
ScienceDirect

Available online at www.sciencedirect.com

Procedia Structural Integrity 28 (2020) 482–490

2452-3216 © 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo
10.1016/j.prostr.2020.10.057

10.1016/j.prostr.2020.10.057 2452-3216

© 2020 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2019) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo  

1st Virtual European Conference on Fracture 

Closed-form dispersion relationships in bond-based peridynamics 
Bingquan Wanga,*, Selda Oterkusa, Erkan Oterkusa 

aPeriDynamics Research Centre, Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, 100 Montrose 
Street, Glasgow G4 0LZ, UK 

Abstract 

Classical continuum mechanics (CCM) has been widely used in structural analysis for the last two centuries. Dispersion curves, 
which describes the relationship between wave frequency and wave number, are linear according to CCM. This yields constant 
phase velocities. However, experiments showed that for small wavelengths, dispersion curves are nonlinear. Hence, CCM is not 
capable to represent such material behaviour for small wavelengths. As an alternative approach, peridynamics can be utilised for 
this purpose. In this study, closed form dispersion relationships are derived and presented according to the original bond-based 
peridynamics formulation. According to the evaluated results, it can be concluded that peridynamics can capture non-linear 
frequency-wave number relationship as also observed in real materials. 
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1. Introduction 

Classical continuum mechanics (CCM) has been widely used in structural analysis for the last two centuries. CCM 
is a local continuum mechanics approach which only takes into account interactions between material points that are 
directly in contact with each other. The equations of motion of CCM are in the form of partial differential equations. 
These equations face difficulties if the displacement field is not continuous as a result of a crack since spatial 
derivatives are not valid along crack surfaces. Moreover, CCM is suitable to represent long-wave propagation 
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behaviour since it doesn’t have a length scale parameter. Dispersion curves, which describes the relationship between 
wave frequency and wave number, are linear according to CCM. This yields constant phase velocities. However, 
experiments showed that for small wavelengths, dispersion curves are nonlinear. Hence, CCM is not capable to 
represent such material behaviour for small wavelengths. As an alternative approach, peridynamics can be utilised for 
this purpose. Peridynamics (PD) (Silling, 2000) is a non-local continuum mechanics formulation whose governing 
equations are in the form of integro-differential equations. In addition, it has a length scale parameter called horizon 
which defines the range of non-local interactions between material points. There has been a rapid progress on 
peridynamics especially during the recent years. The original PD formulation has been extended for multiphysics 
analysis (De Meo and Oterkus, 2017; Diyaroglu et. al. 2017a,b; Oterkus et. al. 2014; Wang et. al., 2018). PD 
formulation is also suitable for modelling simplified structures such as beam, plates and shells (Diyaroglu et. al., 2015, 
2019; Vazic et. al., 2020; Yang et. al., 2019, 2020). PD can also be applicable for analysis of polycrystalline materials 
(De Meo et. al., 2016, 2017; Zhu et al., 2016) and nano-structures including graphene (Liu et. al., 2018). PD can also 
capture complex damage patterns in composite structures (Oterkus et. al., 2010a; Oterkus and Madenci, 2012a,b). PD 
is suitable for dynamic fracture (Imachi et. al., 2019, 2020; Basoglu et. al., 2019; Vazic et. al., 2017) and impact 
analysis (Oterkus et. al., 2012). Fatigue analysis can also be performed in peridynamic framework (Oterkus et. al., 
2010b). PD was utilized to perform topology optimization of crack structures (Kefal et. al., 2019). An extensive 
overview of PD research can be found in Madenci and Oterkus (2014) and Javili et. al. (2019).  

Dispersion curves have non-linear form in peridynamics so that real material behaviour can be accurately 
represented for small wavelengths (Bazant, et. al., 2016; Butt, et. al., 2017; Zhang, et. al., 2019).  In this study, closed 
form dispersion relationships are derived and presented according to the original bond-based peridynamics 
formulation.  

2. Peridynamic dispersion relationships 

2.1. Peridynamic dispersion relationship for 1-Dimensional models 
 
The equation of motion in bond-based peridynamic theory for the material point x can be written as 
 

             , ,
V

u x t c x x s u u x x dV                                                                                                                    (1)     

where ,x x are the coordinates of the paired material points, ,u u  are the displacements of the material points,
 c x x  is the bond constant,  the mass density,  ,s u u x x   is the stretch of the paired material points, which 

can be expressed in 1-D as 
 

         , u x u xs u u x x
x x

      
 

                                                                                                                          (2)               

The equation of motion can be solved with plane wave solution  ,u x t  
 
           , i kx tu x t Ue                                                                                                                                                   (3)     
 
where U is the constant amplitude vector, k is the wavenumber,  is the angular frequency in rad/sec. Substituting 
the plane wave solution given in Eq. (3) in Eq. (1) leads to 
 

            2

0
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
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where is the horizon size, A is the cross-sectional area, and x x   . Bond constant for isotropic materials in a 
one-dimensional bar can be written as 
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behaviour since it doesn’t have a length scale parameter. Dispersion curves, which describes the relationship between 
wave frequency and wave number, are linear according to CCM. This yields constant phase velocities. However, 
experiments showed that for small wavelengths, dispersion curves are nonlinear. Hence, CCM is not capable to 
represent such material behaviour for small wavelengths. As an alternative approach, peridynamics can be utilised for 
this purpose. Peridynamics (PD) (Silling, 2000) is a non-local continuum mechanics formulation whose governing 
equations are in the form of integro-differential equations. In addition, it has a length scale parameter called horizon 
which defines the range of non-local interactions between material points. There has been a rapid progress on 
peridynamics especially during the recent years. The original PD formulation has been extended for multiphysics 
analysis (De Meo and Oterkus, 2017; Diyaroglu et. al. 2017a,b; Oterkus et. al. 2014; Wang et. al., 2018). PD 
formulation is also suitable for modelling simplified structures such as beam, plates and shells (Diyaroglu et. al., 2015, 
2019; Vazic et. al., 2020; Yang et. al., 2019, 2020). PD can also be applicable for analysis of polycrystalline materials 
(De Meo et. al., 2016, 2017; Zhu et al., 2016) and nano-structures including graphene (Liu et. al., 2018). PD can also 
capture complex damage patterns in composite structures (Oterkus et. al., 2010a; Oterkus and Madenci, 2012a,b). PD 
is suitable for dynamic fracture (Imachi et. al., 2019, 2020; Basoglu et. al., 2019; Vazic et. al., 2017) and impact 
analysis (Oterkus et. al., 2012). Fatigue analysis can also be performed in peridynamic framework (Oterkus et. al., 
2010b). PD was utilized to perform topology optimization of crack structures (Kefal et. al., 2019). An extensive 
overview of PD research can be found in Madenci and Oterkus (2014) and Javili et. al. (2019).  

Dispersion curves have non-linear form in peridynamics so that real material behaviour can be accurately 
represented for small wavelengths (Bazant, et. al., 2016; Butt, et. al., 2017; Zhang, et. al., 2019).  In this study, closed 
form dispersion relationships are derived and presented according to the original bond-based peridynamics 
formulation.  
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where is the horizon size, A is the cross-sectional area, and x x   . Bond constant for isotropic materials in a 
one-dimensional bar can be written as 
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          2

2EC
A




                                                                                                                                                         (5)     

 
where E is the elastic modulus. Substituting the bond constant expression given in Eq. (5) in the peridynamic equation 
of motion with the plane wave solution given in Eq. (4), the analytical solution of the wave dispersion relationship for 
one-dimensional structures in terms of wave number and the horizon size can be obtained as 
 

            2
2

4 cosintegral lnpd
E k k   


                                                                                                             (6)     

 
where  is the Euler gamma constant. Note that dispersion of the peridynamic wave is only related to the 
micromodulus function, density, and horizon. These parameters are inherent properties of the material. 
 
 
2.2. Peridynamic dispersion relationships for 2-Dimensional models 
 
The dispersion relationships in two-dimensional models can be obtained similarly. To simplify the calculation, 
cylindrical coordinate system is utilised. Fig. 1 presents two material points x and x and linked with a bond  . , ,u u v  
and v are displacement components of the material points x and x and represent the longitudinal (x-direction) and 
transverse (y-direction) displacements, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Displacement components of the material points x and x . 

As can be observed Fig. 1, the components of the longitudinal and transverse displacements of material points x and
x projected on the bond can be written as 

 
        cosxu u                                                                                                                                                         (7a)     
        sinyu v                                                                                                                                                         (7b)     
        cosxu u                                                                                                                                                        (7c)     
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        sinyu v                                                                                                                                                         (7d)     
 
Hence, the stretch s between two material points becomes 
 

           cos sinu u v v
s

 


   
                                                                                                                           (8)     

The peridynamic equation of motion with small displacement assumption can be written in longitudinal direction as 
 

               cos sin
, cos

V

u u v v
u t C dV

 
  


    

  
 
x                                                                                   (9)     

 
where  C   is the bond constant. Eq. (9) can be rewritten in cylindrical coordinates as  
 

               2

0 0

cos sin
, cos

u u v v
u t C h d d

   
     


    

  
 

 x                                                                     (10)     

 
where h is the thickness of the geometry. 
 
While considering the waves propagating in positive x -direction and the transverse displacement of each material 
point is zero, i.e.    , , 0v t v t x x , the equation of motion in the longitudinal direction can be simplified as  
 

             
2

0 0

, cos cosu t C h u u d d
 

        x                                                                                                 (11)     

Inserting the plane wave solution  
 
           , i k tu t Ue   x nx                                                                                                                                              (12)     
, wheren is the unit vector describing the direction of the wave propagation, into the equation of motion in the 
longitudinal direction leads to ( xn e ) 
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 

                                                                  (13)     

 
Please note that  sin cosk  is an odd function and its integration leads to zero. Performing the integration in Eq. 
(13) yields 
 

           2 2BesselJ 1,
L

k
C h

k


    
 

  
 

                                                                                                              (14)     



	 Bingquan Wang  et al. / Procedia Structural Integrity 28 (2020) 482–490� 485 Author name / Structural Integrity Procedia 00 (2019) 000–000  3 

          2

2EC
A




                                                                                                                                                         (5)     

 
where E is the elastic modulus. Substituting the bond constant expression given in Eq. (5) in the peridynamic equation 
of motion with the plane wave solution given in Eq. (4), the analytical solution of the wave dispersion relationship for 
one-dimensional structures in terms of wave number and the horizon size can be obtained as 
 

            2
2

4 cosintegral lnpd
E k k   


                                                                                                             (6)     

 
where  is the Euler gamma constant. Note that dispersion of the peridynamic wave is only related to the 
micromodulus function, density, and horizon. These parameters are inherent properties of the material. 
 
 
2.2. Peridynamic dispersion relationships for 2-Dimensional models 
 
The dispersion relationships in two-dimensional models can be obtained similarly. To simplify the calculation, 
cylindrical coordinate system is utilised. Fig. 1 presents two material points x and x and linked with a bond  . , ,u u v  
and v are displacement components of the material points x and x and represent the longitudinal (x-direction) and 
transverse (y-direction) displacements, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Displacement components of the material points x and x . 

As can be observed Fig. 1, the components of the longitudinal and transverse displacements of material points x and
x projected on the bond can be written as 

 
        cosxu u                                                                                                                                                         (7a)     
        sinyu v                                                                                                                                                         (7b)     
        cosxu u                                                                                                                                                        (7c)     

4 Author name / Structural Integrity Procedia  00 (2019) 000–000 

        sinyu v                                                                                                                                                         (7d)     
 
Hence, the stretch s between two material points becomes 
 

           cos sinu u v v
s

 


   
                                                                                                                           (8)     

The peridynamic equation of motion with small displacement assumption can be written in longitudinal direction as 
 

               cos sin
, cos

V

u u v v
u t C dV

 
  


    

  
 
x                                                                                   (9)     

 
where  C   is the bond constant. Eq. (9) can be rewritten in cylindrical coordinates as  
 

               2

0 0

cos sin
, cos

u u v v
u t C h d d

   
     


    

  
 

 x                                                                     (10)     

 
where h is the thickness of the geometry. 
 
While considering the waves propagating in positive x -direction and the transverse displacement of each material 
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Inserting the plane wave solution  
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Please note that  sin cosk  is an odd function and its integration leads to zero. Performing the integration in Eq. 
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where  BesselJ ,m   is Bessel function of the m  kind. For the two-dimensional structures,  C  is given as 
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Therefore, the analytical solution of the longitudinal wave dispersion relationship for a two-dimensional structure can 
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Similar procedure can be followed for the transverse direction. While considering the waves propagating in positive
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By using the plane wave solution, the equation of motion in the transverse direction results in 
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  The integration part in Eq. (18) can be solved analytically as 
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where  StruveH ,m  is Struve function of the m kind. Therefore, by using the bond constant expression for a two-
dimensional structure given in Eq. (15), the analytical solution of the transverse wave dispersion relationship can be 
obtained as 
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2.3. Peridynamic dispersion for 3-Dimensional models 
 
To derive the wave dispersion relationships for three dimensional structures, spherical coordinates can be utilised as 
shown in Fig. 2. 
 

 

Fig. 2. Spherical coordinate system. 
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3. Numerical results 

  In this section, dispersion relationships obtained in the previous section are visually presented for the copper material 
for both 1-D, 2-D and 3-Dimensional structures. Copper has a density of 8960 kg/m3, Young’s modulus of 130 GPa, 
and Poisson’s ratio of 0.34. Lattice constant of copper is 3.598 A. The horizon size is specified as 103 10 m   . The 
wave number in dispersion curves is normalized by dividing the wave number with 2 / a where a is the lattice 
constant. 
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  In this section, dispersion relationships obtained in the previous section are visually presented for the copper material 
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Fig. 3. Dispersion relationship for a 1-Dimensional structure made of copper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Dispersion relationship for a 2-Dimensional structure made of copper. 
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Fig. 5. Dispersion relationship for a 3-Dimensional structure made of copper. 

Dispersion relationships for 1-D, 2-D and 3-Dimensional structures made of copper are depicted in Figs. 3-5. As 
shown in these figures, peridynamics captures non-linear frequency-wave number relationship as also observed in real 
materials.   

4. Conclusions 

  In this study, closed form dispersion relationships were derived and presented according to the original bond-based 
peridynamics formulation. Peridynamic dispersion relationships were visually shown for the copper material for both 
1-D, 2-D and 3-Dimensional structures. According to the results, it was concluded that peridynamics can capture non-
linear frequency-wave number relationship as also observed in real materials. 
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