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 

Abstract— The novel coronavirus disease 2019 (COVID-19) 

pandemic has led to a worldwide crisis in public health. It is crucial 

we understand the epidemiological trends and impact of non-

pharmacological interventions (NPIs), such as lockdowns for 

effective management of the disease and control of its spread. We 

develop and validate a novel intelligent computational model to 

predict epidemiological trends of COVID-19, with the model 

parameters enabling an evaluation of the impact of NPIs. By 

representing the number of daily confirmed cases (NDCC) as a 

time-series, we assume that, with or without NPIs, the pattern of 

the pandemic satisfies a series of Gaussian distributions according 

to the central limit theorem. The underlying pandemic trend is 

first extracted using a singular spectral analysis (SSA) technique, 

which decomposes the NDCC time series into the sum of a small 

number of independent and interpretable components such as a 

slow varying trend, oscillatory components and structureless 

noise. We then use a mixture of Gaussian fitting (GF) to derive a 

novel predictive model for the SSA extracted NDCC incidence 

trend, with the overall model termed SSA-GF. Our proposed 

model is shown to accurately predict the NDCC trend, peak daily 

cases, the length of the pandemic period, the total confirmed cases 

and the associated dates of the turning points on the cumulated 

NDCC curve. Further, the three key model parameters, 

specifically, the amplitude (alpha), mean (mu), and standard 

deviation (sigma) are linked to the underlying pandemic patterns, 

and enable a directly interpretable evaluation of the impact of 

NPIs, such as strict lockdowns and travel restrictions. The 

predictive model is validated using available data from China and 

South Korea, and new predictions are made, partially requiring 

future validation, for the cases of Italy, Spain, the UK and the 

USA. Comparative results demonstrate that the introduction of 

consistent control measures across countries can lead to 

development of similar parametric models, reflected in particular 

by relative variations in their underlying sigma, alpha and mu 

values. The paper concludes with a number of open questions and 

outlines future research directions. 

 
Index Terms— COVID-19; pandemic modelling; singular 

spectral analysis – Gaussian fitting (SSA-GF); non-

pharmacological interventions (NPIs); impact evaluation. 

I. INTRODUCTION 

INCE the emergence of SARS-CoV-2 and the resulting novel 

coronavirus disease (COVID-19), reported to the World Health 

Organization (WHO) in December 2019 from Wuhan, China, it 
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has rapidly spread around the world. On January 30, 2020, the WHO 

officially declared the epidemic of COVID-19 as a Public Health 

Emergency of International Concern [1], which was then upgraded to 

a pandemic on March 11, 2020. As of July 26, 2020, the total number 

of confirmed cases has exceeded 16.1 million, along with 

approximately 645.7k deaths [2].  The USA has the highest number of 

confirmed cases with over 4.15 million, in comparison to nearly 86k 

in China [3]. The number of cases in countries such as the UK, Italy, 

Spain and Russia have been growing steadily, and at a rapid rate in 

countries such as Brazil and India [2]. This has resulted in a severe 

health crisis, public panic, governmental challenge and a potential 

humanitarian disaster worldwide.  
To ensure timely and effective risk management and disaster relief 

of COVID-19 in this extremely challenging situation, accurate 

pandemic modelling to estimate outbreak size is crucial, as it can 

provide invaluable information to health system leaders, policymakers 

and governments, as well as the WHO, stakeholders and citizens, to 

ensure adequate planning and arrangements are made [4][5].  

Given the continuously updated data on the number of daily 

confirmed cases (NDCC) for any country/region, we posit a number of 

questions: When will the turning point occur (i.e. the NDCC reach the 

peak and will start to decline, corresponding to Rt<1)? What will the 

value peak in the NDCC? How long will the pandemic last? And what 

will be the outbreak size over the entire pandemic period for a 

particular country/region? Due to several factors and uncertainties, 

such as locally infected and imported cases, the accuracy and 

reliability of the collected data and the number of tested cases, the data 

and the associated pandemic pattern cannot be completely accurate and 

can be difficult to understand and analyse [6]. Each country/region 

may adopt different ways to estimate the Rt (an average of six different 

measures used in the UK), and to detect, diagnose and count cases, 

especially in the first few months. These have led to formidable 

challenges for modelling the COVID-19 pandemic [7].  

In addition, various degrees of non-pharmacological interventions 

(NPIs) may be introduced across regions and countries [7][8]. The city 

of Wuhan in China, with a population of over 11 million, has been in 

a state of almost complete lock down from January 22, 2020 (though 

partially lifted from April 8, 2020). Intensive testing and forced self-

isolation measures were introduced to trace cases and suppress the 

spread of disease. Similar measures were also introduced in other parts 

of China, a country with 1.3 billion people, which remained in a semi-

lockdown state for over two months. The approach has been effective 

in suppressing transmission and reducing the incidence of COVID-19. 

In other countries and regions, the impact of the disease has varied 

considerably. In East Asia and South-East Asia, NPIs seem to have 
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worked effectively, especially for South Korea, Taiwan and Vietnam, 

due mainly to the early aggressive action and a rigorous “test, trace and 

isolate” (TTI) strategy being established and enforced [9]. In Europe, 

Italy, Germany, Spain and the UK et al. have all adopted similar 

lockdown measures and NPIs. However, the UK, Spain and Italy have 

been more heavily impacted than Germany and France, which could 

be in part due to the adoption of delayed and less rigorous TTI 

strategies (TTIs). Here we can ask a further question: how can we 

assess the effects of introducing NPIs? To answer this, trend modelling 

of COVID-19 is crucial, as it can not only help us understand the 

history of the disease but more importantly, can inform future 

strategies for public health management and control, including crisis 

and risk mitigation. Due to inconsistent results derived from various 

models in the literature, it is imperative that new prediction models are 

investigated and validated [10]. 

Since the outbreak of COVID-19 in Dec. 2019, a number of models 

have been developed for predicting the spread of the disease, which 

has also been termed “SARS-CoV-2” and “2019-nCoV”. The 

Susceptible-Infectious-Recovered (SIR) and Susceptible-Exposed-

Infectious-Recovered (SEIR) [5][7][13][16] models are the most 

popular, followed by the Bayesian mechanistic model developed by 

researchers from Imperial College London [15], and the IHME model 

from the Institute for Health Metrics and Evaluation (IHME) [17]. 

Other models include: the exponential moving average model [6] for 

influence analysis of meteorological factors on the transmission and 

spread of COVID-19; an artificial intelligence (AI)-inspired method 

[11] for real-time forecasting of the size, length and end time of 

COVID-19 across China; symmetrical modelling [12] for COVID-19 

in mainland China, specifically in the Hubei province; the Auto 

Regressive Integrated Moving Average (ARIMA) based time series 

forecasting model [27] for analysing the COVID-19 outbreak and its 

trends in India; the Gaussian distribution model [28] for a transmission 

study which uses both forward prediction and backward inference, and 

the Gaussian distribution model for estimation of the death rate of 

COVID-19 in real-time [29]. In addition, many researchers have 

focussed on the evaluation of non-pharmacological interventions. For 

example, in [30], the effectiveness of travel restrictions and 

transmission control measures during the first 50 days of COVID-19 

in China, from 31/12/2019 to 19/02/2020, was quantitatively analysed 

and validated, and demonstrated that the control measures potentially 

averted hundreds of thousands of cases. In [31], the potential effects of 

social distancing interventions in Singapore was assessed. In [32], a 

parameterized SEIR model was used to assess the impact of different 

control measures and identify key factors. All these conventional 

models rely on various assumptions and have quite a few parameters, 

which often require different data inputs and focus mainly on one 

country or region. The predicted results are of high uncertainty and 

their generalisability to different countries and regions is limited, 

making it difficult to identify comparisons between trends, especially 

when trying to account for the impact of complicated and varying 

NPIs. In this study, we develop a novel model that uses the NDCC only 

to predict trends in the incidence of COVID-19. We aim to address the 

challenges identified above through our model, and in particular, to 

link the overall impact of NPIs, rather than any individual measures, 

to quantitative parametric models. 

II. THE PROPOSED METHOD 

An overview of the proposed model is illustrated in Figure 1, and a 

detailed description of the implementation and design details of our 

proposed model is presented as follows. 

1) Procedure 

For a given country or region, the NDCC over a certain period is 

taken as a time series for analysis, without additionally modelling the 

reproduction numbers (R0 or Rt), daily death rate and daily recovery 

rate, as done in conventional models. By assuming randomness in the 

data acquisition, including inaccuracies and cross-region-variations of 

the data, the NDCC time series can be seen as a stochastic process [14], 

which, in turn, can help estimate a number of model parameters. Due 

to the availability of limited and ambiguous observations, a high 

degree of uncertainty is associated with the accuracy of estimated 

trends. To simplify the process of data modelling, the singular spectral 

analysis (SSA) approach [15] is utilised here to extract the overall trend 

of the signal from this time series. As a nonparametric spectral 

estimation method, SSA combines different elements from classical 

time series analysis [18], and applies multivariate statistics to dynamic 

systems and signal processing. Thus, it has considerable potential for 

analysing complex random observations [15], and is exploited here for 

the first time. 

The SSA approach can decompose a time series into different 

components via the singular value decomposition (SVD) [16] of the 

lag-covariance matrix, rather than frequency domain analysis. For a 

given 1-D time series, NDCC data, 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑁] ∈ ℝ𝑁, can be 

embedded in the lagged columns of the matrix X, namely the trajectory 

matrix, by an embedding a window of size L and lagged factor K=N-

L+1. The matrix X has equal values in the anti-diagonals, and is a 

Hankel matrix. 

𝑋 = (

𝑥1 𝑥2
𝑥2 𝑥3

⋯ 𝑥𝐾
⋯ 𝑥𝐾+1

⋮ ⋮
𝑥𝐿 𝑥𝐿+1

⋱ ⋮
⋯ 𝑥𝑁

) (1) 
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Figure 1: The flowchart of SSA-GF 
 

 

By applying the SVD to the generated trajectory matrix, various 

singular components can be extracted in accordance with the derived 
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eigenvalues (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿)  and eigenvectors (𝑈1, 𝑈2, … , 𝑈𝐿) . 

These extracted singular components usually contain varying trends, 

oscillations of certain periodic components, and noise [15]. Therefore, 

the trajectory matrix X can be reconstructed as the sum of several 

components 𝑋𝑖|𝑖 ∈ [1, 𝑑] 

𝑋 = 𝑋1 + 𝑋2 +⋯+ 𝑋𝑑 (2) 

𝑋𝑖 = √𝜆𝑖𝑈𝑖𝑉𝑖
𝑇, 𝑉𝑖 =

𝑋𝑇𝑈𝑖

√𝜆𝑖
 (3) 

After eigen value grouping and diagonal averaging, a subset of  𝑋𝑖, 
containing the main trend component, is selected to project the 

matrices into a new 1-D signal 𝑥′ . This signal trend from the time 

series 𝑥 can be regarded as a deterministic signal rather than a random 

variable for further analysis. As a result, it can be applied as a model-

free tool for smoothing, noise reduction, trend extraction, periodicity 

detection, and seasonal adjustment [15].  

Taking the initial trend signal 𝑥′ extracted from the SSA as input, t 

is a time series vector with the same size of x, a mixture of Gaussian 

fitting is used to characterise sequential components within  𝑥′.  

𝑥′ = 𝑓(𝑡) = 𝛼 ∗ 𝑒
(−

(𝑡−𝜇)
𝜎2

2

)
 

(4) 

As there are a number of random variations that may affect the 

observed data, such as technical inadequacy, management 

inconsistency or political reasons, the reported NDCC is likely to 

comprise a stochastic component. According to the central limit 

theorem, the sum of these complicated factors is assume to satisfy a 

Gaussian distribution, subject to a sufficient number of observations 

being collected [20].  

Each of the extracted Gaussian components has three key 

parameters (Figure 2), the amplitude alpha (𝛼), the mean value mu (𝜇), 

and the standard deviation sigma (𝜎). Alpha indicates the height of the 

curve’s peak, which refers to the peaked daily confirmed cases. Mu is 

the central position of the curve, i.e. the date of the turning point when 

the NDCC starts to drop. The sigma links the width of the curve in 

days, i.e. the total number of days from the start-point to the endpoint 

of the pandemic, which can be approximated roughly as six times the 

sigma value in days [20]. For a Gaussian curve with a large alpha, its 

value may still be significant after three times the sigma value. In this 

case, we determine a later day, when the number of daily confirmed 

new cases is no more than a specified threshold, say 3.  

In contrast to conventional Gaussian mixture models, our proposed 

SSA-GF is constrained to use up to two Gaussians for extracting the 

Gaussian components within the SSA trend at any given time. If there 

is no NPI or with consistent NPIs, only one Gaussian component is 

required (Figure 2). If on a certain day, the NPIs are changed, either 

newly introduced or withdrawn, another new Gaussian component will 

be activated (Figure 3), taking effect together with the previous 

Gaussian component. For this reason, we limit the number of 

Gaussians to one or two at any given time. On the other hand, for the 

case of varying NPIs adopted at different times, the total number of 

Gaussian components spanning a long time period can exceed two, 

although only up to two are used to overlap with each other. 

For a Gaussian component being extracted before the end of the 

entire period, its parametric model can be used to estimate the values 

until the end of the period. If the estimated value deviates too far from 

the extracted SSA trend, a new Gaussian component is introduced. Eq. 

4 can then be extended to Eq. 5, where 𝑡1 and 𝑡2 are non-overlapped 

time series vectors, with an accumulated length equal to N.  

𝑥′ = 𝛼1 ∗ 𝑒
(−

(𝑡1−𝜇1)
𝜎1
2

2

)
+ 𝛼2 ∗ 𝑒

(−
(𝑡2−𝜇2)

𝜎2
2

2

)
 

(5) 

The entire process continues to cope with any newly fed 

observations to update the derived SSA trend and Gaussian 

components, in order to further refine the estimation and prediction for 

future dates.  

 
Figure 2: An example to show the NDCC of a pandemic 

following a Gaussian distribution with alpha=100, mu=50, 

sigma=10: NDCC (top) and cumulated NDCC (bottom), where the 

pandemic starts from day 20 for 6*sigma = 60 days until day 80, 30 

days before and after it reaches the peak in the NDCC curve, namely 

the date of the turning point day, when the NDCC starts to drop. 

 

 
Figure 3: An example to show the cumulated NDCC of the 

pandemic following a mixture of two Gaussian distributions: The 

pandemic starts from day 20 and lasts until day 100, and experiences 

three turning points on days 50, 70 and 80, corresponding to a decrease, 

increase and a further decrease in NDCC trends, as indicated by the 

NDCC curve in blue. 

III. COMPARATIVE RESULTS 

We validate our predictive model using retrospective data available 

from China and South Korea, as the pandemic in these two countries 

seems to have been successfully suppressed. Next, we estimate 

pandemic models for the UK, the USA, Italy and Spain in an attempt 

to predict their future COVID-19 incidence trends. 

1) Data sources 
The data for Italy, Spain, the UK, the USA and South Korea is 

collected from the Center for Systems Science and Engineering, Johns 

Hopkins University [2]. For cities and provinces in China (i.e. Beijing, 

Guangdong, Hubei, Shanghai and Zhejiang), we extracted our data 
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from statistics published by the Chinese authorities [3]. The data 

collection period, which spanned from January 22, 2020 to March 28, 

2020, was used to build and test our pandemic models, and the data 

which spanned from March 29, 2020 to April 11, 2020 was used for 

validation. As the daily data reported in [2] and [3] represents 

accumulated confirmed cases, we differentiate the entire data to obtain 

the time-series data of the NDCC.   

2) Validated prediction results: China 
Five cities and provinces were selected from China for analysis, 

including Beijing, Guangdong, Hubei (Wuhan is the capital city), 

Shanghai, and Zhejiang. Beijing was selected for its strong links with 

Wuhan, its large population and as the capital of China. The other three 

regions were selected as they are geographically close to and have 

strong economic links with Wuhan and Hubei.  
According to the predicted results, using the data available up to 

March 28, 2020 (Figure 4 and Table 1), different numbers of Gaussian 

components were extracted for the NDCC time series, for each of the 

five places. We selected the Gaussian component with the highest peak 

value (alpha) as the major component, and discarded all those whose 

peak values were less than 5% of the major peak. For Beijing, there 

were three noticeable Gaussian components. The first component had 

a mu of January 26, 2020 an alpha of 14.26 and a sigma value of 7.61, 

i.e. the corresponding Gaussian component peaked on January 26, 

2020 with a height of 14.26. The second component, which was the 

major one, had a mu of February 07, 2020, a sigma of 6.96 and an 

alpha value of 16.93, followed by the third component, which had a 

mu of March 23, 2020, a sigma value of 5.15 and an alpha of 14.39. 

For the two Gaussian components of Guangdong, the mu values of the 

major one and the following one were February 2 and March 21, 2020, 

respectively, with sigma values of 6.96 and 4.19, and alpha values of 

79.49 and 9.83, respectively. For Shanghai, the first component was 

the major one, and had a mu of February 1, 2020, a sigma of 6.92 and 

an alpha of 20.13. The second Gaussian component had a mu of March 

25, 2020 and an alpha of 13.96.  

For the Hubei province, there were three major Gaussian 

components, the corresponding mu values were February 05, February 

13 and February 26, 2020, respectively, with corresponding sigma 

values of 5.78, 2.73 and 5.27, and alpha values of 2681.44, 4462.00 

and 404.17, respectively. For the two Gaussian components in 

Zhejiang, the major one peaked on February 1, and the second on 

February 20, 2020. The corresponding sigma values were 5.65 and 

2.63, and alpha values of 84.94 and 6.19, respectively. 

In addition, using the models determined by the data until March 

28, 2020, the estimated dates for Beijing, Guangdong, Hubei, Shanghai 

and Zhejiang to have no new confirmed cases would be April 6, April 

3, March 12, April 7, and February 27, 2020, respectively, with 95% 

confidence intervals (Table 2). The total confirmed cases were 

estimated to be 627±71, 1,418±329, 67,919±5,544, 499±43 and 

1,195±80, as compared to the publicly released cases of 587, 1,514, 

67,781, 538 and 1205, respectively. For Hubei, this corresponded to 

around 0.11% of the population. 

3) Validated prediction results: South Korea 

There were two Gaussian components extracted for South Korea 

(Figure 5, Table 3), where the major one peaked on March 1 and the 

following one on March 20, 2020. The corresponding sigma values 

were 5.39 and 7.65 and the peak values (alpha) were 590.42 and 

103.08, respectively.  

The predicted date to have no new confirmed cases was April 10, 

2020 (Table 4). The total confirmed cases were predicted to be 

9,953±779, in comparison to the actual number of 10,450 cases, by 

April 10, 2020, which corresponded to ~0.02% of the population. 

4) Predictions for Italy, Spain and USA 

For all these three countries, only one Gaussian component was 

estimated when using the data available until March 28, 2020 (Figure 

5). The sigma values were computed as 9.77, 13.17 and 12.75, with 

Table 2. Extracted major Gaussian components from the NDCC curves of five places in China, from 22/01/20 to 28/03/20. 

Places Beijing Shanghai Guangdong Hubei Zhejiang 

Mu 1 26/01±0.0011 01/02±0.0067 02/02±0.0122 05/02±0.0030 01/02±0.0059 

Alpha 1 14.26±0.0002 20.13±0.0156 79.49±0.1173 2681.44±0.4840 84.94±0.0760 

Sigma 1 7.61±0.0028 6.92±0.0074 6.96±0.0133 5.78±0.0026 5.65±0.0064 

Mu 2 07/02±0.0411 24/03±0.0129 21/03±0.0007 13/02±0.0003 20/02±0.0004 

Alpha 2 16.93±0.0621 13.96±0.0120 9.83±0.0008 4462.00±4.7557 6.19±0.0007 

Sigma 2 6.96±0.045 4.36±0.0019 4.19±0.0007 2.73±0.0043 2.63±0.0005 

Mu 3 22/03±0.0017   26/02±0.0000  

Alpha 3 14.39±0.0022   404.17±0.0068  

Sigma 3 5.15±0.0017   5.27±0.0010  

 
Table 1. Estimated endpoint dates of the pandemic and the total number of cases for five places in 

China, including imported cases using the results in Table 1.  

Cities/Provinces Beijing Shanghai Guangdong Hubei Zhejiang 

Predicted cases by 28/03/20 584 436 1,402 67,919 1,195 

Real values by 28/03/20 573 485 1,467 67,801 1,251 

Error (%) 1.92 -10.1 -4.43 0.17 -4.48 

Estimated End date 06/04/20 07/04/20 03/04/20 12/03/20 27/02/20 

Estimated total cases 627±71 499±43 1,418±329 67,919±5544 1,195±80 

Real cases by the date 587 538 1,514 67,781 1,205 
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alpha values of 5,819.8, 24,228.8, and 132, 559.9, respectively (Table 

3). The dates to have no more than three daily confirmed cases for 

Italy, Spain and USA were estimated to be May 1, June 9 and June 18, 

all in 2020, respectively (Table 4). By these dates, the total number of 

confirmed cases are estimated to be 142,448±17,374, 800,034±12,843, 

4,235,679±22,579, respectively, which corresponds to around 0.23%, 

1.71% and 1.29% of the population in each of the three countries, 

respectively. The predicted numbers seem to be under-estimated for 

Italy yet over-estimated for Spain and the USA in comparison with the 

official data available until March 28, 2020. This is attributed to the 

varying NPIs adopted in these countries, as discussed below. 

For an NPI based intervention, 2-3 weeks (the incubation period) 

are normally required to evaluate its impact on infected individuals 

[16]. As a result, these NPIs have a lagged influence on the NDCC 

curves. Taking the USA, for example, the total deaths predicted on 

March 30, 2020 were 100k-240k [22], whereas, by using the data 

available until April 3, 2020, this figure was significantly reduced to 

40k-178k [23]. This is attributable to the strong NPIs that are known 

to have been introduced in late March 2020. Similarly, using the data 

available until April 1, 2020, the total number of cases was estimated 

to be around 720k [24] by early May 2020, a significant reduction from 

the over four million as previously estimated.  

Our model can also effectively determine such changes to 

quantitatively assess the effect of such NPIs at an early stage. By using 

the most recent data available for modelling, we present updated 

results in Table 5 for comparison. For Italy, using the data up to April 

12, 2020, a second wave of the infection was identified to peak on 

April 14, 2020, along with a smaller alpha and a much smaller sigma. 

As a result, the total number of estimated cases was increased from 

142.4k±17.4k to 175.8k±39.7k, in comparison to the actual number 

of 209,328 cases reported on May 2, 2020. This is attributed to an over-

optimistic judgement of the situation and the release of other control 

measures towards the end of March and the beginning of April. For 

Spain and the USA, the estimated total numbers of cases were 

significantly reduced. For Spain, the sigma value was reduced from 

13.17 to 9.10, and the new Gaussian component was estimated to be 

12 days earlier, on April 1, 2020 along with a significantly reduced 

total number of cases at 209,440±50,519 (in comparison to the actual 

reported cases of 221,447). This contrasts with the 800k cases 

previously predicted on March 28, 2020 (see Table 4). For the USA, 

the estimated sigma value was also reduced from 12.75 to 11.04, and 

the new Gaussian component was estimated to peak on April 11, 2020 

with an estimated alpha of 38,104±273. The total number of cases was 

estimated to be 1,051,890±1,144,278 by May 28, 2020, a significant 

reduction from over 4.23 million previously predicted (see Table 4).  

Finally, using more recent data available until June 4, 2020, our 

model has predicted the total number of cases in Italy, Spain and the 

USA will increase to 232,874±80,459 by July 10, 252,489±195,285 by 

July 1, and 2,122,164±295,085 by July 19, 2020, respectively. These 

higher figures are attributable to the recently announced loosening of 

NPIs.  

5) Predictions for the UK 
We apply our predictive model using data from three different dates 

to predict pandemic trends at a 95% confidence interval. When using 

the data available until March 28, 2020, the derived sigma reached a 

value of 23.51±3.77, indicating that without NPI measures, over 90% 

of the population could be infected by the middle of June, 2020. For 

the prediction using data until April 5, 2020, the sigma was found to 

be reduced to 11.34±0.17, where the peak value was estimated to be 

5,912.95±108.15 on April 12, 2020, with the total estimated number 

of cases: 168,072.03±48,053.93. Finally, the third prediction estimate 

was obtained using latest data available until May 16, 2020, where four 

Gaussian components were identified. The peak values were quite 

similar, which were in the range: 4,930±55 and 5,346±22, yet the 

sigma values were found to vary significantly, in the range: 

11.15±0.11 and 23.22±17.34. The most recent Gaussian component 

was estimated to peak on May 6, 2020 with a sigma of 8.07±0.97. 

Finally, using data available until June 4, 2020, the total number of 

cases are now predicted to reach 289,246±164,612 by July 01, 2020, 

Table 3 Extracted Gaussian components for South Korea, Italy, Spain, the USA and all of China, excluding Hubei, by 

28/03/20, with different start dates. For Italy the second peak was identified using data up to 12/04/20. 

Country Italy Spain USA South Korea China w/o Hubei 

Start date 10/02/20 12/02/20 16/02/20 09/02/20 22/01/20 

Mu 1 23/03±0.0011 13/04±0.0067 20/04±0.0122 01/03±0.0030 02/02±0.0025 

Alpha 1 5,819.79±129.03 24,228.77±90.8346 132,559.91±1,590.56 590.42±0.5568 723.1801±1.1995 

Sigma 1 9.77 ± 0.0031 13.17 ± 0.0157 12.75±0.2986 5.39±0.0059 7.60 ± 0.0028 

Mu 2 14/04±0.193   21/03±0.0040 24/03±0.0007 

Alpha 2 3938.32±236.00   103.08 ± 0.0317 96.10 ± 1.0034 

Sigma 2 2.82±0.178   7.65 ± 0.0097 5.86 ± 0.0005 

 

Table 4. Estimated endpoint dates of the pandemic and the total number of cases for Italy, Spain, the USA, South Korea, 

and China, excluding Hubei, using the results from Table 3.  

Country Italy Spain USA South Korea China w/o Hubei 

Estimated by 28/03 

/20 
91,254 75,168 129,022 9,583 13,782 

Real value by 28/03/20 92,472 73,233 122,069 9,450 13,877 

Error (%) -1.32 2.64 5.70 1.41 -0.68 

Estimated end dates 01/05/20 09/06/20 18/06/20 10/04/20 08/04/20 

Estimated total cases 142,448±17,374 800,034±12,843 4,235,679±22,579 9,952±683 14,351±802 

Real cases by the date 207,428 252,372 255,674 10,450 15,006 
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which is 72% more than the number previously estimated using data 

available until April 5, 2020.  

6) Comparing with other smoothing models 
In our SSA-GF model, SSA has played a key role in extracting the 

trend and removing noise, before fitting the Gaussian models. To 

further validate the efficacy of the SSA in our proposed model, we 

compare it with three baseline signal smoothing methods, including 

moving average, Gaussian smoothing and exponential smoothing. 

Again, we used data until March 28, 2020 for developing and testing 

our model, and both the modelling and prediction errors for the one 

week that followed, until April 4, 2020, are given in Table 6 and 

compared with the real values for evaluation.  

 

Table 6. Comparing SSA with three other signal smoothing methods 

for Italy, Spain, the USA and the UK, using data until 04/04/20. 

Country 
Real data 

Model 
Estimated 

by 28/03/20 
Error  
(%) 

Estimated 
by 04/04/20 

Error 
(%) 

USA 
 

121,463 
309,699 

Average 109,487 -10.31 164,012 -47.04% 

Gaussian 118,628 -2.82 238,541 -22.98% 

Exponent 92,656 -24.1 286,945 -7.35% 

SSA 129,022 5.70 404,483 30.61% 

Italy 
 

92,469 
124,632 

Average 87,975 -4.86 93,556 -24.93% 

Gaussian 90,257 -2.39 103,358 -17.07% 

Exponent 74,758 -19.16 107,740 -13.55% 

SSA 91,254 -1.32 128,081 2.77% 

Spain 
 

73,235 
126,168 

Average 67,879 -7.31 95,967 -23.94% 

Gaussian 69,774 -4.73 114,578 -9.19% 

Exponent 47,392 -35.29 110,424 -12.48% 

SSA 75,168 2.64 172,938 37.07% 

UK 
 

26,839 
57,198 

Average 23,202 -13.55 34,629 -39.46% 

Gaussian 25,490 -5.03 44,429 -22.32% 

Exponent 21,275 -20.73 53,996 -5.60% 

SSA 26,594 -0.91 61,906 8.23% 

 

The reason for selecting one week for comparison, was to minimize 

the effect of model drifting, due to the complicated NPIs adopted in 

the dynamic process. Note that the window size used for smoothing is 

5. In Table 6, negative and positive errors indicate an underestimate 

and overestimate, respectively. It is evident that SSA gives the lowest 

modelling error using the data until March 28, 2020, for Italy, Spain 

and the UK, which indicates the strong capability of SSA in extracting 

the trend signal of the NDCC, for fitting Gaussians. In terms of data 

prediction, all other models have underestimated numbers, which 

indicates their inferior ability in predicting unknown data in the future. 

The SSA method however, successfully predicted the large increase in 

the number of cases, subject to no NPIs being introduced. Whilst the 

predicted values seem to be over-estimated, these can be attributed to 

the strong NPIs adopted, as explained in detail in the next section.  

IV. DISCUSSION 

In this section, the impact of the NPIs are analysed, in accordance with 

the parameters of the Gaussian components derived from the NDCC 

curves for China, South Korea, Italy, Spain, the UK and the USA. 

1) Impact of NPIs in China 
For Beijing, Guangdong and Shanghai, we can clearly see that the 

major Gaussian components for all three places have the same shape, 

reflected by an almost equal sigma value of 6.92-6.96 (Table 1). This 

indicates that the same pandemic path was taken for the major 

Gaussian component in each place, which can be attributed to similar 

intervention measures being adopted in these regions.  

For Hubei and Zhejiang, the derived major Gaussian components were 

seen to have smaller sigma values for the major components, which 

can be attributed to early and rigorous NPIs and TTIs adopted in these 

two places. Their first components had similar sigma values, 5.78 and 

5.65, which indicated that the pandemic incidence paths in these two 

places were identical, although Zhejiang had a much smaller number 

of confirmed cases (Table 1). On January 20, 2020, the Health 

Authority of Zhejiang Province (HAZJ) declared five confirmed cases, 

since January 17, 2020, all of whom had a travel history to Wuhan [3]. 

Strict measures were then put in place, and the HAZJ initiated a first-

level response to major public health emergencies, on January 23, 

2020, which was also put in place in Guangdong on the same day. On 

January 24, 2020, Shanghai, Beijing and many other cities followed 

suit, whilst the Hubei Health Authority also upgraded their measures 

on the same day, from a second-level response announced earlier on 

January 21, 2020.  

Table 5. Estimated endpoint dates of the pandemic and the total number of cases for Italy, Spain, and the USA, using new data after 

introducing strong interventions in Spain and the USA, as reflected by the much reduced sigma values in comparison to those in Table 3.  

Country Italy Spain USA 

Data up to date 12/04/20 30/03/20 05/04/20 

Mu 
25/03±0.5574 

14/04±0.1928 
01/04±0.0090 11/04±0.16 

Alpha 
5,845.796±129.029 

3,938.317±236.003 
9,199.422±3.6870 38,103.866±272.968 

Sigma 
9.763±0.302 

2.821±0.178 
9.1016±0.0048 11.040±0.0724 

Estimated by the date 157,699 88,439 352,870 

Real value by the date 156,363 87,956 337,071 

Error (%) 0.85 0.55 4.69 

Estimated end dates 02/05/20 07/05/20 28/05/20 

Estimated total cases 175,837±39,733 209,440±50,519 1,051,890±1,144,278 

Real cases by the date 209,328 221,447 1,730,260 
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Figure 4: Time series of daily confirmed cases of COVID-19 from Beijing, Shanghai, Guangdong, Hubei, 
Zhejiang of China: (A-F) show results from the five places and all of China, and depict the confirmed cases, the 

extracted trend from the SSA, and the estimated trend from the extracted SSA-GF model. Shaded areas in blue and 

grey indicate the estimation errors of the trend from the SSA and the original observation, with a confidence level of 

95%. (G) shows the results of the SSA-GF model for the five places, where a nonlinear scale was applied to the data 
from Hubei to cope with its large data range, when plotting on one graph for comparison. 
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Figure 5: Daily confirmed cases of COVID-19 from Italy, Spain, the USA, South Korea, China (excluding Hubei) and all 

of China: (A-F) show results from the six places, and depict the confirmed cases, the extracted trend from the SSA, and the 

estimated trend from the extracted SSA-GF model. Shaded areas in blue and grey indicate the estimation errors of the trend from 
the SSA and the original observation with a confidence level of 95%. (G) shows the results of the SSA-GF model for the five 

places, where the logarithm scale was applied to cope with the different ranges of data, for comparison. 
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The smaller sigma values in Hubei and Zhejiang can be attributed 

to their early stage NPIs, which could effectively alter their existing 

pandemic paths. An example of this was in Hubei, when diagnosis 

rules were changed on February 12, 2020, following which the second 

Gaussian component with an extremely large alpha value centred on 

the next day, indicating a strong NPI. With over 10k new cases being 

confirmed, a very large peak was introduced, which led to a much 

smaller sigma value of 2.73 for the newly introduced Gaussian 

component. A similar yet smaller peak can be found in the pandemic 

path of Zhejiang on February 20, 2020 with a sigma value of 2.63. The 

comparatively smaller peak can be attributed to an accidental outbreak 

in a prison, and reflects the stricter measures in Zhejiang compared to 

other places.  

The alpha values, i.e. the heights of the Gaussian components, 

especially the major ones in places other than Hubei, were affected by 

varying degrees of links to Hubei, which included economic, political, 

educational or societal factors (Figure 6). On January 23, 2020, whilst 

Wuhan was in a state of lock-down, the cities of Guangdong, Zhejiang, 

Shanghai and Beijing, in descending order, were found have the 

highest number of confirmed cases, more so than any of the six 

provinces neighbouring Hubei. This indicates that Hubei had very 

strong links to Guangdong and Zhejiang (especially Wenzhou city), 

followed by Beijing and Shanghai. This is validated by the 

corresponding alpha values of 84.94, 79.49, 20.13 and 14.26. With 

effective NPIs and TTIs, the growth rate until February 1, 2020 was 

within 7.64 to 22.19 times in these five places, in comparison to 27.44-

84.40 in the six neighbouring provinces of Hubei. Even with a slightly 

higher alpha value, the pandemic path of Zhejiang peaked on January 

31, 2020, two days before Guangdong, which can be attributed to the 

earlier NPIs. In Shanghai, where similar early action was taken, the 

first pandemic also peaked on January 31, 2020, whilst in Beijing, the 

pandemic peaked on February 6, 2020, six days later than Zhejiang and 

Shanghai.  

The extremely high growth rates between January 23 and February 

1, 2020 (Figure 6) in some neighbouring provinces of Hubei can be 

attributed primarily to insufficient responses. These include the lack of 

timely monitoring and reporting of confirmed cases, or TTIs, 

especially in the rural areas of the Henan, Hunan and Jiangxi 

provinces. Therefore, the growth rates of the confirmed cases in the 

following week, i.e. from February 1 to February 8, 2020, would be 

more useful for accurately comparing the effects under the same NPIs 

and TTIs. During this week, the growth rates of the six neighbouring 

provinces were between 1.73 to 2.47, whilst the four other places, 

including Beijing, Guangdong, Shanghai and Zhejiang, had a very 

comparable growth rate of between 1.69 and 2.05, due to a similar 

degree of strong NPIs being adopted. On the other hand, a much higher 

growth rate of 3.79 was evident in Hubei, which indicates a more 

poorly controlled situation in Wuhan by February 8, 2020, compared 

to all other parts of China.   

It is worth noting that the peaks after the major one in these places 

can primarily be attributed to imported cases. For Hubei and Zhejiang, 

since there were no direct international flights during this period, there 

were no such second peaks in their pandemic paths by March 28, 2020. 

For Beijing, Guangdong and Shanghai, the daily imported cases 

peaked on March 23, March 22 and March 25, 2020 with alpha values 

of 14.39, 9.83 and 13.96, respectively (Table 1). These were strongly 

and positively correlated to the flow of international passengers in 

these three airports. In addition, the sigma values for the corresponding 

three Gaussian components were 5.15, 4.36 and 4.19, smaller than the 

main peaks, indicating that the in-situ NPIs and measures had 

effectively suppressed the impact of the imported cases.  

2) Impact of NPIs in South Korea 

By adopting early NPIs, including intensive testing, a local 

lockdown, and effective tracing and isolation, i.e. TTIs, the pandemic 

path of South Korea was found to be similar to that of Hubei and 

Zhejiang, where the major Gaussian component was centred on March 

1, 2020, with a sigma value of 5.39 (Table 3), in comparison to 5.78 in 

Hubei and 5.65 in Zhejiang (Table 1).  

South Korea also suffered from a second peak primarily due to 

  
A                                                       B                                                       C 

Figure 6: Confirmed cases of COVID-19 from Beijing, Shanghai, Zhejiang and Guangdong in comparison to Hubei and 

surrounding provinces of China on January 23 (A), February 1 (B), and February 8 (C), 2020. (A) shows the number of 
confirmed cases on January 23, 2020 when Wuhan was locked-down, where Guangdong, Zhejiang, Shanghai and Beijing had the most 

confirmed cases after Hubei. This indicates their closer links to Hubei and also their rapid response to identify cases when compared to 

the other six provinces neighbouring Hubei. With strong NPIs, the confirmed cases in (B) in these five places were between 7.64 

(Beijing) and 22.19 (Zhejiang) times those in (A), in comparison to 27.44-84.40 times of growth in the other six neighbouring 
provinces. Comparing (C) and (B), the growth rates in Guangdong, Beijing, Zhejiang and Shanghai were 2.05, 1.88, 1.75, and 1.69, 

respectively, in comparison to 1.73-2.47 in the other six neighbouring provinces. This indicates the efficacy of similar NPIs, and a 

higher growth rate of 3.79 in Hubei, due to a poorly uncontrolled situation by February 8, 2020. 
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imported cases imported from abroad, which corresponded to the mu 

of the Gaussian component on March 21, 2020 (Table 3). This was 

similar to the peaked or mu values in Beijing, Guangdong and 

Shanghai occurring on March 23, March 22 and March 25, 2020, 

respectively (Table 1). However, due to less strict measures and 

interventions compared to those adopted in the Chinese airports, the 

Gaussian component had a larger sigma value of 7.65, in comparison 

to 5.15, 4.19 and 4.36 for Beijing, Guangdong and Shanghai, 

respectively (Table 1). In addition, the alpha value of 103.1 for South 

Korea was much higher than those of the three Chinese cities which 

were 14.39, 9.83 and 13.96, respectively. This highlights the 

significant challenge being posed by imported cases for South Korea.   

3) Impact of NPIs in Italy, Spain and USA 

Using data available up to March 28, 2020, it is evident that the less 

restrictive NPIs in Italy, Spain and the USA, compared to China and 

South Korea, led to much larger sigma values of 9.77, 13.17 and 12.75, 

respectively. These compare with sigma values of 5.65 and 6.96 for 

China, and 5.39 for South Korea (Table 1, Table 3). The sigma value 

for Italy was ~75% less than that of of Spain and the USA, as it had 

relatively earlier and stricter NPIs. Hence, the predicted total 

confirmed cases in Italy was ~142.4k, far less than than those estimated 

for Spain, at ~800k and the USA, at 4.26 million, when using data 

available until March 28, 2020 (Table 4). As of March 29, 2020, over 

678k individuals were reported to have been infected worldwide, and 

more than 31k people died [2], resulting in an estimated death rate of 

around 4.57%. Even at 80% of this death rate, the potential death toll 

in the USA could be over 152k, which is consistent with the estimated 

figure of 100k-240k from the White House [22]. 

Both Spain and the USA have adopted strong NPIs since the middle 

of March, 2020. In the USA, these included a travel ban to European 

countries, Canada and Mexico, with effect from March 14, March 17 

and March 20, 2020 respectively, and a “do not travel” advisory taking 

effect on March 19, 2020. This was followed by the closure of non-

essential businesses in several key states such as New York and 

California, taking effect from March 21, 2020. In Spain, following the 

closure of bars, pubs and restaurants et al in Madrid, on March 13, 

2020, a state-alarm was issued on March 14, 2020, for 15 days, which 

was further extended to April 26, 2020. On March 28, 2020, all non-

essential activities were halted, along with the ceasing of non-essential 

business on March 30, 2020. 

Comparing the predicted results in Tables 4 and 5, it is evident that 

the introduction of strong NPIs has potently reduced 73.8% of cases in 

Spain and 75.2% of those in the USA. The ban on international travel 

alone seems to be inadequate, if it is not accompanied with effective 

tracing, self-isolation and large scale testing, as demonstrated for the 

cases of China and South Korea [8].  Ceasing of non-essential business 

also plays a key interventional role, since communal travels and 

gathering are significantly reduced [7]. Note that our predictions are 

based on the assumption that existing measures will be in place, which 

implies the results need to be adjusted if measures are loosened or 

tightened. The 24% increase in cases from the predicted values on 

March 28 and April 12, 2020, for the case of Italy, have shown the 

associated risks of terminating lockdowns in their early stages. 

4) Impact of NPIs in the UK 

The initial predicted picture of over 90% of the population being 

affected, based on the data available until March 28, 2020, is due to 

the lack of strict measures in the early stages of the pandemic, as 

reflected by the extremely large sigma value. The predicted figure is 

consistent with the prediction made in the ninth report by Imperial 

College London [16], where the peak day of deaths was estimated to 

be around June 15, 2020. Although the UK progressively introduced 

lockdown measures since the last week of March, the effects of these 

are usually observed after 1-2 weeks. Our model’s predictions, using 

data available until April 5, 2020, reflects the impact of these 

measures. Unsurprisingly, the sigma is dramatically reduced to 

11.34 ±0.17 , and the total number of predicted cases is also 

significantly reduced to 168,072±48,054.  

The lockdown in the UK has shown promising signs in successfully 

suppressing COVID-19. However, certain control measures have 

recently been lifted for England, Wales and Northern Ireland. The 

effect of loosening such measures has been assessed, by developing 

our predictive model using data available until May 18, 2020, and 

comparing the results predicted earlier using data available until May 

11 and April 5, 2020. The new estimate for the total number of cases 

is predicted to be 244,615.35±131,228.85 by July 14, 2020, which is 

45% more than the predicted cases for April 5, 2020 

(168,072.03±48,053.93). This forecast indicates a less than optimistic 

situation for the incidence of COVID-19 in the UK, on account of its 

recent loosening of control measures. 

V. SUMMARY AND OPEN QUESTIONS 

Mathematical simulation models have played a major role in the 

world’s response to COVID-19 [25]. Preliminary results from our 

proposed SSA-GF based intelligent computational model have clearly 

demonstrated the efficacy of exploiting SSA with mixture Gaussian 

fitting models to further enhance our understanding of the pandemic 

paths of COVID-19. The model has been validated using retrospective 

data available from China and South Korea, and partially validated by 

currently available data from Italy, Spain, USA and the UK. The three 

model parameters, sigma, mu and alpha, are linked to physical 

meanings and interpretations related to the COVID-19 pandemic. The 

sigma here is shown to directly determine the pandemic path, where a 

smaller sigma value tends to lead to a relatively smaller number of total 

confirmed cases. By introducing strict NPIs as early as possible, such 

as physical distancing and TTI measures, the spread of COVID-19 can 

be suppressed, as reflected by reduced sigma and alpha values. 

There are a number of limitations of our approach. Firstly, as the 

pandemic is a dynamic process, its incidence trends may continue to 

vary due to changes in adopted NPIs and other associated factors such 

as imported cases. To this end, regular dynamic modelling is essential, 

where updates can be linked to relevant NPIs and other factors 

[16][17]. Secondly, the efficacy of the model relies on the accuracy of 

reported data, specifically the NDCC, which can be under-estimated 

due to two reasons. One is lack of required knowledge of the disease 

at the beginning of the pandemic, and the other is lack of sufficient 

resources, including facilities, medical staff and funds required for 

testing and analysis. Consequently, the model parameters can be 

biased by these factors. Thirdly, an accurate model can only be 

estimated when the number of observations reach a certain threshold, 

usually after a period of two sigma days from the start date of the 

pandemic.  

Based on lessons learnt from this pilot study, we urge the adoption 

of essential and strict NPIs and TTIs to suppress the spread of COVID-

19, especially for high-risk countries and regions. Meanwhile, we 

continue to apply our model to assess the pandemic situation in other 

countries, with aims to inform control and risk management policies 

and practices. Furthermore, we are extending our predictive model to 

address a number of outstanding COVID-19 challenges, such as 

estimating the real number of infected cases from total number of 

confirmed cases and other information, determining optimal values of 

alpha and mu of the extracted Gaussian components, and applying our 

model to analyse the mortality rate and daily reproduction number of 

the disease. Current work is also exploring potentially complementary 

insights from social media analytics [33] to enhance the predictive and 
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interpretive capability of our proposed model.  

In the future, we plan to explore contextual integration of our 

intelligent computational model with deep machine learning [26, 34-

35], including generalized zero-shot learning [36] and probabilistic 

linguistic information based approaches [37], to optimize its predictive 

decision making capabilities. Finally, our model needs to be validated 

with additional up to date data from a range of countries for more 

comprehensive evaluation in relation to other state-of-the-art models. 

This could lead to the development of a standardised predictive model 

as a potential benchmark tool for decision makers to guide near real-

time COVID-19 control and risk management.  
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