Characterisation of fasted state gastric and intestinal fluids collected from children

Gopal Pawar¹; Eleni Papadatou-Soulou¹; Julie Mason¹; Rafeeq Muhammed², Alison Watson²; Catherine Cotter²; Mohamed Abou-Elwafa Abdallah^{3,4}; Stuart Harrad³; Claire Mackie⁵; Tina Arien⁵; Sabine Inghelbrecht⁵ and Hannah Batchelor^{*16}

1. School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom

2. Birmingham Children's Hospital, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom

3. School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom

4. Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt

5. Janssen Research and Development, Turnhoutseweg 34, 2340 Beerse, Belgium

6. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 ORE, United Kingdom

*Corresponding author:

Professor Hannah Batchelor, Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow G4 ORE

Hannah.batchelor@strath.ac.uk

Abstract

Fundamental knowledge about the composition of intestinal fluids in paediatric populations is currently unavailable. This study aimed to characterise gastric and intestinal fluid from paediatric populations.

Gastric and intestinal fluid samples were obtained during routine clinical endoscopy from paediatric patients at a large teaching hospital. These fluids were characterised to measure the pH; buffer capacity; osmolality; bile acid concentration and composition.

A total of 55 children were recruited to the study aged from 11 months to 15 years of age where 53 gastric fluid samples and 40 intestinal fluid samples were obtained. pH values recorded ranged from pH 0.57 to 11.05 (median: 2.50) in gastric fluids and from 0.89 to 8.97 (median: 3.27) in intestinal fluids. The buffer capacity did not change significantly between gastric and intestinal fluids with median values of 12 mM/L/ Δ pH for both fluids. Gastric fluid osmolality values ranged from 1 to 615 mOsm/kg, while intestinal fluid values ranged from 35 to 631 mOsm/kg.

Gastric fluid bile acid concentrations ranged from 0.002 to 2.3mM with a median value of 0.017mM whilst intestinal fluid bile acid concentrations ranged from 0.0008 to 3.3mM with a median value of 0.178mM. Glycocholate; taurocholic acid; glycochenodeoxycholate and taurochenodeoxycholate were the most commonly identified bile acids within paediatric intestinal fluids.

All compositional components were associated with large inter-individual variability. Further work is required to develop simulated paediatric media and to explore the impact of these media on drug solubility and dissolution.

Keywords: gastrointestinal fluid; paediatric; bile acid; buffer capacity; pH; osmolality

Introduction

Drug solubility within the gastrointestinal (GI) tract is key to oral biopharmaceutics parameters including calculation of the maximum absorbable dose [1, 2] and biopharmaceutics classification system [3]. Inadequate solubility can limit absorption of certain active pharmaceutical ingredients (APIs) so it is important to accurately measure solubility in GI fluids. However, GI fluid is a complex media known to exhibit high inter-individual variability. Critical to the prediction of the oral absorption of drugs in children is knowledge of the physical environment within the paediatric intestinal tract. Fundamental knowledge about the composition of intestinal fluids in neonates and children is currently unavailable.

There are several studies where GI fluids have been collected and characterised in the biopharmaceutics arena. The majority of studies have been conducted on adult populations in the fasted state [4-12] yet there are also studies exploring the fed state [13, 14]. Previous studies conducted in adults and children [15] where fasted fluid was collected and characterised are listed in Supplementary Table 1. Methodology associated with the measurement of GI fluid have varied and there has been recent work published to standardise methods of assessment [16].

The development of simulated adult intestinal fluids based on aspirated intestinal fluids has shown superiority in predicting *in vivo* performance compared to simple buffers [17]. Currently used simulated intestinal fluids: fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FaSSIF) are based on adult data sets [18]. However, it is recognised that the GI environment in children may be different to that in adults [19]. There have been reports that the differences in volumes of fluid present may affect the classification of APIs in children according to the adult biopharmaceutics classification system [20-24].

A comprehensive review [25] on paediatric GI fluids and the component materials revealed several differences in paediatric fluids compared to adult data. The findings included a relatively higher gastric osmolality (of 253 mOsm/L in infants at 8 months) compared to values reported in adults, no reports of bile concentrations or buffer capacity from paediatric intestinal fluids were found in this review. Based on this review, recipes for paediatric fasted state simulated gastric and intestinal fluids were proposed for both neonates and infants, these reflected worse case scenarios rather than informed compositional content [25]. Subsequent to the Maharaj et al (2016) review [25], a study investigating the composition of gastric fluid in a paediatric population was published [15]. This gastric fluid study reported pH values ranging from 1.2-8.3 in neonates up to 20 days old (a similar pH range is observed for infants although details are not listed); 0.93-8.15 in children (2-12 years) and 1.24-6.96 in adolescents (12-18 years). The majority of the osmolality values measured in gastric fluids were between 200-350 mOsmKg⁻¹ for neonates and infants, with lower mean values of 152 ±74 mOsmKg⁻¹ in children and 196 ±73 mOsmKg⁻¹ in adolescents. Bile salt concentrations in gastric fluids were also measured and large variability was shown: for neonates the concentration ranged from 0 to 5.6 mM (mean 0.19mM); infants ranged from 0-1.6 mM (mean 0.24 mM); children 0-1.1 mM (mean 0.10 mM) and for adolescents ranged from 0-6.3 mM (mean 0.76 mM) [15].

Bile acids are chemically similar compounds based on a steroid nucleus, when these acids are conjugated to sodium they are termed bile salts and often the terms bile acid and bile salt are used interchangeably. Differences in the number and position of hydroxyl groups in relation to the steroid structure dictate the specific bile acid present. The structure informs the balance between

hydrophobic and hydrophilic components within the bile acid which in turn affects how the bile interacts with other chemicals, including how this may affect the solubility of an API [26]. Thus knowledge of bile acid composition within the intestinal fluid is critical and has previously been shown to have very large effects on API solubility [27, 28]. Primary bile acids, cholic acid (CA) and chenodeoxycholic acid (CDC) are produced by the liver and conjugated to the amino acids glycine or taurine [29].

Several studies have reported the bile acid concentration in adult human intestinal fluids, a review of this literature suggested an overall mean bile acid concentration in the fasted duodenum of 3.3mM and 3.0mM in the fasted jejunum [30]. With regard to bile acid composition, adult studies have shown discrepancies in the bile acids detected and all data shows large inter subject variability that could explain these differences [9, 12, 31]. There is limited data available on bile acids from paediatric populations. Studies reporting bile acid concentrations in the GI fluids of children are listed in Table 1. One study [15] reported relative bile acid compositions of gastric fluid with slight differences found between neonate and infant populations to that of children and adolescents, further details are provided in Table 1.

Drug solubility in the intestine drives absorption for certain APIs and small changes in solubility can have large effects on the absorbed dose and therefore subsequent therapy. The composition of GI fluid, therefore, influences drug product performance and may differ between children and adults. In the paediatric population, knowledge of GI fluid composition is essential to develop and build biorelevant physical and *in silico* models with the potential to minimise the burden of clinical trials in children. This study seeks to characterise gastric and intestinal fluid from paediatric populations to include reports on bile acid concentration and composition and to compare these fluids to data from adult populations as well as gastric data from paediatric populations [15].

Reference	Population age	Fed/Fasted	Fluid	Bile acid/salt concentration	Bile acids present
[32]	8 healthy neonates (3-15 days)	4 hours after last meal	Duodenal	0.50-5.29 mM (fasting values) Mean value = 2.09 mM	Taurine and glycine conjugates of cholic andCDC acids (TC; TCDC; GC; GCDC).The total concentrations of cholic and CDC acidscombined during the test meal ranged from0.41 to 1.48 mM.The ratio typically showed a greaterconcentration of cholic acid compared to CDCacid
[33]	18 healthy preterm neonates (32-39 weeks)	2 hours after last feed	Duodenal	0.44-23.3 mM Mean value = 6.32 mM	Not stated.
[34]	34 neonates/infants (birth-7 months)	2 hours after last meal	Duodenal	1.65 ±1.1 mM	Glycine/taurine conjugates 0.09 (±0.03) mM Trihydroxy/dihydroxy bile acids 1.8 (±1.3) mM TC acid 0.78 (±0.36) mM TCDC acid 0.68 (±0.40) mM TLC acid 0.32 (±0.17) mM GC acid 0.25 (±0.15) mM GCDC acid 0.55 mM (1 sample)
[35]	20 low birth weight neonates (12-22 days)	3 hours after last meal	Duodenal	3.2-6.9 mM	Glycine conjugates 1.2-4.6 mM Taurine conjugates 0.9-2.3 mM
[36]	36 neonates (34 ±2.6 weeks) 16 infants/children (25 ±21 months)	Pre-prandial sample	Duodenal	~3-4 mM (neonates) ~5-7 mM (infants/children) Data sets read from graph and exact values not available	GCDC formed 11% of total bile salts in neonates TLC was detected in higher frequency in the infant/children group compared to neonates

[37]	66 healthy preterm neonates	1-3 hours	Duodenal	Median value 3.63 mM in formula	High levels of 2-OH cholate bile acids; CDC
	(33-36 weeks)	after last		fed neonates	
		feed		Median value 7.56 mM in breast	
				fed neonates	
[38]	42 low birthweight	Pre-prandial	Duodenal	4.60 ±2.51 mM	No details on composition of bile acids
	neonate/infants (15-51 days)	sample			
[39]	41 healthy preterm	3-4 hours	Duodenal	27-28 gestational weeks: 4.25	Secondary bile acids were not detectable
	neonates/infants (8-58 days)	after last		±2.07 mM	Cholic acid; CDC acid; DC acid and LC acid were
		meal		33-34 gestational weeks: 4.47	present
				±2.10 mM	
[15]	11 neonates (0-28 days)	Pre-prandial	Gastric	0.0-5.60 mM	In neonate and infant populations the relative
	3 infants (28 days- 2 years)			0.0-1.61 mM	order GC > TC > TCDC > GCDC
	30 children (2-12 years)			0.0-1.11 mM	In children and adolescents where the order
	10 adolescents (12-18 years)			0.0-6.28 mM	was GC > GCDC > TC > TCDC > GDC > TDC >
					GUDC

Table 1. Summary of cohort details from studies reported where bile acid concentrations were measured in paediatric population. Glycocholic acid (GC); glycochenodeoxycholic acid (GCDC); glycodeoxycholic acid (GDC); glycoursodeoxycholic acid (GUDC); taurocholic acid (TC); taurochenodeoxycholic acid (TCDC); taurodeoxycholic acid (TDC); tauroursodeoxycholic acid (TUDC); taurolithocholic acid (TLC); deoxycholic acid (DC), lithocholic acid (LC), and ursodeoxycholic acid (UDC).

Materials and Methods

Source of intestinal fluid samples

All samples were collected from patients at Birmingham Children's Hospital, a large teaching hospital that is part of Birmingham Women's and Children's Hospital NHS Foundation Trust, UK. Ethical approval was granted by South Birmingham NRES Committee (IRAS 251909). Gastric and intestinal fluid samples were collected from participants during routine clinical endoscopy. Clinical protocols requested that no fluid was ingested in the 90 minutes prior to the endoscopy procedure. Gastric samples were collected from the gastric antrum and intestinal samples from the duodenum. The samples were stored at -80°C prior to characterisation. The participants were stratified by age into the following groups, based on the International Conference on Harmonization (ICH) E11 classifications: < 2 years: new-born/ infant/ toddler (the term infant is used for this group for the remainder of this manuscript), 2-5 years: pre-school age children, 6-11 years: school age children, 12-16 years: adolescents.

Chemicals

Bile salt standards: Cholic acid (CA); Glycocholic acid (GC); glycochenodeoxycholic acid (GCDC); glycodeoxycholic acid (GDC); glycoursodeoxycholic acid (GUDC); taurocholic acid (TC); taurochenodeoxycholic acid (TCDC); taurodeoxycholic acid (TDC); taurolithocholic acid (TLC); deoxycholic acid (DC), lithocholic acid (LC), and ursodeoxycholic acid (UDC) were purchased from either Sigma Aldrich (Gillingham, UK) or Acros Organics (Fisher Scientific, Loughborough, UK). Internal standards (IS) were specific isotope labelled standards of cholic acid-D4 (D4-CA) and deoxycholic acid-D4 (D4-DC), purchased from Sigma Aldrich. Further details of physchem properties, CAS number, % purity and purchase details of all standards are provided in Table 2 in the supplementary information.

Methodology for characterisation of fluid samples collected

pH: A Hanna HI 2210 pH meter was used for all measurements, calibrated on the day of use. A narrow pH electrode (Hanna HI1331B) was used to enable measurement of the small volumes available.

Buffer Capacity (mmol/L): The buffer capacity was measured by titrating each sample with 0.1M NaOH under constant stirring whilst monitoring the pH to measure the volume required for a change in pH of 1 unit. A calibrated Hanna HI 2210 pH meter was used for all measurements. Previous studies measured buffer capacity using both NaOH and HCl, however due to the small sample volumes available, only titration against HCl was performed for all samples [16]. The buffering capacity (β) was calculated using the following equation:

$$\beta = \frac{\Delta A}{\Delta p H}$$

Where ΔA is the amount of acid added and ΔpH is the change in pH induced by the acid added.

Osmolality (mOsm/ kg): Osmolality was measured using a freezing point Osmomat 3000 that was calibrated prior to use. 50 μ l of each fluid sample was placed into the appropriate sample vial using a 20-200 μ l Thermoscientific pipette and the osmolality value was recorded.

Quantification and identification of bile salts

A LC-MS/MS method was used based on published literature [12]. Separation of 14 bile acids was achieved using a dual pump Shimadzu LC-20AB Prominence liquid chromatograph equipped with SIL-20A autosampler, a DGU-20A3 vacuum degasser and an Ascentis Express C₁₈ column (15 cm x 4.6 mm I.D., 2.7 μ m; Sigma Aldrich). A mobile phase program based on (A) 1:1 methanol/water and (B) methanol at a flow rate of 150 μ L/min was applied for elution of target analytes. Both solvent's pH were adjusted to 9.0 with 0.1% ammonium hydroxide (25%) and 10 mM/L ammonium acetate. The flow started at 50% B and increased to 100% over 4 minutes, held at 100% B for 5 minutes then reduced to 50% B at 12 minutes.

Mass spectrometric analysis was performed using a Sciex API 2000 triple quadrupole mass spectrometer operated in electrospray negative ionization mode. MS/MS detection operated in the multiple reaction monitoring (MRM) mode was used for quantitative determination based on compound-specific MRM transitions. Full details are provided in Table 3 of the supplementary material.

Sample preparation: A simple protein precipitation method was followed for extraction of all bile acids from gastric and duodenal fluids. An aliquot of 100-250 μ L fluid sample was precipitated with 440 μ L of acetonitrile:methanol (1:2) solvent containing 10 μ L internal standard (IS) (1000 ng/mL) and mixed for 15s on a Vortex Mixer (Fisherbrand, UK). This sample mixture was centrifuged at 14,000 rpm at 10°C for 10 min. Initially the samples were diluted 2 times and then 5, 10, 100, and 200 times depending on the concentrations of each bile salt in the fluid sample. From the diluted supernatant 5 μ L was injected onto the LC-MS/MS system for analysis.

A simple protein precipitation extraction technique was sufficient to obtain the best recovery for both the bile acid analytes and internal standards. The results of the comparison of neat standards (methanol: water spiked with bile acids) versus surrogate-matrix extracted standards for all the bile acids and the mean recovery was found to between 95-98% at three concentrations (5, 100 & 2000 ng/ml). The recovery for internal standards at 1000 ng/ml was > 98% in all the recovery samples.

The analysis method was shown to be linear from 2-2000 ng/mL and was capable of accurately and precisely determining bile acid concentrations in GI fluid samples according to the FDA requirements for bioanalytical method validation. Total bile acid concentration in each sample was calculated as the sum of the concentrations of the individual bile acids.

Description of Statistical Methods

Previous work to characterise the gastric and intestinal fluids in adults reported means, medians and range values of pH; buffering capacity; osmolality; viscosity and bile salt concentration [4]. This work aims to characterise the same parameters for paediatric populations and to explore whether the values obtained are statistically similar to those reported in previous studies in both adult and paediatric populations. The differences in mean values between the sub-sets of paediatric populations as well as existing data from adults were compared using ANOVA analysis (with Tukey's post-hoc) to determine any significant differences. Outliers were identified using SPSS, these are presented in figures but were excluded from further analysis (SPSS uses a step of 1.5×IQR (Interquartile range) to identify outliers).

Results and Discussion

Patient demographics

A total of 55 children were recruited to the study ranging in age from 11 months to 15 years old. A total of 53 gastric fluid samples were collected with 2 from infants; 10 from pre-school age children, 20 from school age children and 21 from adolescents. A total of 40 intestinal fluid samples were collected with 2 from neonates-infants; 7 from pre-school age children; 16 from school age children and 15 from adolescents. Demographic data for all participants is provided in Table 2.

Participant ID code	Ethnicity	Age (y)	Height (cm)	Weight (Kg)	Reason for the endoscopy	Final diagnosis following endoscopy	Gastric fluid sample	Duodenal fluid sample
	White	13	158.6	48.5	Bleeding per	Colonic		
UK001	British				rectum	polyp	Yes	
	Any other ethnic group, not	10	142	33.2				
UK002	specified				Abdominal pain	Normal	Yes	Yes
	White- not	13	173	56.2	Diarrhoea +	Coeliac		
UK003	specified				Anaemia	Disease	Yes	
	Not	2	84.1	11.9		Eosinophilic		
UK004	specified				Vomiting	oesophagitis	Yes	
	Asian/Asian British -	11	151	38				
UK005	Indian				Abdominal pain	Normal	Yes	Yes
	White	8	134.9	44.3	•			
UK006	British				Vomiting	Normal	Yes	Yes
	White	6	112.8	21				
UK007	British				Vomiting	Normal	Yes	Yes
	White- not	2	94.2	14.9				
UK008	specified				Diarrhoea	Normal	Yes	
	White	12	155.4	45.3	Abdominal pain			
UK010	British				+ constipation	Normal	Yes	Yes
	Black/Black	14	166.6	57.4				
	British - any							
11/044	other black					Nerveral	Maa	
UKUII	background	15	1 - 1	40.7	Abdominal pain	Normai	res	
	white Britich	15	154	40.7	Abdominal nain	Cronn s	Voc	
UKUIZ	Asian/Asian	11	1/7 5	66.6	Abuominal pain	Disease	res	
	Asidii/Asidii British -	11	147.5	00.0	choking			
116013	Pakistani				enisodes	Normal	Yes	Yes
01015	Mixed	14	169.9	79.9	episodes	Norman	105	105
	White and	1.	105.5	, 5.5				
	Black							
UK014	Caribbean				Abdominal pain	Normal	Yes	Yes
	White	14	171	62.8	Abdominal pain			
UK015	British				+ Diarrhoea	Normal	Yes	
	White	14	152.6	52.5				
UK017	British				Dyspepsia	Normal	Yes	Yes
	White	12	169	60.9				
UK018	British				Abdominal pain	Normal	Yes	Yes

		15	163.5	37.8	Abdominal pain.			
	Asian/Asian		20010	0710	diarrhoea +	Crohn's		
LIK019	British				weight loss	Disease	Yes	Ves
01015	Diffish	2	01.0	15 1	Asymptomatic	Discuse	103	105
		5	51.0	15.1	type 1 diabetic			
					type I diabetic			
	Not				patient,	Cooline		
11//020	NUL				Screening IOI	Disease	Vee	
0K020	specified	2	04.0	112	Coellac Disease	Disease	res	
		3	94.9	14.3	Hypothyroidism-			
	Asian/Asian				routine			
	British -				screening for	Coeliac		
UK021	Indian				Coeliac Disease	Disease	Yes	Yes
	Asian/Asian	11	139	22.5				
	British -				Slow weight	Coeliac		
UK022	Pakistani				gain	Disease	Yes	Yes
	Not	15	177.1	64.2				
UK023	specified				Abdominal pain	Normal	Yes	Yes
	White	11	158	38.2				
UK024	British				Abdominal pain	Normal	Yes	Yes
	White	12	162.9	52.2	Abdominal pain			
UK025	British			-	+ weight loss	Normal	Yes	Yes
011023	Not	13	150.2	42.1	Weight 1000	Horman	105	105
	specified	15	150.2	42.1	Abdominal nain	Normal	Voc	Voc
01020	Acian/Acian	7	120	22 E	Abdominal pain	Normai	163	163
	ASIdII/ASIdII	/	129	22.5	Difficulty in	Facinonhilia		
11/027	British -				Difficulty in	Eosinophilic	M	
UKU27	Indian				swallowing	oesophagitis	Yes	
	White	12	153.7	47.1	Surveillance	Eosinophilic		
UK028	British				endoscopy	oesophagitis	Yes	
	White	15	179.2	61.8				
UK029	British				Abdominal pain	Normal	Yes	Yes
	Asian/Asian	10	123	21.2				
	British -				Protein-losing			
UK030	Pakistani				Enteropathy	Normal	Yes	
	White	9	136.6	25.9				
UK031	British				Abdominal pain	Normal	Yes	Yes
	Asian/Asian	1	77.5	8.5	Part of work up			
	British -				for stem cell			
UK032	Pakistani				transplant	Normal	Yes	Yes
-	Asian/Asian	15	155.6	39.8	Inflammatory			
	British -		20010	0010	bowel disease			
UK033	Indian				surveillance	Normal	Yes	Yes
01000	White	15	167.8	17.1	Slow weight	Horman	105	105
	British	15	107.0	77.7	gain	Normal	Vec	Voc
0.007	Asian/Asian	10	120 1	18.6	Abdominal nain		105	105
	Asidii/Asidii Britich	10	150.1	18.0	Abuominai pain,			
	Dirusii - Dakistani				siow weight gain	Normal	Vec	Voc
0K035	Pakistani	-	117 4	22.0	+ constipation	Normai	res	res
	white	5	11/.4	22.0	Suspected	N	M	N
UK036	British				Coellac Disease	Normal	Yes	Yes
	Mixed	6	131.8	35.9				
	White and							
	Black				History of			
UK037	Caribbean				diarrhoea	Normal	Yes	Yes
	Asian/Asian	8	134	44.1	Surveillance of			
	British -				Reflux	Reflux		
UK038	Indian				Oesophagitis	Oesophagitis	Yes	Yes
		12	164	57.5		Helicobacter		
					Surveillance of	gastritis.		
	White				Eosinophilic	Eosinophilic		
UK039	British				Oesophagitis	oesophagitis	Yes	Yes
	Mixed	12	161.9	41.8	Surveillance of	Duodenal		
UK040	other				Duodenal ulcer	ulcer	Yes	Yes

-	White	12	141.3	29.9	Surveillance of	Crohn's		
UK041	British				Crohn's Disease	Disease	Yes	Yes
	White	3	99.7	14.4	History of blood			
UK042	British				in vomit	Normal	Yes	Yes
	Asian/Asian	11	144.1	31.8	Suspected			
	British -				Inflammatory	Ulcerative		
UK043	Indian				Bowel Disease	Colitis	Yes	Yes
	White	8	119.8	21.9	Suspected	Coeliac		
UK044	British				Coeliac Disease	Disease	Yes	Yes
	White- not	14	184	57.6				
UK045	specified				Abdominal pain	Normal	Yes	Yes
	White	3	97.1	15.4	Complaints of			
UK046	British				Diarrhoea	Normal	Yes	Yes
	White	7	112.6	17.6	Surveillance of	Crohn's		
UK047	British				Crohn's Disease	Disease	Yes	Yes
	White	6	115.2	19.9	History of			
UK048	British	-			diarrhoea	Normal	Yes	Yes
	White	11	65	7.4	Suspected	Coeliac		
UK049	British	months			Coeliac Disease	Disease	Yes	Yes
	White	10	129 1	25 5	Suspected	Coeliac		
UK050	British	10	129.1	20.0	Coeliac Disease	Disease	Yes	Yes
011030	White	10	133.6	28.9	Suspected	Discuse	105	105
LIK051	British	10	155.0	20.5	Coeliac Disease	Normal	Yes	Ves
01001	British	6	129	2/1 1	Surveillance of	Norma	105	105
	Asian/Asian	0	125	24.1	Lilcerative	Illegrative		
	British				Colitis	Colitis	Vec	Vec
010052	DITUSH	1	99.7	16 5	Suspected	contis	103	103
	White- not	4	55.7	10.5	chronic			
116023	specified				diarrhoea	Constination	Voc	Voc
010000	speemed	2	88.3	1/1 1	Bloody	constipation	103	103
		2	00.5	14.1	diarrhoea			
					suspected			
	W/hite				inflammatory	Illeerative		
LIK054	British				howel disease	Colitis	Yes	Ves
01004	Asian/Asian	1	109 1	18.2	Abdominal nain	contis	105	105
	British -	4	109.1	10.2	suspected	Coeliac		
	Indian				coeliac disease	Disease	Yes	Ves
010000	Asian/Asian	13	82	8.6		Discuse	105	105
	British -	months	02	0.0		Not		
11K056	Pakistani	montins			Not recorded	recorded		Vec
01000	rakistani	2	83	10.8	Chronic			103
		2	05	10.0	diarrhoea			
	White				suspected	Coeliac		
UK057	British				Coeliac disease	Disease	Yes	Yes
0.007	White	5	110 7	18 /	Chronic	Discuse	105	
116028	British	5	110./	10.4	diarrhoea	Normal	Yes	Yes
0.000	Diffici	2	Q1 2	13.8	diarrioca	Gastro	103	103
		2	91.0	10.0		Oesonhageal		
	W/hite					Reflux		
	Britich				Vomiting	dispase	Vec	Vec
01033	White	5	116.0	20.75	vonnung	Functional	163	163
	Britich	J	110.9	20.73	Dyspansia	dysponsia	Vec	Voc
00000		2	100 F	1/ 5	Бузрерзіа	аузрерзіа	162	165
	Asidii/ASidii Britich	Э	100.5	14.0	Bloody	Illegrative		
	Diiusii - Dakistani				diarrhoca	Colitic	Voc	
01001					ulai i IUEd	COULIS	162	
	White	4	100	10.2		Not		
	White	4	109	19.3	Not recorded	Not	Voc	Voc

Table 2. Demographics of the participants included in the fluid characterisation study

Analysis (visual review of data plus statistical analysis where sample sizes permitted) was undertaken to explore the impact of ethnicity and final diagnosis following endoscopy on all characterisation parameters and no significant correlations were identified. All data was stratified based on age for subsequent data presentation.

pH of gastric and intestinal fluids

The pH values measured are shown stratified by age in Figure 1 from 53 participants' gastric fluid and 41 participants' intestinal fluid.

Figure 1. Box and whisker plots showing the pH from (a) gastric and (b) intestinal samples stratified by age group. Boxplots show mean as the x; median as the horizontal line; box as the 1Q and 3Q and the whiskers are the range excluding outliers; outliers are shown as circle datapoints.

As shown in Figure 1 there is a lot of variability in the data where the pH values recorded ranged from pH 0.57 to 11.05 (mean: 3.51) in gastric fluids and from 0.89 to 8.97 (mean: 3.15) in intestinal fluids. Statistically significant differences in pH values were only identified for gastric samples between the school age and adolescent aged sub-groups (p=0.013). Previous reports on pH measurements of aspirated fluids from both paediatric and adult populations have also reported large variability [5, 15]. The median, mean and standard deviation are shown by age in Table 3.

Some of the very high pH values measured may be an artefact of the measuring technique where the pH probe was not measuring a homogenous aqueous liquid and there was some form of physical interference by the other components, for example, solid materials or oils within the aspirated fluid that prevented an accurate measurement. Previous data sets have reported higher than expected pH values within gastric fluids in paediatric populations [15]. However, outliers, which included those with a gastric pH>10, were excluded from subsequent analysis (as described in the methods section).

	Infants	Pre-school Children	School age children	Adolescents
Number of عزم المناقع ا المناقع المناقع	3	13	12	18

	Median	1.36	2.77	3.24	1.31	
	Mean	3.14	2.78	4.06	1.67	
	Standard deviation	3.09	0.61	2.05	1.15	
	Number of	2	13	6	13	
id	samples					
flu	Median	-	2.36	2.29	2.26	
inal	Mean	2.30	2.23	2.49	2.38	
esti	Standard	-	0.48	0.58	0.81	
Int	deviation					

Table 3. Median, mean and standard deviation of the pH of gastric and intestinal samples. Note that outliers were excluded from this analysis.

The gastric pH was higher this study than previously reported in adults and paediatric studies. The samples in the current study were taken during endoscopy where the children were under a general anaesthetic. Under anaesthetic there may be relaxation of the pyloric sphincter and thus mixing of gastric and intestinal fluids which can affect the pH. Depression of protective reflexes during anaesthesia and loss of consciousness has been reported to predispose patients to, duodenal-gastric reflux, specifically those with abdominal pain [40]. This factor may explain the increased mixing between intestinal and gastric fluids within this patient population. It is worth noting that previous studies characterising paediatric gastric fluids obtained the fluid samples via indwelling nasogastric tubes rather than under anaesthetic [15].

The mean values for gastric pH in school age children and adolescents matches previously reported values pH<3 in the literature [15, 41, 42]. Although previous studies [41, 42] have reported that children have gastric pH values of less than 3; Van den Abeele et al reported that 3/35 gastric samples from children were greater than pH4 whereas in our study 11/49 were higher than pH4 thus there was an increased frequency of higher pH values in our study compared to previous data. As stated previously this difference may be linked to the methodology associated with collection of fluids.

Previous literature (shown in Table 4) reported mean or median intestinal fluid pH values in children to range from 6-8 which is higher than the values identified in this study. Our values are also lower than reported values from a review of studies conducted in adults where mean values ranged from 5.7-7.5 [30]. These lower than anticipated values are again likely to be a result of the mixing of gastric and duodenal fluids due to the sampling technique where the participants were anaesthetised prior to the endoscopy. The samples were frozen prior to measurement of pH as immediate measurement was not possible. Previous studies have reported that pH values can drift over time when samples are exposed to laboratory conditions due to transformation of bicarbonates to carbon dioxide which may also contribute to the higher than expected values for the gastric and lower for the intestinal fluids [43].

Reference	Sample details	Intestinal pH value recorded
[44]	In situ pH measurements from 34	Mean pH of 6.6
	children <4 years old	Range 5.6-7.3

[45]	Intestinal aspirates from 35 children (8	Mean pH of 6.8
	days – 19 years)	Range 4.5-12.0
	In a subset of fasted children (n=25)	Mean pH of 7.0
		Range 5.5-7.6
[46]	Intestinal aspirates from 7 children (0-14	Mean pH 7.5
	years)	Range 5.9-8.2
[47]	Intestinal aspirates from 2 infants	Mean pH 7.8
		Range 7.39-8.20
[41]	In situ pH measurements from 12	Mean value of 6.4 (duodenum)
	children aged 8-14 years	

Table 4. Reported intestinal pH values from studies conducted in children

Buffer Capacity

Buffer capacity measurements were obtained from 52 gastric and 38 intestinal fluids and the results are shown in Figure 2. The measured buffer capacity (mmol/L/ Δ pH) ranged from 0-189 and 5-150 for gastric and intestinal fluids respectively. There was no effect of age upon buffer capacity, although higher gastric buffer capacity values were recorded for older children.

Figure 2. Box and whisker plots showing the buffer capacity (mmol/L/ Δ pH) for (a) gastric and (b) intestinal samples by age group. Boxplots show mean as the x; median as the horizontal line; box as the 1Q and 3Q and the whiskers are the range excluding outliers; outliers are shown as circles.

Following removal of outliers the median, mean and standard deviation were calculated and are presented in Table 5. No statistically significant differences were found in buffer capacity based on age sub groups.

Infants	Pre-school	School age	Adolescents
	Children	children	

	Number of	3	16	14	15
a	samples				
fluir	Median	10.00	13.00	13.50	10.00
ric 1	Mean	13.67	39.94	26.29	11.71
asti	Standard	6.35	52.61	30.19	11.12
Ű	deviation				
_	Number of	1	14	5	11
uid	Number of samples	1	14	5	11
al fluid	Number of samples Median	1	14 13.00	5	11
tinal fluid	Number of samples Median Mean	1 17.00 17.00	14 13.00 18.57	5 12.00 12.20	11 12.00 12.09
testinal fluid	Number of samples Median Mean Standard	1 17.00 17.00	14 13.00 18.57 10.86	5 12.00 12.20 0.45	11 12.00 12.09 0.94

Table 5. Median, mean and standard deviation of the buffer capacity of gastric and intestinal samples. Note that outliers were excluded from this analysis.

The buffer capacity did not change significantly between gastric and intestinal fluids, this could be attributed to the fact that pylorus sphincter is relaxed due to anaesthesia causing the gastric and upper intestinal contents to be mixed.

The buffer capacity of intestinal fluids is of interest as changes in the pH can have dramatic effects on API solubility, thus low buffer capacity can indicate a risk of a change in the pH due to dissolution of an API or excipients. Previous literature has reported buffer capacity values for fasted adult human intestinal fluids ranging from 2.5-13 mM/L/ Δ pH [30, 43]. Higher buffer capacity has been reported in the fed state and also following ingestion of water [43]. No data has been identified that reports the buffer capacity of paediatric fluids. The existing proposed paediatric simulated intestinal fluids have a buffer capacity of 10 mM/L/ Δ pH [25] which matches the median values from our data as well as (the buffer capacity of adult FaSSIF which is 12 mM/L/ Δ pH) [48].

Osmolality

Osmolality measurements were obtained from 52 gastric and 41 intestinal fluids and the results are shown in Figure 3.

Figure 3. Box and whisker plots showing the osmolality for (a) gastric and (b) intestinal samples by age group. Boxplots show mean as the x; median as the horizontal line; box as the 1Q and 3Q and the whiskers are the range excluding outliers; outliers are shown as circles

The data generated in this study showed that gastric fluid osmolality values ranged from 1 to 615 mOsm/kg, while intestinal fluid values ranged from 35 to 631 mOsm/kg. Outliers, as identified in Figure 3 were excluded prior to statistical analysis and the median, mean and standard deviation for each age group are shown in Table 6. Statistically significant differences were observed between the gastric osmolality in infants compared to that in school age children, however the variability was large for infants and the sample size small thus caution is required with the interpretation of this data.

		Infants	Pre-school Children	School age children	Adolescents
	Number of	3	16	14	20
σ	samples				
flui	Median	272.00	154.50	91.00	216.00
ric f	Mean	296.33	137.50	91.79	176.75
astı	Standard	307.22	96.65	71.79	100.87
Ü	deviation				
	Number of	2	15	5	14
uid	samples				
al fl	Median	-	283.00	246.00	260.50
tina	Mean	248.00	280.47	237.60	248.29
tes	Standard	-	42.24	51.22	36.58
<u>_</u>	deviation				

Table 6. Median, mean and standard deviation of the osmolality of gastric and intestinal samples. Note that outliers were excluded from this analysis.

There is limited data available on osmolality in paediatric populations. Previous reports from aspirated gastric fluids from children include mean values of 253 mOsm/L from a sample of 40 children under 2 years of age [49] and median values of 274 mOsm/kg for neonates; 188 mOsm/kg for children aged 2-12 years and 219 mOsm/kg for adolescents (12-18 years) [15]. Note that some studies reported osmolarity (per litre) whereas others report osmolality (per kg), these units can be interchanged if we assume that the density of the carrier fluid is 1kg/L. Thus the data obtained in our study shows relatively low values for gastric osmolality in comparison with previous studies. The presence of food components or digested food is likely to have a major effect on the osmolality of gastric fluids and is acknowledged as a potential limitation by other similar studies [15], our samples were from fasted patients which may explain our lower values.

Published data on osmolality of intestinal fluids in children was not identified, however, previous literature has reported osmolality values of 137-299 mOsm/kg in aspirated intestinal fluid from adults [30]. Thus, the osmolality values measured within this study are within the range previously reported for adults.

The osmolality of the current paediatric fasted state simulated gastric fluid proposed by [25] is 120.7 mOsm/kg and our mean data (stratified by age) ranges from 91-216 mOsm/kg which encompasses

this value. However, paediatric fasted state simulated intestinal fluid has an osmolality of 180 mOsm/kg which is somewhat lower than the values measured in our study [25].

Quantification of bile acids

Bile acid concentrations were determined from 47 samples; both gastric and intestinal samples were bile acids from gastric and intestinal fluids by age c summary data shown in Table 7.

Figure 4. Total bile salt concentration (μ M) plotted versus the age of the participant in the (a) gastric and (b) intestinal fluids.

A summary table of the median; mean and standard deviation of the bile salt concentrations stratified by age is shown in Table 7.

		Infants	Pre-school Children	School age children	Adolescents
а	Number of	2	8	19	18
	samples				
flui	Median	-	9.59	40.23	65.69
ric 1	Mean	4.65	108.25	325.24	314.11
astı	Standard	2.07	2.07 207.66		420.76
9	deviation				
_	Number of	1	6	10	10
uid	samples				
al fl	Median	0.81	537.37	149.80	277.34
tina	Mean	0.81	876.81	866.18	386.26
tes	Standard	-	1088.88	1308.14	393.84
Ч	deviation				

Table 7. Median, mean and standard deviation of the bile salt concentration (μ M) of gastric and intestinal samples.

The quantitative analysis of bile salts in both gastric and duodenal fluids (Figure 4) showed large variability among subjects and the summary of median, mean and standard deviation are presented in Table 7. The outliers were not excluded in this analysis as the variability as well as mean data is of interest for this population. These variabilities could be due to the presence of solid remnants in

aspirated fluids. Some of the gastric samples collected were found to be transparent fluid and some contained suspended greenish floccules. It was observed that typically transparent fluids showed lower bile acid concentrations although this was not statistically significant. The total concentration of bile acids in gastric fluid ranged from 0.002-2.3 mM and in intestinal fluid from 0.0008-3.3 mM. These ranges are similar for those previously reported where large variability was also reported (see data in Table 1). However, the mean values are much lower than values in previous studies where mean values were typically greater than 2 mM (see data and references from Table 1). This lower mean value may have implications for the solubilising capacity in paediatric populations as the critical micelle concentration for bile is often reported to be greater than 2mM [50].

There was no statistically significant differences in the bile acid concentrations with the age of the participants although there was a trend towards an increased mean concentration in the gastric fluid with increasing age. The large variability and small age-stratified sample sizes from intestinal fluids limit the interpretation of the data. Higher mean and median bile acid concentrations were found in the intestinal samples compared to the gastric samples. However, as stated previously there may be some mixing of these fluids during the endoscopy thus it was not appropriate to pool samples from the same individual.

The concentration of bile is typically lower in the stomach compared to the small intestine, as reflected in the concentration of bile salts in FaSSGF at 0.08mM whilst the concentration in FaSSIF is 3mM [48]. Proposed paediatric fasted state simulated gastric fluids reported a bile salt concentration of 0.02mM for neonates and 0.06mM for infants which is higher than that reported in our work yet still lower than that in adults which is supported by our data [25]. Due to the large variability in reported data two bile salt concentrations were proposed for paediatric FaSSIF to account for a minimum and maximum. These were 1.5mM and 4.5mM [25]. However, the bile acid concentrations measured in intestinal fluid in this study are lower and <1mM in the majority of samples.

The relative contribution of individual bile acids to the total bile concentration was determined and the data are shown by individual sample in ascending order of age in Figure 5. No trends were identified that linked bile acid concentration to age, thus the data were pooled for gastric and intestinal samples to determine the median, mean and standard deviation of each component identified, the data are presented in Table 8.

Figure 5. Relative contribution of bile salts to the total bile salt concentration in (a) gastric and (b) intestinal individual samples ordered from youngest to oldest within each population.

		Concentration (µM)													
		Prima	ry bile					Taurine Co	onjugated	l bile acids					
		ac	ids	Second	dary bile	acids						Glycine Conjugated bile acids			
		СА	CDC	DC	LC	UDC	TUDC	TCDC	TDC	тс	TLC	GUDC	GC	GCDC	GDC
tt															
r=u)	Median	0.125	1.549	1.783	0.510	0.000	0.000	1.041	0.146	1.671	0.032	0.075	5.660	3.449	0.582
astric fluid mples)	Mean	0.148	1.729	1.918	0.576	0.004	0.937	34.547	7.623	26.283	0.417	0.945	107.006	68.056	20.402
	Standard deviation	0.166	0.745	0.767	0.276	0.029	1.918	67.976	17.643	50.879	1.053	2.317	246.538	130.247	44.797
	Number where BS														
S	was present	45	47	47	47	2	23	46	37	47	26	43	46	47	39
-															
id (r	Median	0.138	0.167	13.434	0.025	0.844	0.334	19.248	1.473	23.085	0.135	0.907	66.860	48.150	3.194
flu	Mean	0.307	0.291	15.947	0.033	0.929	2.749	105.934	19.644	81.860	1.380	7.814	299.974	87.519	34.253
inal amp	Standard deviation	0.518	0.266	19.994	0.028	0.993	6.838	170.549	34.789	131.602	2.291	20.865	514.438	124.453	57.432
itest 27 s	Number where BS														
ıı <u>۲</u>	was present	21	27	27	27	22	20	27	24	27	25	25	27	27	24

Table 8. Median, mean and standard deviation of the concentrations (µM) of bile acids present in the gastric or intestinal fluid samples from children.

In both gastric and intestinal fluids the most abundant bile acids were glycine conjugated with glycocholate being the most abundant. Primary bile acids were detected in almost all gastric samples as well as glycine conjugated bile acids. UDC was only present in 2/47 gastric fluid samples and TUDC and TLC were present in approximately half of the gastric samples. The order of magnitude (based on mean values) for the presence of bile acids in gastric fluid was GC> GCDC> TCDC> TC> GDC> TDC> DC> CDC> GUDC> TUDC> LC> TLC> CA> UDC. This relative order matches well to the order previously reported by Riethorst et al (2016) based on adult gastric fluids [12]. There are some differences with the relative order reported by Van den Abeele et al (2018) yet this may be due to the difference in the ages within the paediatric populations or due to some contamination of gastric samples with intestinal fluids due to the method of sample collection [15].

Most bile acids were detected in the 27 intestinal fluid samples analysed. The taurine conjugated bile acids were present in higher levels compared to within the gastric samples. The order of magnitude (based on mean values) for the presence of bile acids in intestinal fluid was GC> TCDC> GCDC> TC> GDC> TDC> DC> GUDC> TUDC> UDC> CA> CDC> LC. Previous literature (highlighted in Table 1) showed similarities to the relative concentrations found in these samples where GC; TC; GCDC and TCDC are the most commonly identified bile acids in paediatric intestinal fluids.

Further work is required to generate understanding on the implications of the range of bile salts present and their relative concentrations on the solubilisation of APIs. Specific work will investigate the impact of bile salt concentration and composition identified within this study on the solubility of a series of drugs previously investigated in adult human intestinal fluids [8, 51] to better understand how solubility may differ in a paediatric population compared to an adult population. Furthermore, the data will be used to drive the development of paediatric relevant fasted state simulated intestinal fluid to integrate into paediatric biopharmaceutics toolkits.

General Discussion

The data generated from the paediatric gastro-intestinal samples showed large inter-individual variability in all parameters characterised. There were no trends identified when the data was interrogated based on the age, ethnicity or disease-state of the participant. The lack of trends identified may have been masked by the variability observed. The similarities in the properties of the gastric and intestinal fluids suggests mixing of these fluids during the endoscopy procedure as this was conducted under anaesthetic. Characterisation from indwelling naso-gastric or naso-duodenal tubes would provide a cleaner data set and will be the target for future research.

However, the variability associated with gastro-intestinal fluids needs is an important finding as this can affect the solubility of drugs within a population. For example, recent work has highlighted that variability in bile acid metabolism as a result of gut microbiota can affect the solubility of a series of drugs [52]. Thus, it is prudent to develop a suite of biorelevant media for a paediatric population to reflect this diversity and better understand the potential variability associated with solubility in vivo based on differences in the gastro-intestinal environment. The use of the median data to develop a mid-point fluid will provide a single point estimate for solubility whereas this in conjunction with extreme variants will provide understanding on the potential sensitivity to solubility within a highly variable paediatric population.

Conclusions

This work provides a comprehensive characterisation of gastric and intestinal fluids from a paediatric population. This provides a useful data set to generate simulated media to represent paediatric populations and to compare to existing simulated fluids based on adult data. The differences noted between paediatric and adult fluids justifies the need for additional experimental research to better understand the implications of these differences on drug solubility. It should be noted that there was large variability within the samples and that there was likely to be mixing of gastric and intestinal fluids. Caution is required for interpretation of the data as the mean values do not represent any single individual, therefore media that represent the extreme individual samples as well as the mean are likely to provide greater insights into the impact of fluid attributes on API solubility and dissolution in paediatric populations.

Acknowledgements

The authors would like to acknowledge all clinical staff involved in the study for their efforts in enrolling patients and collecting samples leading to the generation of the dataset.

Funding: This work was supported by Janssen Research and Development, Belgium.

Supplementary Information

Supplementary Table 1. Summary of cohort details from studies reported where fasted gastrointestinal fluid was collected for characterisation

Reference	Population	Fluids characterised	Relevant parameters	Co-administration of water
			measured	
[4]	24 adult healthy volunteers	Fasted gastric and	Bile salt content, pH,	None
	(19-37 years)	jejunal fluid	osmolality	
[5]	9 healthy volunteers (age	Fasted jejunal fluid	Bile salt content, pH,	None
	not reported)		osmolality	
[6]	12 healthy volunteers aged	Fasted jejunum	Bile salt content, pH, buffer	None
	24-40		capacity	
[9]	6 adult volunteers (22-35	Fasted duodenal and	Bile salt content, pH,	None
	years)	jejunal fluid	osmolality, buffer capacity	
[7]	5 adult healthy volunteers	Fasted duodenal fluid	Bile salt content, pH,	None
			osmolality	
[8]	5 healthy volunteers (24-39	Fasted duodenal fluid	Bile salt content, pH,	Sampling followed 15
	years)		osmolality	minutes post ingestion of
				250mL water
[11]	4 healthy volunteers (19-35	Fasted duodenal fluid	Bile salt content, pH,	Sampling followed ingestion
	years)		osmolality, viscosity	of 200mL water
[10]	Adult patients undergoing	Fasted gastric fluid	Bile salt content	None
	thoracic surgery			
[12]	20 adult healthy volunteers	Fasted duodenal fluid	Bile salt content, pH	250mL water administered
	(18-31 years)			prior to sampling
[15]	Paediatric (0-18 years)	Fasted gastric fluid	Bile salt content, pH,	None
			osmolality	

Bile salt	Chemical structure	Molecular weight (g/mol)	LogP	Water solubility	Purchased	% purity; Mol Wt with salt form
Taurocholic acid (TCA)	HO WIT WIT OH HO WIT OH HO WIT OH HO KIND ZS	515.703	0.79 (ALOGPS)	0.0771 mg/ml (ALOGPS)	Taurocholic acid, sodium salt hydrate, 98%, ACROS Organics (CAS No345909-26-4)	98% 555.703
Glycocholic acid (GC)	$H_{0}^{\text{CH}_{3}}$	464.624	1.65	3.3 mg/L (at 20 °C)	Sodium glycocholate Hydrate Sigma-Aldrich (CAS No338950-81-5)	≥95% (TLC) 487.60 (anhydrous basis)
Taurocheno deoxycholic acid (TCDC)	HN HSC HSC HSC HSC HSC HSC HSC HSC HSC HSC	499.704	1.38 (ALOGPS)	0.00748 mg/ml (ALOGPS)	Sodium taurochenodeoxycholate Sigma-Aldrich (CAS No6009-98-9)	≥97.0% (TLC) 521.69

Supplementary Table 2. Structure and properties of the bile acid standard used in the analysis.

Ursodeoxych	ОН	392.572	3.00	20 mg/L	Sigma-Aldrich	≥99%
olic acid				(at 20 °C)	(CAS No128-13-2)	
(UDC)	H ₃ C					
	CH3					
	(III)H					
	CH ₃ WH					
	HH					
	НОИ					
	C ₂₄ H ₄₀ O ₄					
Chenodeoxy		392.572	4.15	89.9 mg/L	Sigma-Aldrich	≥96%
cholic acid	ОН			(at 20 °C)	(CAS No474-25-9)	
(CDC)						
	CH ₃ \bigvee^{CH_3}					
	ноли н					
	$C_{24}H_{40}O_4$					

Deoxycholic	0	392.572	3.50	43.6 mg/L	Sigma-Aldrich	≥98%
acid (DC)				(at 20 °C)	(CAS No474-25-9)	
	ОН					
	C ₂₄ H ₄₀ O ₄					
Glycochenod	0	449.6233	2.12	3.15 mg/L	Sodium	≥97%
eoxycholic				(at 20 °C)	glycochenodeoxycholate	(HPLC)
acid (GCDC)					(CAS No16564-43-5)	471.61
	$C_{26}H_{43}NO_5$					

Glycodeoxyc		449.6	4.3	Water	Sodium glycocholate	≥95% (TLC)
holic acid	0 H			Solubility	hydrate	
(GDC)	н			at 25 deg	Sigma-Aldrich	487.60
	N			C (mg/L):	(CAS No338950-81-5)	(anhydrous
				17.95		basis)
	("H					
	H O M.					
	C ₂₆ H ₄₃ NO ₅					
Lithocholic		376.573	8.263	Water <1	Sigma-Aldrich	≥95%
acid (LC)				mg/ml	(CAS No434-13-9)	
	U U					
	HO Y W					
	C ₂₄ H ₄₀ O ₃					

Tauroursode oxycholic acid (TUDC)		499.7	1.38	0.00748 mg/ml	Tauroursodeoxycholic Acid, Sodium Salt Sigma-Aldrich (CAS No- 1180-95-6)	≥95% 521.69
	C ₂₆ H ₄₅ NO ₆ S					
Glycoursode oxy cholic acid (GUDC)	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$	449.6	4.3 (XLogP3)	0.00135 mg/ml	Sigma-Aldrich (CAS No64480-66-6)	≥96.0% (TLC)
Cholic acid (CA)	Ho $H_{3}C$	408.5714	-3.37	175 mg/L (at 20 °C)	Sigma-Aldrich (CAS No81-25-4)	≥98%

Taurolithoch olic acid (TLC)	483.7	4.9 (XLogP3)	25 mg/ml	Sodium taurolithocholate (CAS No6042-32-6)	≥97.0% (TLC)
Taurodeoxyc holic acid (TDC)	499.7	3.6 (XLogP3- AA)	41 mg/ml	Sodium taurodeoxycholate hydrate (CAS No- 207737-97-1)	≥95% (HPLC) 521.69 (anhydrous basis)

Cholic acid- D4	H ₃ C O	412.60		Sigma Aldrich (CAS No116380-66-6)	98 atom % D, 98% (CP)
(Internal standard)	HO, H ₃ C OH			100 μg/mL in methanol	
	HO', D H ''OH				
Deoxycholic acid-D4		396.60		Sigma Aldrich (CAS No112076-61-6)	≥98 atom % D, ≥98%
(Internal standard)				100 μg/mL in methanol	(CP)
	HO, X H				

Table 3: Optimised MS/MS parameters for the analysis of bile acids

Instrument- LC-MS/MS API 2000

Method development: The parameters below in table were obtained using direct infusion experiments of the target compounds (1000 ng/µL each, in
MeOH: H20) into the MS/MS system via a built-in Harvard syringe pump at a flow rate of 10 μL/min

	TCA	GC	TCDC	UDC	CDC	DC	GCDC	GDC	LC	D4C (IS-1)
Ionization	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative
lon spray	-4500	-4500	-4500	-4500	-4500	-4500	-4500	-4500	-4500	-4500
voltage (V)										
Curtain gas	35	35	35	35	35	35	35	35	35	35
(a.u.)										
Temperatur	275	275	275	275	275	275	275	275	275	275
e (°C)										
C.A.D gas	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
(a.u.)										
Declustering	-70	-50	-50	-55	-40	-50	-50	-50	-40	-50
potential (V)										
Focusing	-365	-365	-365	-365	-365	-365	-365	-365	-365	-365
potential (V)										
Collision	-110	-70	-120	-20	-20	-30	-70	-70	-30	-30
energy (eV)										
Cell	-10	-10	-10	-10	-10	-10	-10	-10	-10	-10
entrance										
potential (V)										
Cell exit	-6.0	-6.0	-6.0	-6.0	-6.0	-4.0	-6.0	-6.0	-6.0	-6.0
potential (V)										
MRM→Frag.	514.2→8	464.3→7	498.3→8	391.3→391.	391.3→391.	391.3→391.	448.3→7	448.3→7	375.3→375.	411.2→411.
m/z	0	4	0	3	3	3	4	4	3	2

	TUDC	GUDC	CA	TLC	TDC	D4-DC
Ionization	Negative	Negative	Negative	Negative	Negative	Negative
Ion spray voltage (V)	-4500	-4500	-4500	-4500	-4500	-4500
Curtain gas (a.u.)	35	35	35	35	35	35
Temperature (°C)	275	275	275	275	275	275
C.A.D gas (a.u.)	7.0	7.0	7.0	7.0	7.0	7.0
Declustering potential (V)	-50	-50	-50	-50	-40	-50
Focusing potential (V)	-365	-365	-365	-365	-365	-365
Collision energy (eV)	-110	-70	-30	-108	-116	-30
Cell entrance potential (V)	-10	-10	-10	-10	-10	-10
Cell exit potential (V)	-6.0	-6.0	-6.0	-6.0	-6.0	-6.0
MRM→Frag. m/z	498.3→80.0	448.3→74	407.3→407.3	482.2→80.0	498.3→80.0	395.3→395.3

a.u. – arbitrary units; C.A.D – collisional activated dissociation; TC- Taurocholic acid; GC-Glycocholic acid; TCDC- Taurochenodeoxycholic acid; UDC-Ursodeoxycholic acid; CDC- Chenodeoxycholic acid; DC- Deoxycholic acid; GCDC- Glycochenodeoxycholic acid; GDC- Glycodeoxycholic acid; LC- Lithocholic acid; D4C- Deuterated Cholic acid (Cholic-2,2,4,4-d4); TUDC- Tauroursodeoxycholic acid; GUDC-Glycoursodeoxy cholic acid; CA-Cholic acid; TLC-Taurolithocholic acid; TDC- Taurodeoxycholic acid; D4-DC- Deuterated Deoxycholic acid; IS- Internal standard; MRM-Multi reaction monitoring; m/zmass/charge number

References

- 1. Sun, D., et al., *In vitro testing of drug absorption for drug 'developability' assessment: Forming an interface between in vitro preclinical data and clinical outcome.* Current Opinion in Drug Discovery and Development, 2004. **7**(1): p. 75-85.
- 2. Dressman, J.B., G.L. Amidon, and D. Fleisher, *Absorption potential: estimating the fraction absorbed for orally administered compounds.* J Pharm Sci, 1985. **74**(5): p. 588-9.
- Amidon, G.L., et al., A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res, 1995.
 12(3): p. 413-20.
- 4. Lindahl, A., et al., *Characterization of fluids from the stomach and proximal jejunum in men and women.* Pharm Res, 1997. **14**(4): p. 497-502.
- 5. Pedersen, B.L., et al., *Dissolution of Hydrocortisone in Human and Simulated Intestinal Fluids.* Pharmaceutical Research, 2000. **17**(2): p. 183-189.
- 6. Persson, E.M., et al., *The Effects of Food on the Dissolution of Poorly Soluble Drugs in Human and in Model Small Intestinal Fluids.* Pharmaceutical Research, 2005. **22**(12): p. 2141-2151.
- 7. Clarysse, S., et al., *Postprandial Changes in Solubilizing Capacity of Human Intestinal Fluids* for BCS Class II Drugs. Pharmaceutical Research, 2009. **26**(6): p. 1456-1466.
- 8. Heikkilä, T., et al., *Equilibrium drug solubility measurements in 96-well plates reveal similar drug solubilities in phosphate buffer pH 6.8 and human intestinal fluid.* International Journal of Pharmaceutics, 2011. **405**(1): p. 132-136.
- 9. Perez de la Cruz Moreno, M., et al., *Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum.* J Pharm Pharmacol, 2006. **58**(8): p. 1079-89.
- 10. Foltz, E., et al., *An assessment of human gastric fluid composition as a function of PPI usage.* Physiological reports, 2015. **3**(1): p. e12269.
- 11. Holmstock, N., et al., *Exploring food effects on indinavir absorption with human intestinal fluids in the mouse intestine.* European Journal of Pharmaceutical Sciences, 2013. **49**(1): p. 27-32.
- 12. Riethorst, D., et al., *Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions.* Journal of Pharmaceutical Sciences, 2016. **105**(2): p. 673-681.
- 13. Pentafragka, C., et al., *The impact of food intake on the luminal environment and performance of oral drug products with a view to in vitro and in silico simulations: a PEARRL review*. Journal of Pharmacy and Pharmacology, 2019. **71**(4): p. 557-580.
- 14. Vertzoni, M., et al., *Luminal lipid phases after administration of a triglyceride solution of danazol in the fed state and their contribution to the flux of danazol across Caco-2 cell monolayers.* Molecular pharmaceutics, 2012. **9**(5): p. 1189-1198.
- 15. Van Den Abeele, J., et al., *Gastric fluid composition in a paediatric population: Agedependent changes relevant for gastrointestinal drug disposition.* European Journal of Pharmaceutical Sciences, 2018. **123**: p. 301-311.
- 16. Litou, C., et al., *Measuring pH and Buffer Capacity in Fluids Aspirated from the Fasted Upper Gastrointestinal Tract of Healthy Adults.* Pharmaceutical Research, 2020. **37**(3): p. 42.
- 17. Dressman, J.B. and C. Reppas, *In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs.* European Journal of Pharmaceutical Sciences, 2000. **11**: p. S73-S80.
- 18. Kleberg, K., J. Jacobsen, and A. Müllertz, *Characterising the behaviour of poorly water soluble drugs in the intestine: application of biorelevant media for solubility, dissolution and transport studies.* J Pharm Pharmacol, 2010. **62**(11): p. 1656-68.
- 19. Batchelor, H.K., N. Fotaki, and S. Klein, *Paediatric oral biopharmaceutics: Key considerations and current challenges.* Advanced Drug Delivery Reviews, 2014. **73**: p. 102-126.

- 20. Batchelor, H., et al., *Towards the development of a paediatric biopharmaceutics classification system: Results of a survey of experts.* International Journal of Pharmaceutics, 2016. **511**(2): p. 1151-1157.
- 21. del Moral Sanchez, J.M., et al., *Biopharmaceutical optimization in neglected diseases for paediatric patients by applying the provisional paediatric biopharmaceutical classification system.* British Journal of Clinical Pharmacology, 2018. **84**(10): p. 2231-2241.
- 22. Delmoral-sanchez, J.M., et al., *Classification of WHO essential oral medicines for children applying a provisional pediatric biopharmaceutics classification system.* Pharmaceutics, 2019. **11**(11).
- 23. Bhatt-Mehta, V., H. Hammoud, and G.L. Amidon, *A proposed pediatric biopharmaceutical classification system for medications for chronic diseases in children*. European Journal of Pharmaceutical Sciences, 2020. **152**: p. 105437.
- 24. Papadatou-Soulou, E., et al., *Magnetic Resonance Imaging Quantification of Gastrointestinal Liquid Volumes and Distribution in the Gastrointestinal Tract of Children.* Molecular Pharmaceutics, 2019. **16**(9): p. 3896-3903.
- 25. Maharaj, A.R., A.N. Edginton, and N. Fotaki, *Assessment of Age-Related Changes in Pediatric Gastrointestinal Solubility*. Pharmaceutical Research, 2016. **33**(1): p. 52-71.
- 26. Mithani, S.D., et al., *Estimation of the increase in solubility of drugs as a function of bile salt concentration.* Pharm Res, 1996. **13**(1): p. 163-7.
- 27. Madsen, C.M., et al., *Effect of composition of simulated intestinal media on the solubility of poorly soluble compounds investigated by design of experiments*. European Journal of Pharmaceutical Sciences, 2018. **111**: p. 311-319.
- 28. Perrier, J., et al., *Statistical investigation of the full concentration range of fasted and fed simulated intestinal fluid on the equilibrium solubility of oral drugs.* European Journal of Pharmaceutical Sciences, 2018. **111**: p. 247-256.
- 29. Hofmann, A.F., *The Continuing Importance of Bile Acids in Liver and Intestinal Disease*. Archives of Internal Medicine, 1999. **159**(22): p. 2647-2658.
- 30. Fuchs, A. and J.B. Dressman, *Composition and Physicochemical Properties of Fasted-State Human Duodenal and Jejunal Fluid: A Critical Evaluation of the Available Data.* Journal of Pharmaceutical Sciences, 2014. **103**(11): p. 3398-3411.
- 31. Reppas, C., et al., *Characterization of Contents of Distal Ileum and Cecum to Which Drugs/Drug Products are Exposed During Bioavailability/Bioequivalence Studies in Healthy Adults.* Pharmaceutical Research, 2015. **32**(10): p. 3338-3349.
- 32. Norman, A., B. Strandvik, and Ö. Ojamae, *Bile acids and pancreatic enzymes during absorption in the newborn.* Acta Paediatrica, 1972. **61**(5): p. 571-576.
- 33. Signer, E., et al., *Role of bile salts in fat malabsorption of premature infants*. Archives of disease in childhood, 1974. **49**(3): p. 174-180.
- 34. Challacombe, D.N., S. Edkins, and G.A. Brown, *Duodenal bile acids in infancy*. Archives of disease in childhood, 1975. **50**(11): p. 837-843.
- 35. Brueton, M.J., et al., *Duodenal bile acid conjugation patterns and dietary sulphur amino acids in the newborn.* Gut, 1978. **19**(2): p. 95-8.
- 36. Glasgow, J.F., et al., *A comprehensive study of duodenal bile salts in newborn infants and their relationship to fat absorption*. Ir J Med Sci, 1980. **149**(9): p. 346-56.
- 37. Jarvenpaa, A.L., *Feeding the low-birth-weight infant. IV. Fat absorption as a function of diet and duodenal bile acids.* Pediatrics, 1983. **72**(5): p. 684-9.
- 38. Boehm, G., et al., *Activities of lipase and trypsin in duodenal juice of infants small for gestational age.* J Pediatr Gastroenterol Nutr, 1991. **12**(3): p. 324-7.
- 39. Boehm, G., et al., *Bile Acid Concentrations in Serum and Duodenal Aspirates of Healthy Preterm Infants: Effects of Gestational and Postnatal Age.* Neonatology, 1997. **71**(4): p. 207-214.

- 40. Szarszewski, A., et al., *Duodenogastric reflux: clinical and therapeutic aspects*. Archives of Disease in Childhood, 1999. **81**(1): p. 16.
- 41. Fallingborg, J., et al., *Measurement of gastrointestinal pH and regional transit times in normal children.* Journal of Pediatric Gastroenterology and Nutrition, 1990. **11**(2): p. 211-214.
- 42. Schmidt, A.R., et al., *Gastric pH and residual volume after 1 and 2 h fasting time for clear fluids in children.* British Journal of Anaesthesia, 2015. **114**(3): p. 477-482.
- 43. Kalantzi, L., et al., *Characterization of the Human Upper Gastrointestinal Contents Under Conditions Simulating Bioavailability/Bioequivalence Studies.* Pharmaceutical Research, 2006. **23**(1): p. 165-176.
- 44. Krafte-Jacobs, B., et al., *Rapid placement of transpyloric feeding tubes: a comparison of pH-assisted and standard insertion techniques in children.* Pediatrics, 1996. **98**(2 Pt 1): p. 242-8.
- 45. Gharpure, V., et al., *Indicators of postpyloric feeding tube placement in children*. Crit Care Med, 2000. **28**(8): p. 2962-6.
- 46. Westhus, N., *Methods to test feeding tube placement in children*. MCN Am J Matern Child Nurs, 2004. **29**(5): p. 282-7; quiz 290-1.
- 47. Metheny, N.A., et al., *Clinical Research: Indicators of Feeding-Tube Placement in Neonates.* Nutrition in Clinical Practice, 1999. **14**(6): p. 307-314.
- 48. Jantratid, E., et al., *Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update.* Pharm Res, 2008. **25**(7): p. 1663-76.
- 49. Wakayama, Y., S. Wilkins, and K. Kimura, *Is 5% dextrose in water a proper choice for initial postoperative feeding in infants?* Journal of Pediatric Surgery, 1988. **23**(7): p. 644-646.
- 50. Subuddhi, U. and A.K. Mishra, *Micellization of bile salts in aqueous medium: A fluorescence study*. Colloids and Surfaces B: Biointerfaces, 2007. **57**(1): p. 102-107.
- 51. de la Cruz-Moreno, M.P., et al., *Exploring drug solubility in fasted human intestinal fluid aspirates: Impact of inter-individual variability, sampling site and dilution*. Int J Pharm, 2017.
 528(1-2): p. 471-484.
- 52. Enright, E.F., et al., *Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility*. Molecular Pharmaceutics,

oni²⁰M⁴et^pal⁵¹Eumina

l lid