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This paper develops Bayesian econometric methods for posterior inference in non-
parametric mixed frequency VARs using additive regression trees. We argue that regres-
sion tree models are ideally suited for macroeconomic nowcasting in the face of extreme
observations, for instance those produced by the COVID-19 pandemic of 2020. This is
due to their flexibility and ability to model outliers. In an application involving four
major euro area countries, we find substantial improvements in nowcasting performance
relative to a linear mixed frequency VAR.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mixed frequency vector autoregressions (MF-VARs) have enjoyed great popularity in recent years as a tool for
roducing timely high frequency nowcasts of low frequency variables. A common practice (see, e.g., Schorfheide and
ong, 2015)1 is to choose a quarterly macroeconomic variable such as gross domestic product (GDP) and a set of monthly
ariables and model them together in a VAR so as to produce monthly nowcasts of GDP. The fact that statistical agencies
elease data such as GDP with a delay, whereas appropriately chosen monthly variables are released with less of a delay
urther enhances the benefits of the MF-VAR. Nowcasts can be updated in a timely fashion.

The pandemic lockdown of 2020 has further increased the need for timely, high frequency nowcasts of economic
ctivity. And the increasing availability of a variety of high frequency (i.e., monthly, weekly or daily) and quickly released
ata (i.e., some variables are released almost instantaneously) presents rich opportunities for the mixed frequency
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et al. (2020).
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odeler. However, the pandemic also poses challenges to the conventional, linear, MF-VAR. During the pandemic, we
ave seen values of variables that are far from the range of past values. Linear time series econometric methods seek to
ind average patterns in past data. If current data is very different, using such patterns and linearly extrapolating them
ay be highly questionable.
This has led researchers to try to develop new VAR frameworks for nowcasting during the pandemic. For instance,

chorfheide and Song (2020) find that the model developed in Schorfheide and Song (2015) nowcasts poorly, but that if
they estimate their MF-VAR using data through 2019 and then produce conditional forecasts for the first half of 2020,
improvements were obtained. In essence, the extreme data in the first half of 2020 caused estimates of the full sample
MF-VAR coefficients to change in a manner which led to poor forecasts. Lenza and Primiceri (2020) propose an alternative
AR-based approach which allows the error covariance matrix to have a mixture distribution. In essence, the pandemic is
reated as a large variance shock and pandemic observations are, thus, drastically downweighted in the model estimation.
hey conclude: "Our results show that the ad hoc strategy of dropping these observations may be acceptable for the
urpose of parameter estimation. However, disregarding these recent data is inappropriate for forecasting the future
volution of the economy, because it vastly underestimates uncertainty’’. Thus, although Schorfheide and Song (2020)
nd Lenza and Primiceri (2020) adopt very different approaches, they end up with similar advice: discard the pandemic
bservations when estimating the model.
It is possible to envisage other approaches to modifying the MF-VAR for pandemic times. These would involve

arameter change of some form (e.g., structural break or time-varying parameter, TVP, models). But structural break
odels would be plagued by the fact that there are too few observations post-break to permit reliable estimation. This
roblem would not occur with TVP models which assume smoothly adjusting coefficients. But such TVP models are not
apable of adjusting for sudden and strong jumps in the endogenous variables within a few months such as have been
ccurring in the pandemic. In light of these considerations, we adopt a different, non-parametric, approach. We argue
hat such an approach should automatically decide how to treat the pandemic observations in a sensible fashion. In
n empirical exercise involving four European countries, we demonstrate the superior nowcasting performance of our
pproach.
The non-parametric model we adopt involves Bayesian additive regression trees (BART, see Chipman et al., 2010).

ART is a flexible and popular approach in many fields of statistics.2 But BART has rarely been used in time series
conometrics. Huber and Rossini (2020) develop Bayesian methods which build BART into a VAR leading to the Bayesian
dditive vector autoregressive tree (BAVART) model and demonstrate that it forecasts well. In this paper, we develop
ayesian methods for the mixed frequency version of this model (MF-BAVART). This development is non-trivial and, thus,
epresents an econometric contribution to the literature even apart from the pandemic context. The MF-VAR is a Gaussian
inear state space model and well-established Bayesian methods exist for estimation and predictive inference. However,
he MF-BAVART is not linear and, thus, these methods are not directly available. MF-VARs treat the unobserved high
requency values of the low frequency variables as latent states. Conditional on these latent states, we obtain the BAVART
nd methods similar to those of Huber and Rossini (2020) can be used. It is drawing the latent states (conditional on
he BAVART parameters) which is more challenging. We deal with this challenge by rendering the model conditionally
aussian using recently developed methods for estimating effect sizes in so-called black-box models such as BART, see
rawford et al. (2018, 2019).3 In simulations, we show that this approximation is accurate for data generating processes
DGPs) that resemble the behavior of GDP during the pandemic.

We apply the resulting model to nowcast GDP growth in selected euro area economies (Germany, Spain, France and
taly) and show that our approach outperforms the linear MF-VAR model. With some exceptions, it produces slightly
etter nowcasts through 2019. But when the first two quarters of 2020 are included, the improvements offered by
F-BAVART rise substantially. We investigate where these gains come from in a detailed study of the predictive densities

or the first six months of 2020. Our results suggest that they stem from the superior ability of our model to adjust the
redictive variance in a timely manner and thus increase the probability of observing the extreme observations during
he pandemic. These increases in the predictive variance are mostly driven by a flexible Bayesian prior and using a large
umber of regression trees. Moreover, we also assess whether data on COVID-19 cases and Google mobility trends can
mprove nowcasts despite the fact that the time series data on these variables is very short. Our model is equipped to
xtract information from such series and predictive accuracy is increased in some cases.
The remainder of this paper is organized as follows: Section 2 discusses our econometric methods. We define the

MF-BAVART model, illustrate how it can handle extreme observations such as those that have occurred during the 2020
pandemic and discuss prior elicitation. It also contains the relevant full conditional posterior distributions and sketches the
Markov Chain Monte Carlo (MCMC) algorithm for posterior inference. Section 3 carries out an artificial data exercise where
we investigate the properties of the MF-BAVART model. Section 4 of the paper contains our empirical work. Section 5 offers
a summary and conclusions. Appendix A provides some technical details. There is also an Online Appendix that includes
additional empirical results and MCMC convergence diagnostics.4

2 Tan and Roy (2019) is an excellent introduction to BART and includes a long list of papers using BART in a variety of scientific disciplines.
3 The methods derived in this literature and used in the present paper can also be used with other black-box models such as neural networks
r Gaussian process regressions.
4 All codes and data are available from the corresponding author upon request. Replication files are also available for download at github.com/
pfarrho/mf-bavart.
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. Econometric methods

.1. The MF-BAVART

Suppose we are interested in modeling an M-dimensional vector of time series yt = (y ′m,t , y ′q,t )′ where ym,t is an Mm
ector and yq,t is anMq vector and t = 1, . . . , T indicates time at the monthly frequency. The variables in ym,t are observed,
ut we do not observe yq,t at any point in time. Instead the statistical agency produces a quarterly figure, yQ ,t . Assuming
hat yq,t are monthly growth rates (log difference relative to the previous month) and yQ ,t are quarterly growth rates (log
ifference relative to the previous quarter), the relationship between them is (see Mariano and Murasawa, 2003)5:

yQ ,t =
1
9
yq,t +

2
9
yq,t−1 +

1
3
yq,t−2 +

2
9
yq,t−3 +

1
9
yq,t−4. (1)

We refer to this as the intertemporal restriction and note that it applies every third month (e.g., the statistical agency
produces quarterly data for the quarter covering January, February and March, but not the quarter covering February,
March, April).

We assume that yt evolves according to a general multivariate model of the form:

yt = F (X t )+ εt , εt ∼ N (0,Σ ), (2)

with X t = (y ′t−1, . . . , y
′
t−p)

′ denoting a K (= Mp)-dimensional vector of covariates, F (X t ) = (f1(X t ), . . . , fM (X t ))′ being
an M-dimensional vector of potentially non-linear functions fj : RK

→ R and Σ denotes an M × M-dimensional
variance–covariance matrix.

This is a state space model where unobserved monthly growth rates, yq,t , are treated as states. The state equations are
given by Eq. (2). The measurement equations are the intertemporal restriction in Eq. (1) (applicable every third month)
and those which simply state that ym,t are observed every month.

If F (X t ) is a vector of linear functions, then we obtain the linear MF-VAR of, e.g., Schorfheide and Song (2015). Assuming
a conditionally Gaussian prior for the VAR coefficients (e.g., the Minnesota prior or a conditionally Gaussian global–local
shrinkage prior), posterior and predictive inference is straightforward. That is, standard Bayesian MCMC methods such as
Forward-Filtering Backward-Sampling (FFBS, see, e.g., Frühwirth-Schnatter, 1994) for Gaussian linear state space models
can be used.

In this paper, we wish to treat F (X t ) non-parametrically. In principle, any model can be used for F (e.g., kernel
regression, deep neural networks, tree-based models, Gaussian process regression) and the methods derived below could
be used with minor modifications. In this paper, we approximate F using BART as, for reasons discussed below, it should
be well-designed to capture large shocks and outliers such as those produced by the pandemic.

BART approximates each fj(X t ) as follows:

fj(X t ) ≈
S∑

s=1

gjs(X t |Tjs, µjs), (3)

where gjs is a single regression tree function and Tjs are the corresponding so-called tree structures related to the jth
element in yt . Moreover, µjs are tree-specific terminal nodes and S denotes the total number of trees. The dimension of
µjs is denoted by bjs and depends on the complexity of the tree (i.e., this dimension is the number of leaves on the tree).

The literature on BART models typically sets S between 200 and 250. Chipman et al. (2010) show that setting this
number too low hurts predictive performance. If S is increased, predictive performance increases up to a certain level
of S. Increasing the number beyond this level (which is often between 100 to 150) hardly impacts predictive accuracy.
In our empirical work, including the artificial data exercise, we set S = 250. This choice provides sufficient flexibility to
capture sharp shifts in the conditional mean. Section 4.2.2 contains results showing that this is a reasonable choice.

To understand how BART works, we begin with a single tree and single equation (and, for simplicity, suppress the j, s
subscripts which distinguish the various trees and equations in the VAR). In the language of regression, a tree takes as an
input the value for the explanatory variables for an observation and produces as an output a fitted value for the dependent
variable for that observation. These fitted values are the parameters related to the terminal nodes. It does this by dividing
the space of explanatory variables into various disjoint regions using a sequence of binary rules. These so-called splitting
rules take the form {X ∈ Ar} or {X ̸∈ Ar} with Ar being a partition set for r = 1, . . . , b and X = (X1, . . . ,X T )′ a full-data
matrix of dimension T ×K . The partition rules involve an explanatory variable and depend on whether they are above or
below a threshold, c. If we let X•i denote the ith column of X , then the partition set takes the form {X•i ≤ c} or {X•i > c}.

For Y (which is a T -dimensional vector in our simple example) we obtain the fitted values as follows:

g(X |T , µ) =
b∑

r=1

µr I(X ∈ Ar ), (4)

5 We divide our latent growth rates by three to make their scales comparable. Thus, the right hand side of this equation divides that of Mariano
nd Murasawa (2003) by three.
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Fig. 1. Estimated tree structures for Germany using a single tree. Notes: The variables in the trees are GDP, IP (industrial production), ESI (economic
entiment indicator), and PMI (purchasing manager’s index). Complete definitions are given in the empirical section of this paper. The number of
bservations choosing each terminal node is in parentheses. The splitting rules are defined such that, if the condition holds you move down the left
ranch of the tree, else you move down the right branch.

hich is a step function where I denotes an indicator function that equals one if its argument is true. As we will show
n our simple example in the next sub-section, this is an analysis of variance (ANOVA) model that can, conditional on
nowing the indicators, be cast in a linear regression form.
A key point to emphasize is that everything defining the tree is treated as an unknown parameter and estimated. This

ncludes the terminal node parameters (µ which is the vector of fitted values the algorithm can choose between), their
umber (b) as well as all the elements of the tree structure (i.e. the explanatory variable, X•i, and threshold, c chosen to
efine each splitting rule). To illustrate our model and show what an estimated tree looks like in our dataset, the following
ub-section provides an empirical illustration.

.2. Empirical illustration of how BART works and handles the pandemic

To provide some additional intuition of what BART is doing and why it might be a good approach to handle the extreme
bservations associated with the pandemic, we preview our empirical application in a simple way. Full details of our data
nd application are provided below, suffice it to note here that results in this sub-section are for GDP growth in Germany
nd the full sample of data runs through 2020Q2. We use a single tree with a relatively non-informative prior so as to
llow for more complex tree structures. This is just for illustration. In our main empirical work, we use many trees and
regularization prior.
Fig. 1 shows two estimated regression trees for Germany. The top panel uses data through 2019Q4 and the bottom

anel uses the full sample. The general structure of a regression tree can be illustrated from panel (a). The tree is organized
ith a condition (e.g., GDPt−1 < −1.392) at the top of every binary split. If this condition holds, you move down the

eft branch, else you move down the right branch. So, for example, the rightmost terminal node (1.594) is chosen by
bservations with GDPt−1 greater than or equal to −1.392 (go right at the first split) and have the first lag of industrial
roduction (IPt−1) greater than or equal to 1.774 (go right at the second split). Hence, the fitted value for GDP growth for
bservations with last month’s industrial production growth greater than 1.774 and last month’s estimated GDP growth
bove −1.392 is 1.594. There are 19 observations which fall in this category.
Recall that everything in the tree is estimated by the algorithm. This includes all the numbers (i.e., the values of the

erminal nodes and the thresholds in the splitting conditions), the choice of variables in the splitting conditions (e.g., some
f the conditions depend on GDP growth, others depend on the growth in industrial production and both appear at various
ags) and the number of splits that occur. For instance, to get to the leftmost terminal node in panel (b) involves checking
55
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wo conditions (two splits), to get to the rightmost terminal node involves checking three conditions (three splits). To get
o some terminal nodes there are multiple splits involving different variables, which is particularly useful for correlated
xplanatory variables.
All in all, BART has great flexibility in capturing any sort of behavior, including characteristics common with

acroeconomic data. Using Eq. (4), we can illustrate this by casting our model into ANOVA form based on panel (a)
f Fig. 1. The corresponding model is given by:

Y •j =− 9.588 {I(GDPt−1 < −1.392)I(PMIt−5 ≥ 0.013)}
− 5.114 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 < 3.424)}
− 1.825 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 ≥ 3.424)I(GDPt−1 < −4.687)}
+ 2.447 {I(GDPt−1 < −1.392)I(PMIt−5 < 0.013)I(IPt−2 ≥ 3.424)I(GDPt−1 < −4.687)}
− 1.018 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 < 0.899)I(IPt−1 < −1.610)}
+ 0.246 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 < 0.899)I(IPt−1 ≥ −1.610)}
+ 0.833 {I(GDPt−1 ≥ −1.392)I(IPt−1 < 1.774)I(ESIt−1 ≥ 0.899)}
+ 1.594 {I(GDPt−1 ≥ −1.392)I(IPt−1 ≥ 1.774)} + ε•j.

ere we let Y •j and ε•j the jth column of Y and ε, respectively. Since GDP is ordered first in Y , j = 1 denotes its equation.
ach row in the equation above corresponds to an assignment depending on whether the indicators in the parentheses
re equal to one. The equation illustrates that BART is capable of handling multi-way interaction effects. For instance, the
irst row suggests a two-way interaction effect between the first lag of GDP and the fifth lag of the purchasing managers’
ndex (PMI) while the second row corresponds to a three-way interaction between GDP, PMI and IP.

Another point to note is that our MF-BAVARTs involve six variables, not just the four variables which appear in the
stimated trees. The BART algorithm has decided that the other two variables should not be involved in the splitting
onditions and have no useful explanatory power for GDP growth (loosely analogous to these other variables being
nsignificant).

With regard to modeling during the pandemic, we now turn to a comparison of panels (a) and (b) in Fig. 1. Note
hat panel (b) has a splitting condition IPt−1 < −16.960 at the top, an extremely low value for the growth in industrial
roduction. The branch of the tree which satisfies this condition contains six observations. These are the six monthly
andemic observations. The branch of the tree which does not satisfy this condition contains all the non-pandemic
bservations and is the same as the tree in panel (a). What our tree-based model is doing is creating nodes for capturing
utliers. Whereas the parameter estimates in a linear model can be substantially affected by an outlier, BART can simply
dd a new branch to control for it without affecting the main body of the tree. We will explore this issue in more detail
n our empirical work, but this is one of the reasons why our MF-BAVART ends up nowcasting better than the linear
F-VAR, particularly around the time of the pandemic.
Since this example is a special case with a single tree and thus S = 1, it ignores another dimension of flexibility in

erms of handling outliers: the option to add additional trees. The ‘‘A’’ in BART stands for additive and the BART algorithm
llows for new trees to be introduced to deal with the pandemic observations. Through 2019, we could see a tree (or trees)
hich had terminal nodes covering the range of pre-2020 GDP growth values. For the pandemic period, a new tree could
ield an estimate of the average GDP growth rate within the pandemic (which would probably be close to −10 percent).
dding such a tree would imply that the remaining tree(s) lack the pandemic-related branches. Thus this new tree could
erve to account for deviations from the pre-pandemic GDP growth rate.

.3. The priors

In this section we discuss our prior setup. For computational reasons discussed below, all priors are specified in an
quation-specific manner and any fixed hyperparameters are the same across equations. In the following discussion, the
ndex j = 1, . . . ,M refers to the different equations of the model.

BART can be interpreted as a non-parametric approach capable of approximating any non-linear function. But, as with
ny non-parametric approach, BART risks over-fitting. This is why Bayesian methods have been commonly used since
rior information can mitigate this problem. We use regularization priors to reduce the complexity of the tree structures
nd to shrink the terminal nodes. In the jargon of this literature, we force each tree to be small and, thus, act as a weak
earner. This essentially implies that for a large S, each tree explains only a limited fraction of the variation in yt . For each
quation we closely follow Chipman et al. (2010) and use a regularization prior that can be factorized as follows:

p
(
(Tj1, µj1), . . . , (TjS, µjS)

)
=

∏
s

p(µjs|Tjs)p(Tjs).

ith p(µjs|Tjs) =
∏

i p(µi,js|Tjs) and µi,js being the ith element of µjs. Within trees, we assume that the terminal leaf

arameters are independent of each other but depend on the specific tree structure Tjs.

56



F. Huber, G. Koop, L. Onorante et al. Journal of Econometrics 232 (2023) 52–69

i

t
f
t

We specify a tree generating stochastic process (see Chipman et al., 1998) on Tjs that consists of three parts. The first
part relates to the probability that a given node at stage n = 0, 1, 2, . . . is not a terminal node. This probability is specified
such that

α(1+ n)−β .

α ∈ (0, 1) and β > 0 denote scalar hyperparameters. Smaller (larger) values of α (β) introduce a larger penalty on more
complex tree structures. This prior thus controls for overparameterization by keeping trees rather small and simple (and
they thus act as weak learners). In our empirical application we set α = 0.95 and β = 2. This is the standard choice
proposed by Chipman et al. (2010) that works well for a wide range of different datasets and in simulations. The second
part concerns the possible values the thresholds c can take. Here we assume a discrete uniform distribution over all
possible values of the ith covariate X•i. Finally, the last part deals with the specific variables used in the splitting rules.
Again, in the absence of substantial prior information about which variables should define the splitting rules we use a
uniform distribution over the K columns of X .

It is worth noting that our choice for the tree generating prior flexibly adjusts to the data since the implied prior on
the decision rules depends on the range of the columns in X . Hence, if X contains extreme observations (such as the ones
observed during the pandemic), our prior places equal weights on these extremes without artificially bounding away prior
mass from the boundary of the parameter space of the thresholds used to define splitting rules.

On the terminal node parameters we use a Gaussian prior that places substantial prior mass on the range of the M
columns in Y = (y1, . . . , yT )′. The prior on µi,js is given by:

µi,js|Tjs ∼ N (0, σ 2
µj).

The prior standard deviation σµj is set as follows:

σµj =
max(Y •j)−min(Y •j)

2γ
√
S

, (5)

with γ denoting a suitable positive constant. Notice that if the number of trees S or γ are increased, the prior is pushed
towards zero and the effect of a single tree becomes smaller. This specification also implies that the prior variance widens
with the range of Y •j. Hence, if we observe extreme observations, the range of Y •j sharply increases and the prior on µi,js
becomes looser (for fixed S and γ ). This feature helps us in a pandemic since we introduce little shrinkage if outliers arise
and consequently allow for a large range of possible realizations of Y •j. And this increases the likelihood of capturing
outlying observations when interest centers on predictive inference.

Consistent with Chipman et al. (2010), we construct the prior on µi,js by transforming the endogenous variable such
that the transformed values range from −0.5 to 0.5, which implies that the numerator in Eq. (5) is one. Following much
of the recent literature, we set γ = 2. This value implies an approximate 95 percent probability that the conditional mean
of the model is between the minimum and maximum of each column of Y .

We specify a prior on the covariance parameters and the error variances σ 2
j separately. Let Q be an M × M lower

triangular matrix with unit diagonal and H = diag(σ 2
1 , . . . , σ 2

M ) denotes a diagonal matrix with elements σ 2
j , such that

Σ = QHQ ′. The free elements associated with the jth row of Q are stored in a (j − 1)-dimensional vector qj. On each
element of qj we use a Horseshoe (HS) prior:

qji|τji, λ ∼ N (0, τ 2
ji λ

2), τji ∼ C+(0, 1), λ ∼ C+(0, 1). (6)

Here we let C+ denote the half Cauchy distribution and τji and λ scaling parameters. Note that λ does not feature
any indices and thus serves as a common shrinkage factor across the free elements of Q . For later convenience we let
V j = λ2

× diag(τ 2
j1, . . . , τ

2
jj−1) denote a (j− 1)× (j− 1) dimensional prior scaling matrix.

For σ 2
j we use the conjugate inverse Chi-square distribution:

σ 2
j ∼ νjξj/χ

2
νj
,

where νj and ξj denote hyperparameters that are calibrated using a data-based estimate of σj, σ̂j. This data-based estimate
s taken to be the OLS standard deviation from a univariate AR(5) model.6 The values of νj and ξj are then chosen such
that the vth quantile of the prior is centered on σ̂j with P(σj < σ̂j) = v. In our application we use v = 0.75 and set
he degrees of freedom νj = T/2. We found that this choice avoids too large values of σ 2

j during the pandemic and thus
orces the tree-based model to fit more aggressively. Smaller values of νj yield similar results if the sample is expanded
o include the first two quarters of 2020, but at the cost of potential numerical stability issues of the algorithm.

This completes our prior setup. For reference, Table 1 summarizes all our prior choices.

6 In our real-time nowcasting exercise we compute this quantity on a rolling window basis, always taking into account the available data up to
the time that the nowcast is produced.
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Table 1
Summary of prior hyperparameters.
Description Parameters Hyperparameters

Trees (probability of non-terminal node) α(1+ n)−β α = 0.95
β = 2

Terminal nodes µi,js|Tjs ∼ N (0, σ 2
µj) σµj =

(
max(Y •j)−min(Y •j)

)
/(2γ

√
S)

γ = 2
S = 250 (number of trees)

Error variances σ 2
j ∼ νjξj/χ

2
νj

νj = T/2
ξj s.t. P(σj < σ̂j) = v v = 0.75

Covariances qji|τji, λ ∼ N (0, τ 2
ji λ

2) τji ∼ C+(0, 1)
λ ∼ C+(0, 1)

Notes: ‘‘Description’’ provides information about the respective model parameter. ‘‘Parameters’’ shows the respective
distribution or probability. ‘‘Hyperparameters’’ indicates our choice for the hyperparameters. Y •j refers to the jth column
of Y , σ̂j is the OLS standard deviation from a univariate AR(5) model and ‘‘s.t.’’ is an abbreviation for such that. We
use this prior setup for the simulation study and our empirical application.

.4. Posterior simulation

In terms of posterior and predictive computation, the point to note is that efficient MCMC algorithms have been
erived for estimating BART models. In our MF-BAVART model, we use these conditional on yq,t . That is, one block of
he MCMC algorithm (to be discussed below) provides draws of yq,t and, conditional on these draws, we use standard
lgorithms for drawing the BART parameters. In principle, we could draw the parameters of the trees and Σ as an entire
dimensional system. However, we follow Carriero et al. (2019) and estimate the model on an equation-by-equation

asis by conditioning on the lower Cholesky factor of Σ . This speeds up computation time enormously.7

.4.1. Drawing the trees
In this sub-section, we discuss the sampling step involved in estimating the trees. Each tree structure Tjs is obtained

sing the Bayesian backfitting strategy discussed in Chipman et al. (2010). Under our prior setup, Chipman et al. (2010)
show that the trees can be sampled marginally of µjs:

p(Tjs|R js, qj, Z j, σj) ∝ p(Tjs)
∫

p(R js|µjs, Tjs, qj, Z j, σj)p(µjs|Tjs, qj, σj)dµjs  
p(Rjs|Tjs,qj,Z j,σj)

. (7)

We let R js denote a partial residual vector that depends on the trees s ̸= s as follows:

R js = Y •j −
∑
s ̸=s

gjs(X |Tjs, µjs)− Z jqj,

with Z j = (Z j1, . . . , Z jT )′ and Z jt being composed of the structural shocks of the preceding j − 1 equations (see
Appendix A). Hence, p(R js|Tjs, qj, Z j, σj) can be viewed as a conditional likelihood that takes a relatively simple form and,
more importantly, does not depend on µjs.

A draw from Eq. (7) can be obtained by using the Metropolis–Hastings (MH) algorithm proposed in Chipman et al.
(1998). This algorithm starts by generating a candidate value T ∗

js from a probability distribution q(T i
js, T

∗

js ), with the
superscript i denoting the accepted draw at the ith iteration of the algorithm. We set T i+1

js = T ∗

js with probability:

a(T i
js, T

∗

js ) =
q(T ∗

js , T
i
js) p(R js|T ∗

js , qj, Z j, σj) p(T ∗

js )

q(T i
js, T

∗

js ) p(R js|T i
js, qj, Z j, σj) p(T i

js)
. (8)

The transition kernel q(T i
js, T

∗

js ) is constructed by switching randomly between four moves. The first move grows a
terminal node with a probability of 0.25. The second move randomly selects a parent of two terminal nodes and transforms
it into a terminal node with a probability of 0.25. The third step randomly picks some interior node and changes its
splitting rule with probability 0.4. The final move swaps a decision rule between a parent (i.e., the node above) and child
(i.e., the node below) with probability 0.1.

The key feature of this algorithm which leads to convenient properties is that µjs is integrated out and thus the
dimension of the estimation problem is kept fixed.

7 Appendix A shows how to write the model as a system of unrelated regressions (conditional on Σ ).
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.4.2. Drawing the latent states and predictive inference in the MF-BAVART
The previous sub-sections defined the MF-BAVART and discussed how well-established MCMC methods can be used

o draw the BART parameters conditional on the states (i.e., the unobserved high frequency values of the low frequency
ariables). To complete the MCMC algorithm we need a method for drawing the states, conditional on the BART
arameters. In a linear MF-VAR this is done using standard Bayesian state space algorithms such as FFBS. But with the non-
arametric MF-BAVART this is more complicated since the model is highly non-linear and FFBS is not directly applicable.
ccordingly, we borrow from the literature that deals with estimating effect sizes in black-box models (see Crawford
t al., 2018, 2019) to produce a linear approximation to F (X t ).
This linear approximation has been originally proposed in the context of Gaussian kernel (GK) and Gaussian process

GP) regressions. But the method is much more general and applies to several popular techniques in machine learning
nd econometrics (Ish-Horowicz et al., 2020). The only requirement is that we have learned a non-linear function
= (F (X1), . . . , F (X T ))′ evaluated at the T observations and we can sample from the relevant posterior distribution.
To explain the linear approximation, note that in linear regression models, the effect size (or regression coefficient) is

interpreted as the magnitude of the projection of X onto Y which takes the form:

Â = Proj(X,Y ) = X†Y ,

with X† (which is K × T ) being the Moore–Penrose inverse. In the case where X is a full rank matrix this projection is
simply (X ′X)−1X ′Y and the effect size is the least squares estimate (i.e., it is an estimate of the magnitude of the marginal
effect of the explanatory variables on the dependent variables).

We follow Crawford et al. (2018, 2019) and project X onto the matrix F .8 This produces the following estimate which
can be interpreted as an effect size:

Ã = Proj(X, F ) = X†F .

The main intuition behind this approximation is that the regression of F on X provides information on how much variance
is explained through X . This is a simple way of understanding the relationship between X•i (i = 1, . . . , K ) on F . In the
absence of additional regularization, the projection essentially implies that XÃ ≈ F .

Given this linear approximation, FFBS can be used to draw yq,t . Thus, this step in the MCMC algorithm is an approximate
one, but our simulation study and empirical results indicate the approximation is a good one. We use Ã to produce a linear
approximation to the non-parametric multivariate model:

yt = Ã
′

X t + εt . (9)

Since we now have an approximated linear model with Gaussian shocks, standard techniques such as FFBS can be used
to draw yq,t based on the Gaussian linear state space model defined by Eq. (9) and the intertemporal restriction in Eq. (1).

FFBS provides draws from the nowcast distribution based on a linearized version of the non-parametric and non-linear
tate space model. In our empirical work (and if interest centers on out-of-sample forecasting) we refrain from using these
inearized estimates but use the posterior distribution of F to produce now/forecasts.

In the case of the one-step-ahead forecast, the corresponding predictive distribution is then simply given by:

p(yT+1|X T+1) =
∫

p(yT+1|Ξ ,Y )p(Ξ |Y )dΞ , (10)

ith Ξ being a generic notation that refers to all parameters and latent states in the model. The conditional distribution
(yT+1|Ξ ,Y ) is:

yT+1|Ξ ,Y ∼ N (F (X T+1),Σ ). (11)

ithin our algorithm, draws from Eq. (11) can be mapped back to the quarterly values using the intertemporal restriction
n Eq. (1).

Iteratively using this equation allows us to compute higher order forecasts or other functions of the parameters. Eq. (10)
mplies that we can use the BART model to produce the one-step-ahead predictive distribution. After integrating out Ξ ,
his distribution will take a highly non-standard form that allows for multi-modality, fat tails and asymmetries in the
orecast distributions. At this point, we would like to stress that for nowcasts, the differences between using the smoothed
stimates of yT or using Eq. (11) are negligible. Both approaches, after integrating out Ξ , yield very similar estimates of
he predictive distribution with the same interesting features that make this approach suitable for handling the pandemic.

.4.3. Drawing the remaining parameters
The steps involved in simulating the remaining parameters are standard with the conditional posteriors taking a

ell-known form. The terminal node parameters µjs can be obtained by simulating µi,js from independent Gaussian
istributions which take a textbook conjugate form. The same can be said about the error variances. These can be
imulated from a conditional posterior which follows an inverse Gamma distribution.

8 An alternative that might be able to better pick up non-linearities would be to consider non-linear transformations of X such as X2 as well.
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We sample qj from a multivariate Gaussian posterior. This posterior is given by:

qj|⋆ ∼ N
(
mj,Ω j

)
, Ω j = (Z ′

jZ j + V−1
j )−1, mj = Ω jZ ′

jỸ j (12)

ith Ỹ j = Y •j − fj(X) and the ⋆ notation indicating that we condition on the remaining model parameters and the latent
tates.
The scaling parameters of the HS prior are obtained using methods outlined in Makalic and Schmidt (2015). Introducing

dditional auxiliary parameters allows us to simulate τji and λ from inverse Gamma distributions. More precisely, the
orresponding full conditional posteriors are:

τ 2
ji |⋆ ∼ G−1

(
1,

1
wji

+
q2ji
2λ2

)
, for i = 1, . . . , j− 1,

λ2
|⋆ ∼ G−1

⎛⎝M(M − 1)+ 2
4

,
1
ζ
+

1
2

∑
i

∑
j

(
q2ji
τ 2
ji

)⎞⎠ .

The auxiliary parameters wji and ζ are simulated from:

wji|⋆ ∼ G−1(1, 1+ τ−2
ji ), ζ |⋆ ∼ G−1(1, 1+ λ−2).

.4.4. Full conditional posterior sampling
Our MCMC algorithm iteratively samples from the full conditional posterior distributions outlined in the previous

ub-sections. Conditional on a suitable set of starting values, the algorithm cycles through the following steps:

1. Simulate the S trees T i
js for each equation using the Metropolis–Hastings algorithm with acceptance probability

given by Eq. (8) and proposal distribution q(T i
js, T

∗

js ).
9

2. Simulate the terminal node parameters associated with each tree and for each equation j from a Gaussian
distribution. This Gaussian distribution takes a standard form and depends only on the elements in Y •j − Z jqj
that are allocated to the respective terminal node and the prior variance.

3. For each equation, simulate the error variance σ 2
j from an inverted Gamma distribution.

4. The covariance parameters associated with the jth row of Q are simulated from a multivariate Gaussian posterior
described in Eq. (12).

5. The parameters related to the HS prior are obtained by sampling from the relevant conditional distributions
described above.

6. We use a conventional FFBS algorithm to simulate the latent states based on the approximate model derived in
Sub- Section 2.4.2.

7. In case we are interested in producing now/forecasts based on the estimated BART model, use Eq. (11) to draw
from the predictive distribution.

This algorithm is used to produce 30,000 draws. We then discard the first 15,000 draws as burn-in. Standard
onvergence diagnostics indicate rapid convergence towards the joint posterior distribution and thus closely mirror the
xcellent performance of the original algorithm of Chipman et al. (2010). Some of these diagnostics are shown in the
upplementary Online Appendix.

. Simulation study

In this section we investigate the properties of our model and algorithm using various DGPs. Since our empirical
ork deals with nowcasting in the pandemic, we construct DGPs that mirror the dynamic properties observed for actual
acroeconomic aggregates such as output and unemployment. We assume that the data is generated by a persistent
AR(1) process, but during the last part of the sample, we have a substantial deviation from linearity by assuming a
apid decline followed by a sharp and abrupt recovery during the last few observations. To investigate how the quality
f our approximation varies with the size of the model, we consider different values for M ∈ {3, 5, 7} as well as different
umbers of observations T ∈ {150, 250, 350}.
Assuming that the first element of yt , y1t , is the latent process that determines the low frequency variable, our DGP

akes the following form:

yt = A1yt−1 + Qut , εt ∼ N (0M , IM ), for t = 1, . . . , T − 25,

9 This step is implemented using the R package dbarts.
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Fig. 2. Single realization from the DGP for M = 7 and T = 150 and posterior estimates. Notes: The gray shaded area and the outer solid black lines
efer to the 5th and 95th credible intervals, the middle solid black line denotes the posterior median and the red line is the true outcome. The
ashed black line marks the beginning of the ‘‘crisis’’ episode of our DGP. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

here A1 is an M×M matrix with off-diagonal elements sampled from a N (0, 0.12) distribution and its diagonal elements
equal to 0.9. Q is a lower triangular matrix with the diagonal elements equal to 0.2 and off-diagonal elements sampled
from a N (0, 0.12) distribution.10 The DGP is initialized by simulating y0 from a standard Gaussian distribution.

Non-linearities in the DGP are introduced by assuming that y1t follows a VAR for the first T − 25 observations. For the
remaining 25 observations we assume that:

y1t =
{
−ϑ0t for t = T − 24, . . . , T − 5,
+ϑ1t for t = T − 4, . . . , T .

ϑjt (j = 0, 1) denotes an element of an evenly spaced grid with the length given by the number of observations within a
regime (i.e., 20 for the downturn and 5 for the quick recovery). This grid is scaled with the standard deviation of y1t , σy1 ,
over the first T − 25 observations. In the case of the downturn, we let the grid range from 0.1σy1 to 6σy1 . In the recovery,
the grid runs from 2σy1 to 5σy1 . This introduces substantial non-linearities and yields realizations of y1t that behave similar
to output during the first half of 2020. It is worth noting that we introduce a larger number of pandemic observations
in our simulations than the model gets to see in our empirical work (especially during the downturn). Nevertheless, the
rapid increase in y1t takes place over five observations and thus serves to illustrate how our model deals with detecting
rapid shifts using few observations.

Notice that the share of these non-linear regimes depends on the length of the time series T and goes from close to
seven percent (for T = 350) to almost 17 percent (for T = 150). These latent indicators are then mapped back to the
observed quantities using the intertemporal aggregation scheme outlined in Eq. (1).

This DGP allows us to assess how well our approach recovers the latent high frequency series y1t . Estimation accuracy
is measured by computing root mean squared errors (RMSEs) between the posterior median of y1t and the true outcome.
We compare results from our MF-BAVART specification to a standard linear MF-VAR which is identical in all respects
except that it is linear. This implies that we set F (X t ) = AX t with A being an M × K coefficient matrix. On a = vec(A)
we use the HS prior defined in Eq. (6). The prior on Σ is the same in the two models. All experiments are repeated 150
times.

It is worth noting that the chosen DGP is a tough case for our model. This is because the DGP assumes linearity for
the majority of periods and then includes a rather small number of extreme observations. Hence, our model needs to
learn the behavior of y1t using relatively few data points. And this is the challenge we face when our aim is to model
macroeconomic quantities in a pandemic.11

Before discussing RMSEs comparing our model and the MF-VAR, we present Fig. 2 which illustrates the properties of
the MF-BAVART model for a single realization from the DGP for M = 5 and T = 350. Other realizations typically look

10 Since adding random noise to A1 can lead to an unstable DGP with eigenvalues exceeding unity, we introduce the restriction that the maximum
absolute eigenvalue of A1 must not exceed one.
11 In principle, we could also showcase our model using DGPs that feature substantial non-linearities over the full sample. However, such DGPs
imply an unfair advantage of our model relative to the standard MF-VAR. We have carried out some simulation experiments using such DGPs and
find that our model performs remarkably well. The results are available from the corresponding author upon request.
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Table 2
Relative performance for differently sized models and sample size.

Sample size

Model size T = 150 T = 250 T = 350

M = 3 0.87 0.89 0.90
M = 5 0.89 0.89 0.89
M = 7 0.89 0.91 0.93

Notes: The table shows relative root mean squared errors (RMSEs) with respect to the ‘‘true’’ latent
monthly process between the MF-VAR and MF-BAVART for the estimated monthly processes over 150
simulated data generating processes (DGPs). Values below unity indicate that our model yields more
precise estimates of y1t than the competing approach, and refer to the mean of relative RMSEs over all
simulation repetitions.

very similar and are thus omitted for brevity. From this figure, we observe that during the first part of the sample (which
we label the non-crisis part), our model tracks the actual evolution of y1t remarkably well. Once we hit the crisis regime,
it adjusts and the corresponding credible sets include the actual outcome in the vast majority of periods. Only during the
beginning of the rapid expansion do the credible sets of MF-BAVART not cover the true series. The final few observations
are also well captured with only a single observation not included in the credible intervals. This shows that MF-BAVART
works well when the DGP is characterized by substantial non-linearities towards the end of the sample.

To investigate whether this strong performance is consistent across replications of the DGP and how our approach
performs relative to the standard MF-VAR, Table 2 shows average RMSE ratios between the MF-BAVART and the MF-VAR
across different configurations of the DGPs. Values below unity indicate that our model yields more precise estimates of
y1t than the competing approach. The figure suggests that for small-scale models (M = 3), our approach substantially
outperforms the linear model for different sample sizes. When the model size is increased, the MF-BAVART still improves
upon the MF-VAR but to a slightly lesser extent. This experiment based on synthetic data shows that our approach yields
reasonable estimates of the latent states, even in the presence of substantial deviations from normality and linearity.

4. Empirical results

In this section, we investigate the performance of our MF-BAVART model for nowcasting GDP growth using four data
sets with relatively short samples. The short sample arises since some of the variables have only been collected for a short
time period. This is an issue with many of the new data sets that are becoming popular (e.g., internet search data) and,
accordingly, we felt it useful to test our methodology in the type of context where it might be used in the future. All
models use a lag length of five since this is the number of lags in the intertemporal restriction in Eq. (1).

4.1. Data and design of the real time nowcasting exercise

We use monthly and quarterly data on Germany (DE), France (FR), Italy (IT) and Spain (ES) from 2005M03/2005Q1 to
2020M06/2020Q2 on the following M = 6 variables:

1. GDP growth: quarterly GDP growth (abbreviated GDP), released six weeks after the end of the respective quarter.
2. Industrial production: monthly growth rate of industrial production (abbreviated IP), released with a lag of

approximately six weeks.
3. Economic sentiment indicator: monthly growth rate of the economic sentiment indicator (abbreviated ESI), released

on the next-to-last working day of the respective month.
4. New car registrations: monthly growth rate of new car registrations (abbreviated CAR), released with a delay of

two and a half weeks.
5. Purchasing managers’ index: monthly growth rate of the purchasing managers’ index (abbreviated PMI), released

on the first working day of the next month.
6. One-year-ahead interest rates (abbreviated EUR), monthly average of the level of interest rates, available immedi-

ately after the end of the respective month.

Growth rates are exclusively computed by taking log-differences. Data on GDP and industrial production is obtained from
the OECD real time database, the Economic Sentiment Indicator is provided by the European Commission, figures on new
car registrations are released by the European Automobile Manufacturers Association (ACEA), PMI readings come from
Markit and the interest rate data is obtained from Macrobond. In this case the number of columns in X is K = 30.

Our main results use the data just described. However, the paper ends with a detailed examination of nowcasting
during the COVID-19 pandemic of 2020. One of the models considered there includes two additional variables which we
refer to as pandemic variables. The first of these is the number of new COVID-19 infections which is obtained from the
Centers for Disease Control. We include this variable as end of period values using the transformation log(1+ x) where x
indicates the number of cases. First cases in the respective countries were reported in January 2020. The second variable
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able 3
esults of the nowcasting exercise.

Through 2019Q4 Through 2020Q2

MF-BAVART MF-VAR MF-BAVART MF-VAR

RMSE LPS RMSE LPS RMSE LPS RMSE LPS

DE
Mth./Qt. 1 0.586** −54.735*** 0.646 −112.792 1.891*** −411.289* 1.971 −628.246
Mth./Qt. 2 0.587 −54.251*** 0.654 −114.451 1.699 −87.527*** 1.452 −182.194
Mth./Qt. 3 0.537 −45.714*** 0.536 −66.582 1.610 −85.816** 1.001 −144.233

ES
Mth./Qt. 1 0.490* −31.535*** 0.556 −151.984 3.496 −590.363 3.421 −2108.736
Mth./Qt. 2 0.428** −30.103*** 0.484 −121.163 2.828** −378.179** 2.865 −815.515
Mth./Qt. 3 0.354*** −27.170*** 0.402 −89.600 2.814*** −367.837* 2.964 −682.207

FR
Mth./Qt. 1 0.320 −32.317*** 0.330 −65.015 2.669 −2800.367 2.656 −2893.765
Mth./Qt. 2 0.312 −27.547** 0.333 −61.902 1.991 −716.782 1.900 −1122.662
Mth./Qt. 3 0.313 −33.201* 0.296 −49.014 2.057 −753.489 1.498 −1141.538

IT
Mth./Qt. 1 0.391* −15.288** 0.473 −70.330 2.323 −360.691* 2.133 −872.414
Mth./Qt. 2 0.366 −12.075** 0.401 −49.272 1.808 −319.175* 2.153 −548.016
Mth./Qt. 3 0.297* −6.824** 0.333 −26.648 1.758 −314.247 1.558 −592.571

Notes: The table shows root mean squared errors (RMSE) and cumulative log predictive scores (LPS). Mth./Qt. denotes which month within the
quarter the nowcast was made. Asterisks indicate p-values of the Diebold and Mariano (1995) test with MF-VAR as the benchmark model:
10% level of significance,
*5% level of significance,
**1% level of significance.

eflects information associated with social distancing measures and relevant lock-downs by using Google mobility trends
ata. More precisely, we take the average of the series on Retail & Recreation, Workplaces and Transit Stations to obtain an
ggregate measure of social distancing. Both of these variables are only available for the first six months of 2020. In order
o include the pandemic variables in the MF-BAVART we fill in pre-2020 values with zero. For this model, K increases to
= 40.
Recall that following standard BART practice, our variables are transformed to lie in the interval [−0.5, 0.5]. This

ransformation is used for estimating the tree-based components. After obtaining the tree structures and terminal node
arameters, the remaining quantities of the model are estimated by transforming the variables back to their original scale.
Given the relatively short sample size we begin evaluating nowcasts in 2011Q1. Within each quarter, we produce

hree nowcasts, one for each month in the quarter (subsequently abbreviated Mth./Qt.). Our model nowcasts monthly
rowth rates, yq,t , which are turned into quarterly growth rates for comparison with the actual realization of quarterly
DP growth. All of our nowcasts respect the release calendar and data revisions (e.g., a nowcast produced for January will
e made at the beginning of February using the data that has been released by then).

.2. Results of the real time nowcasting exercise

.2.1. Comparing the MF-BAVART to the MF-VAR
Table 3 summarizes our findings for the nowcasting exercise. The table offers a comparison of MF-BAVART to the

onventional MF-VAR in terms of RMSEs and log predictive scores (LPSs, which are log predictive likelihoods summed
ver the nowcast evaluation period). To investigate the pandemic period, we produce two sets of results: one ending in
019Q4 (the left panel of Table 3), and one for the full sample (including the pandemic period, the right panel of Table 3).
Note first that, as we move frommonth to month within a quarter, our nowcasts almost always improve. This statement

holds true for both nowcast evaluation metrics and countries. This provides evidence that mixed frequency methods are
useful for nowcasting in these data sets. As new information is released each month, our nowcasts of GDP growth improve.

In terms of the comparison of linear versus non-parametric mixed frequency methods, prior to the pandemic, we find
that MF-BAVART nowcasts better than the linear MF-VAR. If we consider the properties of our density nowcasts using LPS
as the evaluation metric, the superior performance of MF-BAVART holds for each month within the quarter and for every
country. The nowcast improvements provided by MF-BAVART are statistically significant using the Diebold and Mariano
(DM, 1995) test.12 For point nowcast performance, RMSEs indicate that MF-BAVART is outperforming the MF-VAR, but
the nowcast improvements tend not to be statistically significant.

12 We would like to stress that the DM test provides only a rough measure of statistical accuracy. This is because we use an expanding estimation
sample and the number of observations in the hold-out period is quite low. Moreover, the DM test is conservative when applied to short-term
forecasting problems.
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When we turn to the right panel of Table 3, which includes the pandemic period, we tend to see even larger
improvements in the nowcast performance of the MF-BAVART relative to the MF-VAR. Note in particular the huge
improvements found using LPS (a measure based on the entire predictive density) which occur for every country and
for every month within the quarter. In the right panel of the table, differences in LPS between the MF-BAVART and the
MF-VAR are typically measured in the hundreds whereas in the left panel they are typically measured in the tens. Given
the relationship between log predictive likelihoods and marginal likelihoods, these findings constitute extremely strong
evidence in favor of the MF-BAVART. Thus, standard Bayesian model comparison methods are showing strong evidence
that MF-BAVART is handling the pandemic better than the MF-VAR. Assessing statistical difference by means of DM tests
points towards superior predictive capabilities in terms of LPS at the 10 percent significance level for the majority of
countries (except France) and months within the quarter.

4.2.2. A deeper examination of why MF-BAVART is forecasting so well
RMSEs are not as consistently favorable to the MF-BAVART as LPSs are when the pandemic observations are included.

This indicates that the benefits of using the non-parametric approach lie largely in its ability to better model second and
higher predictive moments for the extreme observations for the first half of 2020. More precisely, once we move into the
pandemic period our model yields wider predictive intervals. And it produces these wider predictive distributions in a
timely manner.

To explain why BART is producing these features, note that BART handles outliers either through creating a new
terminal node or by adding trees. The corresponding nodes (either in an existing complicated tree or a newly grown
tree) will feature very few observations (often only one or two). This implies little information in the likelihood which is
coupled with a large prior variance (mainly driven by our data-based prior discussed in Section 2) thus leading to a large
posterior variance.

We empirically demonstrate this effect in Fig. 3. This plots the posterior interval width (defined as the difference
between 5th and 95th percentiles of the posterior distribution) of latent GDP against the leverage for all T values of each.
The leverage values lt (t = 1, . . . , T ) are the diagonal elements of the projection matrix X(X ′X)−1X ′. Since parts of X are
unobserved in our MF model, we compute the leverage scores for each draw of the latent quantities and then compute
the posterior mean of the scores.13

The figure clearly shows that there exists a positive relationship between leverage and posterior uncertainty. This
implies that if we observe outlying observations (such as during the pandemic), our model yields wider credible sets. This
feature is especially pronounced during the pandemic (the red dots in the figure) but we also find substantial evidence
of a similar relationship during the global financial crisis (the blue dots). We conjecture that this is the main mechanism
at work that yields improved predictive distributions through sharp and timely increases in the predictive variance.

Adding more trees (i.e., increasing S) to capture the pandemic-related outliers will further increase the predictive
variance relative to a model which sets S small. To support this statement consider Fig. 4 which shows log predictive
likelihoods (LPLs) by period for the first two quarters of 2020, with nowcasts updated each month for all four countries.
The lines in this figure vary in the number of trees used, ranging from a single tree to 250 trees. While we observe several
differences, these tend to become smaller the more trees we include, with 250 trees indicating superior performance in
almost all cases. However, once we get to 150 trees, further forecast improvements tend to be small.

Another reason for its good performance is that BART is able to detect these tail events not only through ‘‘remembering’’
partitions of the covariate space during certain periods such as the global financial crisis but also through recognizing
that specific combinations of the covariates have not been observed in the past and deserve creating a new tree (or
terminal node within a single tree). Again, such a new tree (or terminal node) will likely be equipped with relatively few
observations and little information on the conditional mean function. This, in turn, will again (correctly) lead to inflated
posterior intervals.

4.2.3. Assessing model calibration using probability integral transforms
The preceding sub-section compared the relative performance of the MF-BAVART to the MF-VAR, but did not present

any evidence on the nowcast performance of either in an absolute sense. In the Online Appendix, we provide graphs of
the nowcasts of both approaches plotted against realized GDP growth for the four countries and three monthly nowcasts
within each quarter. An examination of them indicates that the MF-BAVART’s nowcasts are better calibrated, particularly
for Spain.

In this sub-section, we investigate this issue more formally using Probability Integral Transforms (PITs). In particular,
we follow a common practice (e.g., Clark, 2011) and produce PITs for our nowcasts and transform them using the inverse
of the c.d.f. of a standard Gaussian distribution. We denote these transformed PITs as rt for the time of our nowcast
evaluation period. Perfectly calibrated nowcasts should lead to rt having mean zero, variance one and being uncorrelated
over time. We calculate the sample mean (labeled µ in the tables), variance (labeled σ 2) and estimated autoregressive
coefficient (labeled AR(1)). Table 4 displays these summary statistics for the sample through 2019Q4 and the full sample,
respectively.

13 Plugging in the posterior mean of the latent states to compute the leverage values leads to results which are qualitatively very similar.
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Fig. 3. Posterior interval width of latent GDP versus leverage. Notes: The scatterplot shows the posterior interval width (defined as the difference
between the 5th and 95th percentiles of the posterior distribution) against leverage. The red dots refer to the pandemic observations and the blue
dots refer to the global financial crisis (i.e., 2008M06 to 2009M03) while the solid black line is the line of best fit. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Beginning with the linear MF-VAR, note that even in the pre-pandemic sample, there is some evidence of poor
calibration. For the sample mean, the point estimates are consistently well away from zero. The sample variances are
often substantially higher than one indicating the predictive variance of the linear model is too small. There is sometimes
evidence of autocorrelation in rt . When we move to the full sample, these problems get much worse, particularly for the
ample variance of rt which now becomes very large.
If we turn to the MF-BAVART for the sample ranging through 2020Q2, it can be seen that the nowcasts are better

alibrated. Even for the full sample, the sample mean of rt is often close to zero. The estimated AR(1) coefficient often
indicates autocorrelation in the first month per quarter, while the second and third month nowcasts indicate more
favorable calibration. It is the case that the sample variance of rt is still too high, but to a much lesser extent than for the
F-VAR. Thus, use of the MF-BAVART has gone a large way towards improving the calibration problems of the MF-VAR,
ven if it has not completely fixed them.
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Fig. 4. Log predictive likelihoods during the first two quarters of the pandemic for different numbers of trees. Notes: Log predictive likelihood (LPL)
y period for 2020Q1 and 2020Q2, with M1, M2 and M3 indicating the month during the quarter when the nowcast is produced. S refers to the
umber of trees used for BART, with S = 250 being the benchmark specification used for our empirical work.

able 4
ummary statistics of transformed PITs.

Through 2019Q4 Through 2020Q2

MF-BAVART MF-VAR MF-BAVART MF-VAR

Mth./Qt. 1 2 3 1 2 3 1 2 3 1 2 3

DE
µ 0.44 0.37 0.45 0.83 0.91 0.87 −0.48 0.06 0.12 −0.27 0.43 0.39
σ 2 3.59 3.52 3.12 6.97 6.85 4.14 22.97 5.20 5.23 35.58 10.87 8.79
AR(1) −0.33 −0.32 −0.37 −0.29 −0.15 −0.18 0.83 −0.07 −0.12 0.60 0.08 0.04

ES
µ −0.25 −0.66 −0.56 −0.29 −0.73 −0.58 −1.45 −1.45 −1.31 −1.55 −1.97 −1.72
σ 2 2.33 2.52 2.77 10.56 8.60 7.06 30.64 19.79 19.77 41.35 42.65 36.42
AR(1) 0.71 0.51 0.56 0.72 0.65 0.58 1.24 0.29 0.24 0.69 0.52 0.45

FR
µ 0.34 0.35 0.33 0.49 0.69 0.55 −0.70 −0.76 −0.3 −0.57 −0.10 −0.16
σ 2 3.34 3.02 3.50 5.53 5.07 4.54 24.37 40.29 14.73 26.77 18.47 16.35
AR(1) 0.17 0.15 −0.06 0.19 0.12 0.09 0.93 0.22 0.28 0.83 0.46 0.37

IT
µ −0.10 −0.05 0.01 −0.05 0.06 0.18 −0.96 −0.79 −0.74 −1.45 −0.99 −0.84
σ 2 1.54 1.38 1.17 5.67 4.45 3.09 19.58 17.51 17.38 47.28 30.66 33.35
AR(1) 0.60 0.46 0.32 0.58 0.40 0.30 0.39 0.23 0.21 0.51 0.35 0.20

Notes: Mth./Qt. denotes which month within the quarter the nowcast was made. µ, σ 2 and AR(1) denote the sample mean, variance and AR(1)
oefficient of the transformed probability integral transforms (PITs).

.2.4. A closer look at the pandemic period
In this sub-section, we provide additional insight as to how MF-BAVART is nowcasting in the two pandemic quarters.

n addition to taking a closer look at the densities produced by the MF-BAVART and MF-VAR models (labeled ‘‘Benchmark’’
odels in the following figures) of the preceding sub-sections, we also produce results for an eight dimensional
F-BAVART which adds the two pandemic variables (see Section 4.1, this is labeled the ‘‘Pandemic’’ model in the

igures).14

14 Since the pandemic variables are non-zero for an extremely short time and feature rapid shifts, the MF-VAR was not capable of handling them
without substantial prior tuning and hence we do not include results from the MF-VAR using the pandemic variables.
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able 5
og predictive likelihoods for MF-BAVART for each month within the first two quarters of 2020.

Benchmark Pandemic

2020Q1 2020Q2 2020Q1 2020Q2

Mth./Qt. 1 2 3 1 2 3 1 2 3 1 2 3

DE −29.6 −22.6 −32.2 −349.8 −6.3 −4.9 −10.9 −2.3 −12.4 −4.2 −3.8 −3.5
ES −190.4 −337.3 −321.6 −538.3 −6.7 −5.4 −77.8 −94.3 −3.3 −6.7 −4.8 −4.2
FR −925.4 −721.2 −696.6 −1918.6 −4.1 −4.1 −346.4 −15.3 −107.4 −9.1 −4.6 −4.0
IT −319.4 −291.8 −307.5 −6.3 −3.8 −3.6 −92.5 −5.7 −29.6 −4.6 −3.7 −4.0

Notes: ‘‘Benchmark’’ refers to the information set described above in the context of our main nowcast evaluation. ‘‘Pandemic’’ includes further
variables measuring infection rates and Google mobility trends. Mth./Qt. denotes which month within the quarter the nowcast was made.

In Section 4.2.1, we showed that (with one exception) the benchmark MF-BAVART produces greatly superior predictive
ikelihoods relative to the MF-VAR during the six pandemic months. Table 5 offers additional insight by comparing log
redictive likelihoods for the benchmark and pandemic versions of the MF-BAVART model. It can be seen that adding the
andemic variables often improves the nowcasting performance of the MF-BAVART. There are several exceptions to this,
ut in the crucial pandemic months of March, April and May the inclusion of pandemic variables is beneficial in all four
ountries. Thus, despite the very short time series and the very simple way these variables are included in the model,
ART finds a way to usefully incorporate the information they contain.
One interesting result is that both time series even improve nowcasts produced in January and February 2020.

nspection of the pandemic time series reveals that all countries have reported the first infections already at the end
f January. Since we assume that the nowcasts are always produced towards the end of each month, BART is essentially
sing this increase from zero to very few infections in combination with deteriorating values in the PMI, car registrations
nd the ESI. As we will show below, this does not signal a downturn in GDP but merely reflects the fact that uncertainty
urrounding the predictive distribution is increasing (which also happens technically because the size of the model is
ncreased as well). And this is beneficial for nowcasting.

Fig. 5 plots the predictive densities themselves for the three models for the first six months of 2020. The key general
inding is that, as expected, MF-BAVART is much more flexible than the MF-VAR. Particularly in 2020Q2, the predictive
ensities it produces tend to be much more dispersed, feature fatter tails, are often asymmetric and even sometimes
ulti-modal. This contrasts with the MF-VAR where the predictive densities tend to be closer to Gaussian densities.
In light of the recent interest of macroeconomics in models involving asymmetries and multi-modalities (see, e.g.,

drian et al., 2019a,b) this feature of the MF-BAVART is particularly attractive and is the source of the improvements in
owcast performance during the pandemic. If we compare the benchmark and pandemic versions of the non-parametric
odel, a clear pattern emerges. As the pandemic hits, the predictive densities for the pandemic model quickly become
uch more dispersed than those of the benchmark model. The latter, in turn, are more dispersed than those of the linear
odel. BART is deciding to incorporate information in these short time series in such a way that the predictive densities

eflect the increased uncertainty. This is due to the fact that inclusion of these two additional very short time series is
kin to adding a time-varying intercept to the model with a rather large state innovation variance from January 2020
nward. And this random intercept term scales up the variance of the predictive distribution and thus improves density
owcasts (especially in the beginning of the pandemic period).

. Summary and conclusions

MF-VARs have been a standard tool for producing timely, high frequency nowcasts of low frequency variables for
everal years. With the arrival of the COVID-19 pandemic of 2020 the need for such nowcasts has become even more
cute. However, conventional linear MF-VARs nowcast poorly during the pandemic due to their inability to effectively
eal with the extreme observations that have occurred. In this paper, we have developed the MF-BAVART which is a
on-parametric model using additive regression trees. MF-BAVART can be cast as a non-linear state space model. We
evelop an approximate MCMC algorithm where the parameters defining the conditional mean of the VAR are drawn
sing a standard BART algorithm and, conditional on these, the states are drawn using a linear approximation. This linear
pproximation is taken from the machine learning literature on black-box models and we use simulations to show that
t also works well for a DGP that closely matches the evolution of GDP during the pandemic.

Our nowcasting exercise, involving four major euro area countries, shows that MF-BAVART, with few exceptions,
erforms better than the linear MF-VAR at all times in our sample, with major nowcasting benefits during the pandemic.
e show how and why this occurs by providing a detailed comparison of nowcast densities in the first six months of
020.
The techniques outlined in this paper have a wide range of potential applications, as they can be applied to any non-

inear and non-parametric learner commonly used in the literature. Our focus on using BART is motivated by its strong
erformance in various applications (see, e.g., Bleich et al., 2014; Linero, 2018; Kapelner and Bleich, 2015) as well as its
lexibility in handling outliers. As a fruitful avenue for further research one could assess how different learners perform
nd then combine them using Bayesian model averaging techniques.
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t
v

Fig. 5. Predictive densities for the first two quarters of 2020 across countries. Notes: ‘‘Benchmark’’ refers to the information set described above in
he context of our main nowcast evaluation. ‘‘Pandemic’’ includes further variables measuring infection rates and Google mobility trends. The black
ertical line marks zero.
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ppendix A. Equation-by-equation estimation of the VAR

In this Appendix we show how to rewrite the VAR as a system of unrelated regression models. This approach has the
dvantage that the computational burden is drastically reduced since we can perform equation-by-equation estimation.
otice that the first equation of Eq. (2) can be written as:

y1t = f1(X t )+ η1t , η1t ∼ N (0, σ 2
1 ).

he second equation is given by:

y2t = f2(X t )+ q21η1t + η2t , η2t ∼ N (0, σ 2
2 ).

n general, the jth > 1 equation can be written as:

yjt = fj(X t )+ q′jZ jt + ηjt , ηjt ∼ N (0, σ 2
j ). (A.1)

his implies that, conditional on the shocks to the previous j − 1 equations, the jth equation is a standard regression
odel that features a non-parametric part given by fj(X t ) and a regression part q′jZ jt with qj = (qj1, . . . , qjj−1)′ and
jt = (η1t , . . . , ηj−1t )′. The (j−1)-dimensional vector qj stores the first j−1 elements of the jth row of Q . These equations
re conditionally independent and standard MCMC techniques can be readily applied.
Alternative algorithms replace the shocks with the contemporaneous values of yt . This introduces order dependence

hich we avoid by conditioning on the shocks. Thus, we are using a standard sampling algorithm that is commonly used
o sample from the multivariate Gaussian (Carriero et al., 2019).

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.11.006.
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