local temperature conditions, hour of day and population
size, thereby accounting for diversity effects as well as tem-
perature. Furthermore, by incorporating the full electrical
demand versus temperature and time of day relationship,
this model facilitates the study of heat pump demand impact
alongside other low carbon technologies on an LV network
for conditions other than extreme cold days. The mean error
and standard deviation of this model are tested versus two
heat pump demand datasets, with consistent results versus
population size and temperature for both cases. This indicates
that the developed approach will be generally applicable for
UK based heat pump populations, facilitating analysis of
LV networks with demand profiles tailored to local weather
conditions.

Section II of this paper describes the existing approaches
for modelling heat pump demand in the literature, outlining
their benefits and limitations. In section III of this paper,
the selected methodology for modelling heat pump demand
is described. Section IV presents the validation results as well
as primary model results. Section V discusses the results,
section VI outlines potential applications and a basic case
study and section VII concludes the paper with further
possible work.

II. EXISTING HEAT PUMP DEMAND MODELLING
APPROACHES
The primary challenge when evaluating the impact of heat
pumps on a distribution network is accurately quantifying
the magnitude of additional electrical load contributed by
the connection of heat pumps. The current low uptake of
heat pump technology in the UK results in a general lack
of operational demand data that could be used to facilitate
heat pump effects analysis and general evaluation of network
impacts.

Excessive additional load will result in a significant impact
on voltage and reduction in thermal headroom on a network,
potentially resulting in a breach of operational limits. The
difficulty surrounding heat pumps is that while their heat
output is broadly proportional to ambient temperature on a
seasonal time frame, at a daily and hourly level the demand
profile for a single customer is determined by a broader
range of factors. The electrical demand required to meet
a target heating demand for a household is influenced by
several parameters including building type, heat pump type
and building efficiency as well as the behavioural patterns of
the individual household. Therefore for a single point in time,
the additional electrical load presented to a distribution net-
work due to heat pumps is a function of parameters specific to
each household in addition to the common local temperature
conditions and time of day. This contrasts significantly with
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conventional domestic loads on distribution networks which
are highly static and predictable in nature.

The instantaneous electrical demand of a typically sized
domestic heat pump can be equivalent or in excess of cur-
rent daily domestic demand peaks [10]. In terms of energy,
the average heat pump electricity consumption of 8kWh per
day [8] is roughly equivalent to the existing average electric-
ity consumption for a UK household of 8.5kWh per day [11].
Each additional heat pump connected to an LV network is
roughly equivalent to the connection of an extra household
and therefore is a serious consideration for network headroom
at higher levels of penetration.

Analysis and prediction of heat pump electrical demand
modelling within the UK is currently constrained in the lit-
erature primarily to either small-scale physical models which
require a high-level of specific system knowledge to make
predictions [12], or methods which rescale existing heat
pump trial data to achieve a deterministic outcome [9].

There are currently three fundamental approaches for mod-
elling heat pump load profiles that have been used in the
literature:
• Physical model that captures a detailed heat pump/
heating system but with limited capture of time of use
effects across a population [12], [13]

• Use of existing gas or heating demand data, making
assumptions about building type, building insulation and
population information, [14], [15]

• Use of electric heat pump trial data; examine and rescale
for time periods of interest [8], [9], [16]

These approaches all feature their own specific advantages
and disadvantages depending on the specific area of study.

Existing physical approaches are well-suited for sim-
ulating highly defined models that clearly characterise
one heating system; this makes them ideal for modelling
highly-specific behaviours such as fast start-up transients.
Underwood et al. [12] developed a compressor-based para-
metric model for capturing seasonal performance of different
manufacturer’s heat pumps, which was able to achieve good
results when comparing actual and modelled heat output.
Other works further incorporate building parameters across a
population when considering heat pump demand [13], but the
approach lacks real demand data to support the full validation
of results and it is therefore not possible to quantify the
associated error. Heat pump electrical load and therefore its
immediate impact on an electrical network is a function of
several parameters that will vary from household to house-
hold; these include relatively fixed characteristics such heat
pump type, building and insulation characteristics but are
also strongly linked to ambient temperature conditions and
behavioural routines which will vary seasonally. Furthermore
it can be expected there will be diversity in heat pump
type, building characteristics and behavioural routines even
within a local neighbourhood [17]. Fig.1 illustrates sample
daily load profiles for nine different households on the same
winter’s day from the Renewable Heat Premium Payment
(RHPP) dataset [18]. All households are based in England and

FIGURE 1. Intra-day heat pump electrical demand for nine sample
customers on same winter weekday.

therefore are exposed to similar daily temperature profiles
and magnitude. Each customer load profile clearly features
a distinctive shape and there is limited commonality from
customer to customer. This combination of physical, seasonal
and behavioural characteristics makes it very challenging to
develop a fully representative physical heat pump model that
can translate these population-variable parameters into an
aggregated load profile that accurately reflects the energy,
power and time of use characteristics of a real heat pump
load.

A more straightforward approach to modelling heat pump
demand is to take existing gas or heating demand data and
rescale this the equivalent electric heat pump demand based
on an appropriate Coefficient of Performance (COP) fig-
ure. This method has been applied for showing large scale
effects for the transition to greater levels of heat electrification
in the UK [14], whereas elsewhere electrical demand pro-
files have been derived from ambient temperature and heat-
ing demand profiles with an hourly resolution [15]. Whilst
strongly linked to the true heating demand characteristics,
this method has limitations when applied to LV networks on
daily or hourly resolutions. Current gas demand magnitude
is partially shaped by equipment type (i.e. combi versus con-
densing boiler) as well as home characteristics and behaviour.
Alteration of the heating system will reshape heating demand
according to EHP characteristics. This may potentially also
alter pre-existing behavioural thermal routines, such as when
occupants choose to enable household heating [17]. Due
to lower flow temperatures than conventional boiler based
systems the time of use characteristics of heat pumps can be
anticipated to be different compared to existing profiles and
will potentially be spread more widely across the day.

In contrast to physical models and heating demand based
approaches, methods that utilise existing EHP demand data
from trials are able to mitigate the requirement to fully char-
acterise the heating system in order to define the electric
demand. The primary restriction with this approach is that
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due to the limited number of heat pumps active within the
UK there is sparse operational data from which to draw
conclusions about heat pump network impact. Consequently,
the level of detailed heat pump analysis involving large pop-
ulations is limited and generally features linear rescaling or
averaging of the aggregated profiles in order to assess heat
pump demand magnitude for a given time window.

Models based on real heat pump demand data have
been developed in the literature, circumventing the need
to fully characterise a physical heating system. A high-
resolution probabilistic model drawing on operational data
from 72 micro-CHP (combined heat and power) units during
field trials in 2011 was developed for electrical heat pump
demand prediction [16]. The probabilistic approach of this
study enabled the definition of a range of possible demand
values with respect to heat pump penetration. However, this
study is reliant on the fact that micro-CHP technology rep-
resents a good approximation of EHP demand patterns, and
does not draw on real EHP operational data.

Recent UK trials have greatly improved the availability
of domestic demand EHP data [18], [19], however limited
analysis has been performed to date. At present the major-
ity of heat pump demand modelling studies only focus on
averaged profiles at operational extremes. As the kinds of
loads connected to LV networks become more diverse, with a
mix of PV, EV, wind and low carbon heating technologies,
there is a strong need for the capability to model realistic
heat pump demand profiles alongside the interactions of other
technologies.

The methodology described in this paper will define a
composite approach between a fully physical demand model
that requires detailed inputs and can be difficult to vali-
date, and data-dependent approaches that primarily rescale
existing demand data. The concept of synthetically gen-
erating demand profiles from real data has been used in
other domains as a way of facilitating system analysis for
applications where real data may be sparse or difficult to
obtain [19], [20]. At present there has so far been limited use
of these techniques for heat pump demand applications. Syn-
thetically generated demand profiles derived from real oper-
ational data present an opportunity to develop a model that
characterises the difficult to capture elements of a physically-
defined heat pump model that can be validated against opera-
tional data. This maximises the value that can be drawn from
limited real world data that is typically costly and practically
difficult to obtain.

III. PROBABALISTIC PREDICTION OF LOCALISED HEAT
PUMP DEMAND
This paper describes a method for quantifying the demand
impact of increased heat pump uptake for population sizes
typical of LV networks, sensitive to local ambient tempera-
ture. This is performed by extracting the fundamental rela-
tionships between heat pump electrical demand, temperature
and time of day from a training dataset such that it can be
applied to a new target application. A one hour-resolution

FIGURE 2. Localized Heat Pump Demand Model Overview showing in
sample training and out of sample testing/prediction procedures.

is selected for the synthetic demand profiles as a trade-off
between achievability and utility.

This model will utilise UK domestic heat pump data cou-
pled with historical weather data in order to characterise the
fundamental relationship between daily electrical demand
and temperature for heat pumps. This will enable generation
of heat pump demand profiles sensitive to local temperature
using only the local temperature information and limited
inputs to seed the heat pump sizes within the population. The
three primary relationships versus ambient temperature this
study will characterise are:
• Daily Energy; heat pump electrical demand over the
course of a day

• Daily Average Duty Cycle; average heat pump state for
a single day

• Hourly Duty Cycle; hourly heat pump state within a
single day

Models capturing these relationships are used with local
weather observations at a target site to produce a EHP demand
for that site; this facilitates modelling hourly heat pump
demand for cases independent of the original sample dataset.
The interrelationships between model data, characterization
andmodel tests for this work are defined in Fig 2. The datasets
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used for developing this model are described in more detail
in section III.A. The model will be validated with multiple
datasets, both to prove the concept but also to quantify the
error associated with the model.

A. CASE STUDY DATASETS
This work makes use of three datasets to model the rela-
tionships between demand, temperature, and population size.
There is presently no large-scale heat pump dataset available
that sufficiently captures all of these parameters; therefore
different data sources are combined in order to define the
relationship between heat pump electrical demand and tem-
perature.

The reference heat pump demand used formodel training is
the Renewable Heat Premium Payment (RHPP) dataset [19]
features 2-minute resolution electrical demand data collected
from 418 air source and ground source heat pumps in the
UK from October 2013 to March 2015. This dataset does
not feature location data or local weather measurements. The
electricity usage monitored in this dataset does not include
domestic hot water use which will not be modelled as part
of this study. Due to the lack of corresponding local weather
data available for individual customers in the RHPP dataset,
historical weather data from a climatically average location
in the UK is paired with the existing RHPP demand data
to complete the reference data set. Historical weather data
from the Centre for Environmental Data Analysis (CEDA)
for the Central England weather station at Pershore is aligned
with the RHPP demand data [18]. Pershore weather station is
based at an inland, low-lying location in central England and
is therefore roughly representative of weather for the majority
of the UK population.

Finally, the operational demand data collected during the
Low Carbon London (LCL) heat pump trials [19] is used
as the target data set for validation purposes. This dataset
features electrical heat pump demand and associated local
temperature measurements for nine customers; this dataset is
used to test that the learned model characteristics produce an
accurate predicted heat pump demand from a local temper-
ature measurement. In LCL, customers 1 to 5 and 7 feature
two years worth of data; the remaining customers 6, 8 and
9 only feature 60 days of data. All customers have air-source
heat pumps installed with heat pump sizes ranging from 8 to
16kW in rating.

B. DAILY DEMAND VERSUS TEMPERATURE
CHARACTERISATION
Electric heat pump daily demand is broadly proportional to
ambient temperature: lower ambient temperatures translates
into higher heat pump daily demand, and vice versa for high
ambient temperatures. The influence of parameters such as
heat pump rating, efficiency, building insulation type and
most importantly occupant routine behavioural parameters
result in a range of possible values given a single daily
average temperature measurement rather than a single pos-
sible value. This is directly observable in the LCL dataset

FIGURE 3. Implied joint distributions of daily demand (kWh– x axis)
versus daily average temperature (◦C – y-axis) for target data set heat
pump loads #1 - #9.

shown in Fig.3, with a particularly wide band of possible
demand values for 10 ◦C. Customers 6, 8 and 9 are reduced
datasets only featuring 60 days of data and therefore only
show a partial illustration of this characteristic – they do not
capture the full operational variation due to seasonal changes.
This relationship is presumed to exist in the RHPP dataset,
however is masked by the lack of available corresponding
temperature data. This range of possible demand values for
a single daily average temperature is the basis for taking a
probabilistic approach in this study. In order to create the
basis for the model, the hourly demand measurements for
each RHPP customer are converted from an hourly advance
to daily total in kWh. In order to allow for comparison across
the entire dataset, the total daily demand for each customer
is normalised with respect to a reference population maxima
using the formula:

Dnormalised =
DkWh
Dmax

(1)

where DkWh is the daily demand for a specific day and Dmax
is the maximum daily demand for the customer dataset being
normalised. This scales all customer data on a range from 0 to
1; 0 representing zero demand and 1 representing maximum
demand. The normalised customer demand is mapped to the
CEDA Pershore weather station ambient temperature data
for the same time period as the training dataset. The train-
ing customer demand data and weather data is then unified
and plotted in the heatmap shown in Fig.4. The aggregated
demand data has been split into 1 ◦C intervals and the dis-
tribution plotted in Fig.4. This clearly illustrates the same
characteristic shape as the Low Carbon London data in Fig.3;
a narrow tail for ambient temperatures above 15 ◦C and a
widening band of higher demand for lower temperatures.
Datapoints for lower temperatures are sparse in the overall
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FIGURE 4. Joint histogram showing implied dependency structure of
normalized daily heat pump demand against daily average
temperature (◦C) from training dataset.

dataset and the increased granularity of the distribution at
very low temperatures is visible.

The standard deviation and mean is calculated for each
of the 1 ◦C dataset intervals, translating the raw data into a
simplified Gaussian distribution for each temperature band.
This provides a plausible range of normalised demand values
for each 1 ◦C interval. This is represented as:

ft (x) =
1

σt
√
Ì2π

e
−

1
2

(
x−µt
σt

)2
(2)

Therefore when making a demand prediction the daily
average temperature is first identified, and then the demand
value is generated based on a distribution determined by the
corresponding standard deviation and mean for that tempera-
ture that has been derived from the data in Fig.4. This allows
for the creation of a look up table of standard deviation and
mean values for each temperature. The normalised probabil-
ity density is scaled into kWh using the formula shown in (3).

DPredicted(kWh) = ft (x)×
DkWh

DNormalised
(3)

C. DAILY DUTY CYCLE
A model for predicting daily heat pump energy has been
derived however it is still necessary to characterise how this
energy is distributed throughout the day. For this purpose the
modelled duty cycle will be disassociated from time of day
characteristics. The purpose of this section is to derive the
proportion of on and off durations for a particular day, not
how heat pump activity is distributed throughout the day.

Heat pump outputs can be one of two types: fixed output
or inverter based variable output. Fixed output heat pumps
operate by cycling on and off between maximum power dur-
ing the required heating period. Inverter based heat pumps can
modulate their output to any intermediate point between zero

FIGURE 5. Conceptual operating envelope for daily average demand
versus daily average duty cycle.

and full power as required to meet heating demand. Typical
fixed output heat pumps operating periods range from 9 to
40 minutes [22], therefore over a time period of one hour the
power characteristics of a fixed output versus inverter based
output will average to the same waveform in order to meet the
same heating demand for the majority of cases if conversion
efficiencies are assumed to be identical.

Conceptually, therefore the daily average demand is
directly proportional to the amount of time the heat pump
spends in the ‘‘on’’-state. The ratio of time spent in the on-
state versus the off-state will be represented as a duty cycle
measure. On this basis this work will develop a two-state
model for linking the previously derived daily heat pump
energy in section III.B to an hourly demand figure.

The modelled duty cycle δAV is calculated from the ratio of
the predicted daily demand DPredicted(kWh) over the real max-
imum demand Dmax for the customer profile. This is further
scaled by duty cycle population data through the value δmax
as shown in (4). Each customer profile has their own fixed
value of δmax, representing themaximum time the heat pump
spends on at the cold operational extreme. The theoretical
upper limit for δmax is 1 (representing always on) however
the mean δmax obtained from the training population is 0.68,
representing a heat pump that is on 68% of the time at its
upper operational extreme. The values of δmax are derived
from the RHPP population dataset for validation purposes.

For an instantaneous sample period heat pumps of any
output type can be assumed to be in one of two states: on
or off. Under steady state conditions the on-state can be
assumed to be fixed, although ramping to steady state will
introduce intermediate values of demand. Therefore the daily
heat pump demand is directly proportional to the amount
of time a heat pump spends on the on-state. Fig.5 and (4).
illustrate the conceptual relationship between the maximum
daily demand Dmax, the maximum daily duty cycle δmax
scaling factors, the predicted daily demandDPredicted(kWh) and
the derived duty cycle δAV .

δAV =
DPredicted(kWh)

Dmax
× δmax (4)
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The duty cycle δAV therefore represents the average heat
pump state for the daily time period. Once the daily demand
DPredicted(kWh) and the daily average duty cycle δAV is known
the on-time ton, off-time toff and on-power Pon can be deter-
mined. For a single day this is then used to derive the toff, ton
and Pon for the heat pump as shown in (5), (6) and (7). This
makes the assumption that the heat pump is either fully on or
fully off with no intermediate values.

ton = (ton + toff )× (δAV ) (5)

toff =
ton × (1− δAV )

δAV
(6)

Pon =
DPredicted(kWh)

δAV
(7)

Fig.6 illustrates the relationship between the original
observed demand and the modelled demand Pon derived from
(5), (6) and (7). The left hand figure shows the original
observed demand over the course of a day; the right hand-
figure shows the same observed demand dataset but sorted
by magnitude rather than plotted versus time. This is plotted
alongside the modelled demand Pon, illustrating how deriva-
tion of δAV from DPredicted(kWh) can be used to model a good
approximation for the proportion of time a heat pump spends
in either the on or off state. The distribution of the modelled
on/off states for a single day are derived in the next section.

FIGURE 6. (left) Observed Demand (kWh/2mins), (right) Modelled
Demand (kWh/2mins) and Observed Demand (kWh/2mins) for single day.

D. HOURLY DUTY CYCLE
The remaining aspect of the model is to develop a method for
determining heat pump hourly demand profile from the daily
average energy and daily average duty cycle. As illustrated
in Fig.1 the shape of a daily electrical demand profile can vary
significantly from household to household due to heat pump
and building parameters, as well as behavioural routines. The
primary concern around heat pump type loads is that without
a storage element to buffer or shift time of use, heat pump
loads can be anticipated to feature low levels of temporal
diversity in combination with their high energy and high
power characteristics. Therefore the specific time of day for
heat pump activity becomes of critical interest – a load that
is distributed evenly throughout the day will not pose the

same risks to voltage and thermal limits as a load that tends
to be clustered around existing the domestic load peaks in
the morning and evening. The time of use patterns across the
entire RHPP dataset will be characterised and then fed back
into a validation model.

Ideally power would be modelled as an instantaneous
value, however due to the variability in heat pump type and
operation, it is not possible to develop a high-resolution pre-
dictive model that is fully applicable for the entire dataset.
The approach here is to therefore develop a practical method
for characterising sub-daily demand magnitudes to a reason-
able resolution for network based analysis and validation. The
aim of this model is not to detect or

characterise fast transients (which are better predicted
by physics based models), but rather steady state network
conditions and how they contribute to network limits. This
work will therefore model hourly demand magnitude rather
than instantaneous power. Further work would be possible to
reduce this time resolution further for specific applications.

It has been shown in section 3.3 that modelling a linear
relationship between the daily demand and daily average
duty cycle δAV through (4) allows for derivation of the ton,
toff and Pon values for a particular day. This section will
outline a framework for linking the derived daily average
duty cycle to a set of hourly duty cycle values determined
by ambient temperature. This set of hourly duty cycles will
retain the overall predicted ton, toff and Pon values determined
by the δAV for a particular day. The individual time of day
versus temperature relationships for all RHPP customers will
be aggregated into a single framework that can be used to
generate synthetic demand profiles. Fig.7 illustrates a sample
raw demand profile translated into daily and hourly duty cycle
for a single customer.

FIGURE 7. Real demand (kWh/2 mins, blue), modelled duty cycle (green)
and average real demand (red).

E. HEAT PUMP DEMAND FROM TEMPERATURE
TRANSLATION MODEL
This section describes the process for translating the daily
average duty cycle δAV into a corresponding set of hourly
duty cycle values, allowing for shaping of an overall daily

195296 VOLUME 8, 2020



A. Anderson et al.: Predictive Thermal Relation Model

demand profile. Building on the relationship between daily
demand and daily duty cycle defined in section III.D, for
all daily customers the raw load profile is translated into an
hourly duty cycle and temperature profile relation. Due to
the direct relationship between heat pump energy consump-
tion and ambient temperature, the time of use characteristics
for a particular heat pump will also vary with temperature
– heat pump activity during the day reduces with warmer
temperatures and vice versa for cold temperatures. The output
of this conditioning stage is that for each unique customer
there exists an aggregated duty cycle profile for each hour
of the day and temperature combination dataset The data
conditioning process to transform the raw demand data into
a temperature versus hourly duty cycle profile is outlined
graphically in Fig.8. For each customer, the raw demand
profile for each 1◦C slice is converted to instantaneous heat
pump state as shown in (8), where Emax represents the
maximum instantaneous demand magnitude for the day. This
is then converted to hourly duty cycle. Finally, all profiles
belonging to the same customer and 1◦C temperature set
are averaged to create an aggregated profile of hourly duty
cycle versus temperature through (10), where n represents the
number of datasets available for a particular customer and
1◦C temperature combination. This process does not make
any distinction between weekend, weekday or any excep-
tional days such as holidays or bank weekends. The impact
of the weekday/weekend distinction on modelling strategies
has been assessed in [23], which identifies clear changes in
load routines during weekdays versus weekends. The aim of
this work however is to first develop a generalised model that
can then be tailored to suit specific analysis tasks.

E(t) =

{
1 t > 0.1(Emax)
0 t < 0.1(Emax)

(8)

δh_n =
1
30

t+30∑
t

E(t) (9)

δh =
1
n

n∑
1

δh_n (10)

Each customer therefore has a 24 x 20 array where there
is a row associated with each hour of the day and a column
associated with each 1◦C temperature slice, with each cell
representing an hourly duty cycle δh that reflects the heat
pump activity for those conditions. The array is defined as
follows for each customer:

δh = f (temperature, hourofday) (11)

The final output of this process is shown at the bottom of
Fig.8 as the hour of day versus temperature plot. This shows
an example of a time versus temperature relationship for a
single customer. Fig.9 shows a further selection of tempera-
ture versus time of use profiles for nine additional customers:
this clearly illustrates the diversity in time versus temperature
relationships for multiple customers. From this limited selec-
tion it can be seen that customers tend to retain heat pump

FIGURE 8. Conditioning of raw heat pump electrical demand profile into
time of use profile versus temperature.

behaviours across the temperature range. Customers that do
not enable heating during the day for cold extremes tend
not to enable heating for any other temperature. Similarly,
customers that have heating operating continuously at cold
extremes still exhibit this behaviour at warmer temperatures.

F. DAILY TO HOURLY DEMAND RELATION LEARNING
This section will further condition the data in order to link
sets of hourly duty cycles to a single daily average duty cycle
figure and therefore shape a demand curve based on a single
daily average duty cycle value. Each of the 418 temperature
versus time of day profiles derived from the RHPP dataset and
defined in (11) are combined into a three-dimensional array
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FIGURE 9. Selection of nine customer temperature versus time of use
profiles from training dataset.

defined as:

δh = f (temperature, hourofday, customer) (12)

The customer axis is transformed into a numeric δav value
by computing the average daily duty cycle for each customer
and temperature set of 24 δh values:

δav =
1
24

23∑
0

δh (13)

The array in (12) is now modified with the customer axis
being replaced with the δav corresponding figure calculated
in:

δh = f (temperature, hourofday, δav) (14)

Finally, this array sorted by average daily duty cycle. This
sorts the array by heat pump activity for the entire population
sorted by most active to least active.

Fig.10 shows the 0◦C slice of this array. This array shows
the distribution of heat pump activity across the entire RHPP

FIGURE 10. Heat Pump Hourly Duty Cycle (0 to 24 hours, x-axis) versus
Average Duty Cycle (y-axis).

population versus time of day. Clear morning and evening
peaks are visible, but there are also customers with very
high and very low heat pump activity at either extreme. This
array clearly illustrates that heat pump activity exists on a
continuum rather than there being clearly defined repeating
profiles. It is theorised that this characteristic will be true for
all UK based heat pump populations over a certain size that
feature a certain level of diversity. The subsequent tempera-
ture slices in Fig.11 clearly show the reduction in heat pump
activity with temperature. The onset of the morning demand
peak at 6am and drop off at 10pm correlates closely with
the December averaged profiles obtained from the Customer
Led Network Revolution heat pump study, which consisted
of 89 customers [8].

FIGURE 11. RHPP Heat Pump Hourly Duty Cycle Distribution - (0 to
24 hours, x-axis) versus Average Duty Cycle (y-axis) for 0◦C, 5◦C, 7◦C,
10◦C, 15◦C and 19◦C.

It is now possible to generate an hourly demand estimate
using only a daily average temperature input combined with
the demand and duty cycle linear scaling factors. The daily
demand is generated as per the relationship shown in Fig.4.
From this a daily average duty cycle can be obtained through
the relationship between daily demand and daily average duty
cycle shown in (4). Finally the daily average duty cycle is
paired with the closet matching set of hourly duty cycles
for the appropriate temperature in (14). The predicted hourly
demand Dpredicted_h for each hour of the day being calculated
is obtained though (15):

Dpredicted_h = δh ×
Dpredicted(kWh)

24
(15)

where Dpredicted(kWh) is the predicted daily power and δh is the
predicted hourly duty cycle. Fig.12 illustrates the final load
profile output of the process for a single theoretical customer
and range of temperature values.

G. TRAINING DATASET – CUSTOMER PROFILES
TheRHPP training dataset acts as the source of scaling factors
for daily demand Dmax and duty cycle δmax in this study
in (1) and (4). The structure of this model is such that the
model may be seeded with scaling factors from other popula-
tions or datasets as required for specific analysis. This section
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FIGURE 12. Daily demand profiles for a single customer for 0◦C, 5◦C,
10◦C, 15◦C and 20◦C.

describes the general population characteristics of the scaling
factors used within this study.

The limitations of using the RHPP dataset method have
been identified in previous works – customers in the RHPP
dataset are predominately local authority landlords rather
than private tenants [9]. Additionally, heat pump technology
has advanced since the installation of the sample population
hardware in 2013 and therefore this may not fully be rep-
resentative of a modern population due to improvements in
achievable COPs and building efficiencies.

The normalised demand generated in section 3.2 is multi-
plied from the scaling factor Dmax derived from the RHPP
population demand magnitude. Fig.13 illustrates the mean
daily demand for each customer across the RHPP dataset. The
population predominately features customers at the lower end
of the mean daily demand.

FIGURE 13. Distribution of RHPP Customers by mean heat pump daily
demand (kWh).

The maximum duty cycle δmax per customer in the
RHPP dataset is shown in Fig.14. This shows that apart
from customers with very low heat pump demand, max-
imum duty cycle is not strongly correlated to heat pump
demand and is distributed normally throughout the dataset.
The right hand side of Fig.14 shows that maximum duty
cycle is approximately normally distributed throughout the
RHPP dataset.

FIGURE 14. (left) Maximum duty cycle versus heat pump maximum
demand (kWh), (right) Distribution of maximum duty cycle for RHPP
customer dataset (kWh).

IV. VALIDATION OF PREDICTED DEMAND PROFILES
The developed model is validated against the observed
demand data in the RHPP training dataset and the LCL
target dataset. The model is fundamentally derived from
training dataset characteristics and therefore the tests versus
the LCL dataset validate how well the method works versus
unseen data. Large scale population testing is performed
with the training dataset, using the user profiles and demand
shapes generated from the training dataset. The inputs used to
generate a demand prediction are for a single day are the daily
average demand, and the customer scaling factors: maximum
daily demand Dmax and maximum daily duty cycle δmax.
These inputs are then fed into the thermal relations derived in
this paper in order to generate daily and hourly demand pre-
dictions. Random populations of customers ranging from 1
to 160 are used; with the error being assessed as a simple
mean absolute percentage error from 0◦C to 15◦C. Heat pump
behaviour below 0◦C is beyond the scope of this model due
to the lack data for this condition in the used datasets; beyond
15◦C is not examined as beyond this point heat pump activity
becomes minimal in the real data in terms of energy. Further
testing is performed to assess the quality of the predicted
demand shape with respect to the actual demand shape; this is
assessed as the percentage overlap between the real demand
and predicted demand.

A. DAILY DEMAND TESTING
The real versus predicted daily demand is calculated for
randomly selected groups of 1, 5, 10, 20, 40, 80 and 160 cus-
tomers. For each size group, a random selection of customers
is selected from the training dataset and the real daily demand
versus predicted daily demand calculated. This process is
replicated 100 times for each group size in order to obtain
a mean and standard deviation for error, with a new random
selection of customers generated each time. 100 runs per cus-
tomer group is chosen as a trade-off between computing time
and accuracy. From this the mean absolute percentage error
for each customer in each group is calculated as shown in,
where Dreal_d is the real daily demand and Dpredicted_d is the
predicted daily demand as derived from (3). This process is
then repeated for the temperature points 0◦C, 5◦C, 10◦C, and
15◦C. The final MAPE for each temperature/group number

VOLUME 8, 2020 195299



A. Anderson et al.: Predictive Thermal Relation Model

TABLE 1. Daily demand MAPE and its standard deviation for 0, 5, 10,
15◦C and aggregations of 1, 10, 20, 40, 80, 160 customers using training
dataset.

combination is simply the average MAPE obtained for each
set. The percentage standard deviation σ is calculated as
per (17). The results for this process are shown in Table 1.

MAPE =
∑∣∣∣∣Dreal_d − Dpredicted_dDreal_d

∣∣∣∣× 100 (16)

σd =

√∑
(Dpredicted_d − µ)2

n
(17)

For the target dataset there are nine customers and the
maximum overlap in time for the overall dataset is a 60 day
period ranging from 17/01/2014 to 20/03/2014. The aggre-
gated customer demand from this period is used to evaluate
the training dataset derived model for predicting demand
for other customer datasets. Two temperature profiles are
used to synthesise the daily demand: one is the Pershore
weather dataset used for the training dataset, the second is
the averaged local temperature data from the target dataset.
Fig.15 shows the real versus predicted daily demand for the
aggregated target data profile over a twomonth winter period.
This shows a smaller than anticipated error between real and
predicted demandwhen compared to the RHPPfindings. This
can be attributed to the fact that the Pershore weather data
does not reflect the local ambient temperature conditions for
the target dataset customers, which are distributed throughout
the south-east of England. However, this result does illustrate
that the normalised demand versus temperature relationship
derived from the training dataset shown in Fig.4, combined
with a simple scaling factor is able to achieve good results
for daily demand for small heat pump population even with

FIGURE 15. Real Demand, Predicted Demand (Target Local Weather) and
Predicted Demand (Pershore CEDA Weather) for 9 aggregated LCL
customers from 17/01/2014 to 20/03/2014.

a non-local temperature series. The MAPE and σ modelled
using the Pershore weather dataset in Table 2 align well with
the corresponding training dataset error values in Table 1 for
population sizes of 10.

TABLE 2. Daily demand MAPE and its standard deviation for target
customer dataset using target local weather and Pershore CEDA weather
observations.

B. HOURLY DEMAND TESTING
There are several features of interest when examining the
shape of a daily demand profile for network design and
operations. The magnitude of the demand peak, the time of
the demand peak, in addition to maximum rates of change are
all of interest when assessing network impact, however this
list is not exhaustive. TheMAPEmethod used in the previous
section is not suitable for measuring the shape quality; small
values feature heavily in the dataset at higher temperatures
and large errors in small hourly demands which can skew the
whole figure. In order to overcome these issues a weighted
MAPE is used. This MAPE is weighted by the sum of total
real demand for a given day and is calculated as shown in (18),
where Dreal_h is real hourly demand, and Dpredicted_h is the
corresponding predicted value of demand for the same hour
generated from (15).

WMAPE =

23∑
h=0

∣∣Dreal_h − Dpredicted_h∣∣∑
Dreal_h

× 100 (18)

σh =

√∑
(Dpredicted_h − µ)2

n
(19)
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V. MODEL PERFORMANCE EVALUATION
The proposed model in this study has outlined a simple
approach for predicting daily and hourly heat pump demand
profiles for a user-defined sample population, using only
daily average temperature and linear scaling factors as inputs.
The performance of the model against two independent
datasets have been examined in order to evaluate the wider
applicability of this model for UK based heat pump popula-
tion, with consistent results across both the training RHPP
and target LCL datasets. Whilst constrained by the lack of
further available heat pump demand data to examine this
point further, these initial results do indicate that the derived
model will be applicable in general for UK customers.

As illustrated in Fig.12 and Fig.15 the model offers good
capability for predicting the magnitude of daily demand
for heat pump populations for operating conditions ranging
from 0◦C to 15◦C. The mean daily demand error reduces
as temperature increases; this is in line with the dependency
relationship plotted in Fig.4 which features a smaller band
of possible values for higher temperatures when compared
to cold temperatures. In contrast, the mean error for hourly
demand increases with temperature. This can be attributed to
the greater diversity in demand shape at warm temperatures
as users are more likely to transition to only operating heating
for limited time windows.

The general error characteristics for both the daily and
hourly demand tests reflect findings of previous LV stud-
ies which observed strong scaling relationships between the
number of households and MAPE of a forecast method [24].
Whilst there are no directly comparable heat pump studies
using MAPE that the results of this work can be compared
against, it can be broadly compared with existing LV studies
forecasting other load types. Previous works forecasting LV
substation loads using have achieved MAPE’s in the region
of 11%–16% utilising ARIMA methods [25] [26]. While
the model contributed here is a predictor of load from tem-
perature, it could offer a forecasting capability if used in
conjunction with a temperature forecast from a numerical
weather prediction model. Typically forecasting temperature
yields lower errors than demand so the anticipated heat pump
demand forecast error would be broadly aligned with this fig-
ure. The demand activity peaks shown in Fig.8 and Fig.9 are
in agreement with the demand peaks of averaged heat pump
demand data from a comparable but geographically separate
trial [8].

Whilst limited in size compared to the overall training
dataset, the results for the target population show consistent
error results when compared with the RHPP error for groups
of a similar size. This does suggest that the RHPP derived
characteristics for the demand and demand shape model will
be widely applicable for UK households.

As has been shown, heat pump electrical demand mag-
nitude is highly sensitive to temperature. Whereas existing
works tend to focus on the demand impact of heat pumps
for the extreme cold case [4] [15] [16], this work facilitates
the generation of representative heat pump demand profiles

ranging from 0◦C up to 20◦C. Given the increased pene-
tration of low carbon technologies (LCTs) on LV networks,
it becomes of increased importance to model the combined
effects of LCTs alongside conventional loads rather than
study the extreme case for one technology type in isolation.
The future LV power system will need to be safely rated to
incorporate the effects of photovoltaics, wind, and electrical
vehicles in addition to low-carbon heating. The temperature
sensitivity of this model allows for generation of demand
profiles for any seasonal condition rather than the extreme
case, enabling study of heat pump effects alongside other
technologies.

Table 2, which uses local weather data, illustrates a notice-
able effect on the final error of a demand forecast. A typical
winter day is therefore expected to be different in shape
and magnitude depending on the local climate extremes –
the model presented can generate locally specific demand
profiles alongside a quantified error, rather than using an
extreme winter case not tailored to local conditions.

Whilst this model captures the behavioural time of use
relationship that is typically absent from physical models,
there are certain pre-requisites to consider when using this
method to predict electric heat pump demand. In particular,
this model is dependent on source user profiles in order to
seed appropriate scaling factors when performing demand
normalisation and a proxy for these on de-normalisation.
The scaling factors used in this study are contemporary to
the capabilities of heat pump technology at the time of the
original study. In order to revise these scaling factors for
future generations of hardware, these values would have to
be adjusted in taking into account typical COP’s and critical
physical parameters for new hardware. Scaling factors will
inevitably be a function of building parameters such as floor
area, building layout and insulation efficiency as well as heat
pump rating, itself related to the latter parameters. Building
floorspace has been shown to have the greatest influence
on household heating demand [27]; a potential opportunity
for further work would be to derive building characteristics
including floorspace from remote imagery or aerial lidar data
in order to automatically define scaling factors tailored to a
local area [28].

It has not been possible to model the effects of heat pump
demand below 0◦C due to the very limited availability of
data from this extreme operating region. Below 0◦C the COP
of conventional EHP’s drops off significantly, greatly reduc-
ing conversion efficiency. The typical mitigation strategy to
counter this behaviour is to install secondary resistive heating
to supplement the heat pump output for extreme cold cases.
This raises the threat of yet higher demand peaks that are
driven by temperature and would require a second model to
incorporate the load characteristics of this behaviour.

VI. APPLICATIONS AND CASE STUDY
Through the development of a EHP-specific load model, this
work facilitates the further analysis of EHP impact on LV
networks both in isolation, and alongside the effects of other
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TABLE 3. Hourly demand WMAPE and its standard deviation (σ ) for 0, 5,
10, 15◦C using training dataset.

TABLE 4. Hourly demand WMAPE and its standard deviation for target
customer dataset using target local weather and Pershore CEDA weather.

low-carbon technologies. The method could be used for a
range of applications including; examining EHP penetration
network impact, as part of a demand response analysis or
as part of mixed-energy network studies. The probabilistic
approach allows for confidence intervals to be defined along-
side a load prediction; these could be derived from the rele-
vant MAPE and σ in Table 1 and Table 3. This complements
existing probabilistic approaches for other LV-connected low
carbon technologies [29], [30]. It is therefore envisioned that
this heat pump specific model could be used alongside other
probabilistic load types in order to thoroughly examine possi-
ble network conditions in the presence of load and generation
uncertainty.

Themain challenge EHPs present is the effect at scale at the
last mile of distribution networks. Underground cables at this
part of the network accounts for a significant volume of the
assets of a network owner and replacement or reinforcement
of these to accommodate EHP loadmay require an investment
beyond their capabilities.

As an example application, the predictive model is used to
model a simple power flow scenario for a single LV feeder

with 40 connected households and varying levels of EHP
penetration. Smart meter data from the Low Carbon London
trials [31] is used to create a base domestic load and combined
with increasing levels of EHP penetration on the feeder. Heat
pump electrical demand is then predicted for an artificial five
day winter period; Fig.16 illustrates the output of this study.

FIGURE 16. Distribution network feeder load for 0%, 25%, 50%, 75% and
100% EHP penetration on 40 customer residential network during five
day winter period (a-top) and corresponding daily average temperature
(b-bottom).

The fundamental shape of the overall load profile does not
significantly change between the 0% and 100% penetration
cases; the morning and afternoon peaks are roughly concur-
rent for all levels of penetration however the morning peaks
additionally get wider. However the magnitude of the daily
load peaks can be seen to significantly increase in value,
with the evening peak approximately doubling in value for
the 100% case. This agrees with the expectation outlined at
the outset of this paper that full heat pump penetration is
roughly equivalent to doubling the number of households on
a network.

VII. CONCLUSION
This paper has defined a model for quantifying the demand
impact of increased uptake of electric heat pumps for popu-
lation sizes representative of typical LV network applications
using demand relationships derived from existing operational
datasets and sensitive to local weather conditions. A generic
relationship between heat pump electrical demand and tem-
perature has been identified from real customer data and
validated on two independent datasets. This model facili-
tates the analysis of heat pump demand that is sensitive to
local temperature conditions, rather than blanket rescaling of
existing customer data as has been performed for previous
studies, augmenting the utility of sparsely available demand
data. By using a probabilistic approach, the distribution of
prediction error has been quantified. This creates future
opportunities for examining heat pump demand sensitivity for
different geographical locations against existing heat pump
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assessments, as well as performing studies which incorporate
multiple low carbon technologies connected to a LV network.

The main priority for further work would be to relate the
magnitude of electrical demand to an estimated COP and
nameplate heat pump rating, such that the scaling factors used
for the model could be modified to accommodate improve-
ments in heat pump efficiency. It would additionally be of
interest to examine the variation in weekday, weekend and
exceptional events.
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