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Consequences of representativeness bias on SHM-based decision-

making 

Judging the state of a bridge based on SHM observations is an inference process, 

which should be rationally carried out using a logical approach. However, we often 

observe that real-life decision makers depart from this ideal model of rationality, 

judge and decide using common sense, and privilege fast and frugal heuristics to 

rational analytic thinking. For instance, confusion between condition state and 

safety of a bridge is one of the most frequently observed examples in bridge 

management. The aim of this paper is to describe mathematically this observed 

biased judgement, a condition that is broadly described by Kahneman and 

Tversky’s representativeness heuristic. Particularly, we examine how this heuristic 

affects the interpretation of data, providing a deeper understanding of the 

differences between a method affected by cognitive biases and the classical rational 

approach. Based on the literature review, we identify three different models 

reproducing an individual behaviour distorted by representativeness. We apply 

these models to the case of a transportation manager who wrongly judges a 

particular bridge unsafe simply because deteriorated, regardless its actual residual 

load-carrying capacity. We demonstrate that application of any of the three 

heuristic judgment models correctly predicts that the manager will mistakenly 

judge the bridge as unsafe based on the observed condition state. While we are not 

suggesting in any way that representativeness should be used instead of rational 

logic, understanding how real-life managers actually behave is of paramount 

importance when setting a general policy for bridge maintenance. 

Keywords: heuristics; representativeness; Bayesian inference; decision-making; 

reliability; bridge management 

1. Introduction 

Structural health monitoring (SHM) is commonly recognized as a powerful tool that 

allows bridge managers to make decisions on maintenance, reconstruction and repair of 

their assets (Bolognani, et al., 2018). The logic of making decisions based on SHM is 

formally stated in Cappello, Zonta and Glisic (2016), under the assumption that the 

decision maker is an ideal rational agent, who judges using Bayes’ theorem (Bolstad, 



2010) and decides consistently with Neumann-Morgenstern’s Expected Utility Theory 

(EUT) (Neumann & Morgenstern, 1944). Not that surprisingly, it is often observed that 

real-life decision makers depart from this ideal model of rationality, judging and deciding 

using common sense and preferring fast and frugal heuristics to rational analytic thinking. 

Hence, if we wish to describe mathematically and to predict the choices of real-world 

bridge managers, we have to accept that their behaviour may not necessarily be fully 

rational. Biased judgement and decision-making have been widely reported and 

systematically investigated since the 1970s in the fields of cognitive sciences, social 

sciences and behavioural economics: key papers include the fundamental works by 

Kahneman and Tversky (Kahneman & Tversky, 1973; Kahneman & Tversky, 1979; 

Tversky & Kahneman, 1974; Tversky & Kahneman, 1983); Kahneman’s famous 

textbook (Gilovich, et al., 2002) is an extensive reference for those approaching the topic 

for the first time. 

As regards SHM-based bridge management, apparent irrational behaviours are 

reported in Zonta, Glisic and Adriaenssens (2014), Bolognani et al. (2017), Tonelli et al. 

(2018), Verzobio et al. (2019), and also suggested in Cappello et al. (2016). In particular, 

a typical example of cognitive bias frequently observed in bridge management is the 

confusion between condition state and safety of a bridge, as reported for instance in Zonta, 

Zandonini and Bortot (2007). Safety is about the capacity of a bridge to withstand the 

traffic loads and the other external actions without collapsing, while the condition state 

expresses the degree of deterioration of a bridge, or bridge element, with respect to its 

design state. The condition state is usually apprised through a combination of routing 

visual inspections, non-destructive evaluation and SHM. It is expressed in the form of a 

condition index that depends on the particular management system. For example, bridge 

management systems based on AASHTO (1997) Commonly Recognized (CoRe) 



Standard Element System, such as PONTIS, BRIDGIT and the APT-BMS reported in 

Zonta et al. (2007), classify the state of an element on a scale from 1 to 5, where 1 means 

‘as per design’ and 5 corresponds to the most severe observable deterioration state. On 

the contrary, the safety of a bridge is typically encoded in its probability of failure PF, 

reliability index , or safety factor , evaluated through formal structural analysis. 

Condition state and safety are obviously correlated (logically, the load-carrying 

capacity of a deteriorated bridge is equal or lower than that of the same bridge in 

undamaged condition) but are not the same. For example, an old bridge can be unsafe, 

regardless of its preservation state, simply because it was designed to an old code, which 

does not comply with the current load demand. As a counterexample, we may have the 

case of a bridge, severely deteriorated, but still with enough capacity to safely withstand 

all the external loads, either because of overdesign or simply because its deterioration 

does not affect its load-carrying capacity. In principle, rational bridge management should 

target the safety of the bridge stock, and therefore prioritize retrofit of unsafe bridges, 

regardless of their degree of deterioration. In practice, it is frequently observed that bridge 

managers tend to delay retrofit of substandard bridges which do not show sign of 

deterioration, while repair promptly deteriorated bridges as soon as the damage is 

observed, regardless of the actual residual load-carrying capacity. The biased rationale 

behind this apparent behaviour is that undamaged bridges ‘look’ safe, while damaged 

bridges ‘look’ unsafe, simply because, generally speaking, it is acknowledged that 

deterioration negatively affects safety. 

The aim of this paper is to describe mathematically this observed biased 

judgement, a condition that we will show, is broadly described by Kahneman and 

Tversky’s representativeness heuristic (Kahneman & Tversky, 1972). We clarify that it 

is not an objective of this paper to suggest that it is correct to use representativeness to 



judge the state of a bridge: we presume it is evident to any reader that we shall always 

judge using rational logic, rather than a heuristic method. Indeed, our goal here is to verify 

whether the irrational judgment sometimes observed in bridge managers could be 

described and possibly predicted using Kahneman and Tversky’s representativeness 

heuristic model. Being able to predict the behavior of an irrational manager is necessary 

when we set a general policy for bridge maintenance and we know, or suspect, that 

someone else who is going to enact the policy may behave irrationally. As an example, 

Gong and Frangopol (2020) discuss a case where modelling the irrational behavior of a 

manager is instrumental to an optimization process in bridge maintenance, and use 

Kahneman and Tversky’s Prospect theory (Kahneman & Tversky, 1979) to simulate the 

biased decision of bridge managers. The authors conclude that the optimal maintenance 

policy should change if we properly account for the heuristic behavior of the decision 

makers. 

To address our goal, we begin, in Section 2, with a review of the formal 

framework of rational decision based on SHM information. Section 3 discusses various 

classical judgmental heuristics and the consequential biases, while, in Section 4, various 

mathematical models of representativeness are analysed and formulated to appropriately 

reproduce the heuristic behaviour. In Section 5, a classical representativeness problem is 

discussed to assess these models. Finally, Section 6 presents an engineering application 

where the model is used to reproduce the biased evaluation about the safety of a bridge, 

based on the condition state apprised through visual inspections. Some concluding 

remarks are presented at the end of the paper. 

2. SHM-based decision-making rational framework 

We refer to the problem of optimal decision-making based on data provided by SHM. As 

shown in Figure 1, SHM-based decision-making is properly a two-step process, which 



includes the judgement of the state of the structure h based on the observations y, and the 

decision of the optimal action aopt based on the uncertain knowledge of the state. Within 

the scope of this paper, we define observation to be any information acquired on site 

which is suitable to infer the state of the structure. Sources of observation, in the broad 

sense, could be visual inspections, site tests, sensors temporarily or permanently installed 

on the structure. 

[Figure 1. The rational process of SHM-based decision-making] 

Assume that the safety state of the bridge is described by one of n mutually 

exclusive and exhaustive state hypothesis ℋ = {h1,h2,…,hj, … , hn} (e.g.: h1 = ’safe’, …, 

hn = ’failure’). Further assume that observing the bridge, or bridge element, either through 

visual inspection or SHM, ultimately consists of assessing its condition out of a number 

of m possible classes  C1,C2,…,Ci,…,Cm which express its degree of damage or 

deterioration (e.g.: C1 = ’not damaged’, C2 = ’moderately damaged’, C3 = ’severely 

damaged’, …). Therefore, the value of an observation y
i
 is one of the possible condition 

classes: y
i
∈{C1,C2,C3,C4,C5}. Multiple independent observations on the same bridge 

may occur because of repeated inspections by different inspectors, or redundant 

independent measurements by the monitoring system. We indicate with vector y the full 

set of observations y = { y
1
,y

2
,…,y

k
…,y

N
}. The likelihood of condition Ci for a bridge, or 

bridge element, in state hj is then encoded in the probabilistic distribution P(Ci|hj). 

If we restrict the problem to a single-observation case, the first step of the process 

consists of judging the state of a structure hj based on the i-th class observed Ci. In the 

presence of uncertainty, the state of the structure after observing the class Ci is 

probabilistically described by the posterior probability P(hj|Ci), and the inference process 



followed by a rational agent is mathematically developed in Bayes’ rule (Bolstad, 2010; 

Sivia & Skilling, 2006): 

P(hj|Ci) = 
P(Ci|hj) P(hj)

P(Ci)
, (1) 

where P(hj|Ci) is the posterior knowledge of the structural state and represents the best 

estimation after the acquisition of SHM observation. It depends on the likelihood P(Ci|hj) 

and the prior knowledge P(hj), which is our estimate of the structural state hj before the 

acquisition of the observation. P(Ci) is simply a normalization constant, referred to as 

evidence, calculated as: 

P(Ci) = ∑ P(Ci|hj) P(hj)

𝑛

𝑗=1

. (2) 

The second step of the process starts after the assessment of the posterior 

probability of the structure, and concerns choosing the ‘best’ action. The decision maker 

can choose between a set of M alternative actions a1, a2, …, aM (e.g.: a1 = ‘do nothing’, 

a2 = ‘limit traffic’, a3 = ‘close the bridge to traffic’, …). Taking an action produces 

measurable consequences (e.g.: a monetary gain or loss, a temporary downtime of the 

structure, in some case causalities) and the consequences of an action can be 

mathematically described by several parameters (e.g.: the amount of money lost, the 

number of days of downtime, the number of casualties), encoded in an outcome vector z. 

The outcome z of an action depends on the state of the structure; thus, it is a function of 

both action a and state hj, i.e. z(a, hj). When the state is certain the consequence of an 

action is deterministically known; therefore, the only uncertainty in the decision process 

is the state of the structure hj. The rational decision-maker ranks actions based on the 

consequences z through a utility function U(z), which can vary among different 



individuals with different behaviors. According to the different risk appetite of the 

decision-maker, the utility function can be risk neutral, risk adverse or risk seeking. 

Expected utility theory (EUT) describes the analysis of decision-making under risk and 

is considered as a normative model of rational choice (Parmigiani & Inoue, 2009). EUT 

was introduced by von Neumann and Morgenstern (1944) and later developed in the form 

that we currently know by Raiffa and Schlaifer (1961). Its axioms state that the decision-

maker ranks their preferences based on the expected utility u, defined as: 

u(a) = Ehj
[U (z(a, hj))] , (3) 

where Ehj
 is the expected value operator of the random variable hj, while U indicates the 

utility function. The latter is very important and represents the evaluation of a decision-

maker’s beliefs about the outcome z. The decision-maker then chooses the action that 

maximizes the expected utility. 

In summary, the rational way to decide based on observation in the presence of 

uncertainties goes through a judgment based on Bayes’ theorem and a proper decision 

based on EUT. 

3. Heuristics and biases 

While an ideal rational decision maker judges and decides using Bayes’ theorem and 

EUT, it is frequently observed that most people in everyday life favor heuristic 

approaches (Gilovich, Griffin & Kahneman, 2002; Kahneman & Tversky, 1979) to this 

rational framework in order to judge or make decisions. 

The concept of heuristic has been defined in different ways in the scientific 

literature, depending on the discipline and the scope of application, see for instance Tonge 

(1960), Feigenbaum and Feldman (1963), Romanycia and Pelletier (1985), Gigerenzer 



and Gaissmaier (2011). For the purpose of this paper, we define a heuristic, together with 

Feigenbaum and Feldman (1963), as any approach to judgement or decision based on 

rules of thumb, logical simplifications or shortcuts rather that the proper rational process, 

as described in Section 2. Possibly, the most important contribution to the formal 

characterization of the heuristic behavior is the work that Kahneman and Tversky carried 

out in the early 1970s (Kahneman & Tversky, 1972; Kahneman & Tversky, 1973; 

Tversky & Kahneman, 1974), which had a significant impact to the understanding and 

description of the human behavior and represents the basis of a discipline we currently 

refer to as behavioral economics. They developed the so-called heuristics and biases 

approach, challenging the dominance of strictly rational models. The main innovation 

lays in the analysis of the descriptive adequacy of ideal models of judgment and in the 

proposal of a cognitive alternative that explained human error without invoking motivated 

irrationality. Evidence displays that people’s assessments of likelihood and risk do not 

conform to the laws of probability. They offer a list of frequently observed heuristics 

(Tversky & Kahneman, 1974), which include: 

(1) Representativeness. Events are ranked according to their representativeness; 

people consistently judge the more representative event to be the more likely, 

whether it is or not (Kahneman & Tversky, 1972). Representativeness is not 

affected by several factors that affect rational judgments instead and this leads to 

relevant biases, such as: insensitivity to prior probability, insensitivity to sample 

size, misconceptions of chance, insensitivity to predictability, illusion of validity 

and misconceptions of regression (Tversky & Kahneman, 1974).  

(2) Availability. An individual evaluates the frequency of classes or the probability 

of events by availability, i.e. by the ease with which relevant instances come to 

mind (Kahneman & Tversky, 1973; Tversky & Kahneman, 1974). Thus, a person 



could estimate the numerosity of a class, the likelihood of an event or the 

frequency of co-occurrences by assessing the ease with which the relevant mental 

operation of retrieval, construction or association can be conducted. It leads to 

predictable biases, e.g.: biases due to the retrievability of instances, biases due to 

the effectiveness of a search set, biases of imaginability and biases in the judgment 

of the frequency with which two events co-occur, i.e. illusory correlation. 

(3) Adjustment or anchoring. People make estimates by starting from an initial value 

(which may be suggested by the formulation of the problem, or it may be the 

results of a partial computation), that is adjusted to yield the definitive answer. 

However, adjustments are typically insufficient, that is, different starting points 

yield different estimates, which are biased toward the initial values, and this 

phenomenon is called anchoring (Tversky & Kahneman, 1974). 

Depending on their nature, a heuristic can affect the process outlined in Section 2 

in the inference step, in the decision step, or in both cases. The rest of the paper will focus 

on the representativeness, as the heuristic that better reproduces the irrational behaviour 

introduced in Section 1. This specific heuristic affects the inference step of the process, 

i.e. the judgment.  

4. The representativeness heuristic 

Representativeness is commonly intended as the level of how well or how accurately 

something reflects upon a sample. A judgment is biased by the representativeness 

heuristic when the ordering of hypotheses hj by subjective perceived probabilities 

coincides with their ordering by representativeness, rather than by Bayes’ posterior 

probability (Kahneman & Tversky, 1972). In other words, a hypothesis, or event A, is 

judged more probable than a hypothesis, or event B, whenever A appears more 



representative than B. Citing Kahneman and Tversky (1972), an individual who follows 

the representativeness heuristic “evaluates the probability of an uncertain event, or a 

sample, by the degree to which it is: (i) similar in essential properties to its parent 

population; and (ii) reflects the salient features of the process by which it is generated”. 

This criterion for assessment does not coincide with the Bayesian posterior assessment 

and so results in a bias. 

The literature illustrates numerous cases of behavioral experiments where 

representativeness bias is observed. For example, in a classic experiment reported in 

Tversky and Kahneman (1974), the interviewee is asked to assess the probability of 

Steve’s employment from a list of possibilities (e.g. farmer, salesman, airline pilot, 

librarian or physician), simply based on this description: “Steve is very shy and 

withdrawn, invariably helpful, but with little interest in people, or in the world of reality. 

A meek and tidy soul, he has a need for order and structure, and a passion for detail.” It 

is observed that most interviewees tend to judge highly likely that Steve is a librarian, 

simply because the description provided is representative of the stereotype of a librarian, 

and with complete disregard for the proportion of the population that are librarians 

compared with the other employments. This example also clarifies that to be 

representative an uncertain event should not only be similar to its parent population, but 

it should also reflect the properties of the uncertain process by which it is generated. This 

agreement on the representativeness formulation is in line with the definition in Tversky 

and Kahneman (1983); they write that: “an attribute is representative of a class if it is 

very diagnostic; that is, the relative frequency of this attribute is much higher in that class 

than in the relevant reference class.” 

While representativeness heuristic has been widely analysed from a descriptive 

point of view, in the literature there are only few models attempting to describe this 



heuristic from a mathematical perspective, see for instance Edward (1968), Grether 

(1980; 1992), Gigerenzer (1995), Barberis, Shleifer and Vishny (1998), Tenenbaum and 

Griffiths (2001), Bordalo, Coffman, Gennaioli and Shleifer (2016). While introducing 

these models, we have two key research questions to explore the definition of 

representativeness and its application, which are: 

(1) What is the mathematical formulation of representativeness proposed by different 

authors? 

(2) To what extent and how does representativeness bias the final judgment in 

comparison to Bayes’ rule? 

4.1 Formulation of Representativeness 

In the literature mentioned above there is a general agreement whereby the degree of 

representativeness of an observable class Ci for a reference hypothesis hj is in some way 

related to the odds of observable Ci, which is the ratio between its likelihood P(Ci|hj) and 

the likelihood of its negation P(Ci|−hj), where −hj denotes the set of alternative 

hypotheses. 

Edward (1968), Gigerenzer (1995) and Bordalo et al. (2016) all define the quantity 

representativeness R(Ci, hj) of a class Ci for the reference hypothesis hj, exactly as the 

odds of class Ci:  

R(Ci, hj) =
P(Ci|hj) 

P(Ci|−hj) 
. (4) 

Therefore, they assume that a class Ci is representative for a hypothesis hj, relative to an 

alternative hypothesis −hj, if it scores high on the likelihood ratio described by Equation 

(4).  



Similarly, Tenenbaum and Griffiths (2001) define representativeness with the 

likelihood ratio described by Equation (4), but using a logarithm scale, apparently to 

provide a more natural measure of how good a class Ci is in representing a hypothesis hj: 

R(Ci, hj) =  log
P(Ci|hj) 

P(Ci|−hj) 
. (5) 

Grether (1980; 1992) agrees on Equation (5) for a problem with two possible hypotheses. 

In the case of more alternative hypotheses, Tenenbaum and Griffiths (2001) suggest the 

following expression: 

R(Ci, hj) =  log
P(Ci|hj) 

∑ P(Ci|hk) P(hk|−hj)hk, k≠j 
 
, (6) 

where P(hk|−hj) is the prior probability of the k-th hypothesis, given that the reference 

hypothesis hj is not the true explanation of Ci: 0 when j = k and P(hk)/(1−P(hj)) when j ≠ 

k. Equation (6) effectively says that Ci is representative of hj to the extent that its 

likelihood under hj exceeds its average likelihood under alternative hypotheses.  

4.2 Representativeness in judgment 

Before revising the mathematical models proposed to reproduce the representativeness 

bias in judgment, recall that the rational way to judge the probability of a hypothesis hj 

based on an observation class Ci is to calculate its posterior probability P(hj|Ci) in 

Bayesian sense, using Equation (1). When judging using the representativeness heuristic, 

an individual ranks the hypothesis hj by a subjective perceived probability which departs 

from standard Bayesian posterior. In analogy with Bordalo et al. (2016), we define this 

subjective perceived probability as distorted posterior P(hj|Ci)
st. While all authors agree 



on that representativeness distorts judgment, there is not a general agreement on the 

cognitive mechanism whereby representativeness affects the distorted posterior 

probability, i.e. how the standard Bayes’ rule, which reflects the judgment of a rational 

thinker, must be adjusted to consider representativeness instead. Most authors do not 

provide an explicit expression for the distorted posterior, but understand the vanilla 

statement that ordering hypotheses by perceived probability follows representativeness 

rather than Bayesian posterior. From a strict mathematical standpoint, it is possible to 

define different models of distorted posterior that satisfy this statement. A simple 

approach would be through assuming that (i) representativeness is used instead of 

likelihood and (ii) the prior information is neglected. In this case, judgment by 

representativeness should be consistent with the following expression: 

P(hj|Ci)
st

=  
R(Ci, hj)

R(Ci, hj) + R(Ci, − hj)
. (7) 

Some of the authors introduced above provide more refined models. Bordalo et 

al. (2016) suggest that representativeness R(Ci, hj) distorts Bayesian likelihood P(Ci, hj) 

as follows: 

P(Ci|hj)
st

 = P(Ci|hj)∙(R(Ci, hj))
θ
, (8) 

where θ ≥ 0 is a subjective parameter that describes how heavily representativeness 

biases the likelihood. According to the same authors, this parameter should be calibrated 

with cognitive tests and could vary considerably among different people. A biased 

posterior is therefore inferred, using this distorted likelihood into Bayes’ theorem: 

P(hj|Ci)
st

  = 
P(Ci|hj)

st
 P(hj)

P(Ci)
st , (9) 



where P(Ci)
st

 is the distorted evidence, calculated as: 

P(Ci)
st

 = ∑ P(Ci|hj)
st

 P(hj)

𝑛

𝑗=1

. (10) 

It is easily noticed that Equation (9) is exactly Bayes’ theorem when θ = 0. 

A different approach is provided by Grether (1980; 1992). The author suggests a 

model that provides the final judgment of hj, by considering the representativeness 

heuristic: 

log O(hj|Ci) = 𝛼 + 𝛽1∙R(Ci, hj) + 𝛽2∙logO(hj) , (11) 

where O(hj|Ci) is the posterior odds, R(Ci, hj) is the representativeness calculated as in 

Equation (5), O(hj) is the prior odds, while 𝛼, 𝛽1 and 𝛽2 are subjective parameters that 

must be calibrated. Thus, the interpretation of Kahneman and Tversky’s 

representativeness heuristic suggested by the author is that individuals place greater 

weight on the likelihood ratio than on the prior odds. Consequently, the author proposed 

β
1
 > β

2
≥ 0 for this inference model, in contrast with α = 0, β

1
 = β

2
 > 0 of Bayes’ rule. 

With the aim to compare these last two judgement models, we express Bordalo et 

al.’s model, stated in Equation (8), in its logarithmic posterior odds: 

log O(hj|Ci) = (2𝜃 + 1)∙R(Ci, hj) + logO(hj) , (12) 

where R(Ci, hj) is, in the same way as in Equation (11), the representativeness calculated 

as in Equation (5). It is possible to notice that this final equation agrees with the one 

proposed by Grether, i.e. Equation (11), if it is assumed that α = 0, β1 = (2θ + 1) and β2 = 

1. This means that the two models are based on the same mathematical formulation, they 

only differ in the representation of the subjective parameters. 



In summary, while there is a general agreement on the definition and the 

mathematical formulation of the representativeness, different inference models are 

proposed or understood to describe the biased judgment. Moreover, some of these models 

account for a number of subjective parameters that have to be properly calibrated on the 

individual who judges.  

5. A classical representativeness problem 

Before developing the bridge engineering problem that is motivating this research, in this 

section we discuss how the models introduced in Section 4 apply to a classical 

representativeness problem, reported in different forms in Tversky and Kahneman 

(1974), Griffin and Tversky (1992), Tenenbaum and Griffiths (2001), Griffiths and 

Tenenbaum (2007). 

Consider two coin-flip sequences, C1 = HHHHH and C2 = HTTHT, where H is for 

Head and T for Tail. To start, we would like to clarify the difference between 

representativeness and likelihood. The first question we ask ourselves is: which of the 

two sequences is more representative for a fair coin? We presume that most of the readers 

would answer sequence C2. Actually, we expect that a fair coin would generally produce 

a random sequence of H and T, as in C2, while a sequence of H only, as in C1, looks 

intuitively peculiar from a genuinely fair coin. Intuitively, we conclude that the 

representativeness of sequence C2 is greater than the representativeness of sequence C1 

under the assumption of fair coin hFC. In formula: 

R(C2, hFC) > R(C1, hFC). (13) 

However, which of the two sequences is more likely to occur for a fair coin? In this case 

we can simply calculate the likelihood of a sequence, i.e. the probability of obtaining that 

particular sequence Ci conditional to the assumption of fair coin P(C𝑖 |hFC
), by computing 



the possible combinations. If the coin is fair, for each toss there is equal probability of p 

= 1/2 of H or T. Therefore, the particular sequence C2, which is the result of 5-coin tosses, 

has the following likelihood:  

P(C2=HTTHT|h
FC

) = ( 
1

2
 )

5

 = 0.0313. (14) 

Notice now that even sequence C1 is a possible output of 5-coin tosses, and therefore its 

likelihood is exactly the same as C2: 

P(C1=HHHHH|h
FC

) = ( 
1

2
 )

5

 = 0.0313. (15) 

Let’s now ask to the layman the following question: a coin has produced the 

sequence C1; based on this sequence, do you believe this coin is more likely to be fair or 

have a prevalence of H? Most of the interviewees, and possibly even the reader, answer 

that the coin is most likely unfair, i.e. with a prevalence of H. Let’s tackle the problem in 

logical terms using Bayes’ theorem. As regards the coin with a prevalence of H, we refer 

to a coin that mostly comes up heads with the term hMH. In essence, the following 

posterior probability has to be calculated: 

P(hFC|C1) = 
P(C1|hFC) P(hFC)

P(C1|hFC) P(hFC) + P(C1|hMH) P(hMH)
. (16) 

The condition whereby it is more probable that the coin is fair is that the posterior 

probability of hFC is greater than 0.5, or: 

P(hFC)

P(hMH)
 > 

P(C1|hMH)

P(C1|hFC)
, (17) 

which means that the ratio between the priors has to be greater than the ratio between the 



opposite likelihoods. If p is the probability of occurrence of H in a toss, n the number of 

coin tosses and k the number of H achieved in a sequence Ci, the likelihood of this 

sequence can be calculated as follows: 

P(C𝑖 | hFC) = pk (1 - p)
n - k

. (18) 

In the case of a fair coin we have already observed that p = 1/2 and therefore P(C1| hFC) 

= P(C2| hFC) = 0.0313. On the other hand, coin hMH is the one that mostly comes up heads, 

and therefore, since C1 is a sequence with a prevalence of H, the only thing that it is 

possible to conclude is that: 

P(C1| hMH) > P(C1| hFC). (19) 

Therefore, the only logical conclusion we can draw is that the ratio between the two 

likelihood, from Equation (17), is strictly greater than 1. In any case, it states nothing 

about the posterior because it depends also on the prior rate, i.e. how likely is a priori, 

before observing the sequence, that the coin is fair. There is always a value for the prior 

P(hFC) whereby it is more probable that, given the sequence C1, the coin is fair: 

P(hFC| C1) > P(hMH| C1). (20) 

In conclusion, from a strict logical standpoint, the coin could be fair or nor fair depending 

on the prior information. 

Let’s make a numerical example: we assume we have a fair coin hFC, and a coin 

that mostly comes up heads hMH, assuming the probability of occurrence of H with this 

coin is p = 0.85. For concreteness, we choose the following prior probabilities for the two 

hypotheses: P(hFC) = 0.95 and P(hMH) = 0.05. First of all, all the likelihood and the 

representativeness values have to be calculated. Using respectively Equation (18) and 

Equation (4), we obtain: 



P(C1|h
FC

)  = 0.0313,                 P(C2|h
FC

)  = 0.0313. (21a,b) 

P(C1|h
MH

)  = 0.4437,                P(C2|h
MH

)  = 0.0024. (22a,b) 

R(C1|h
FC

)  = 0.07,                    R(C2|h
FC

)  = 13.04. (23a,b) 

R(C1|h
MH

)  = 14.18,                 R(C2|h
MH

)  = 0.08. (24a,b) 

These results confirm what we were presuming and clearly show the difference between 

representativeness and likelihood: while sequences HTTHT and HHHHH are equally 

likely for a fair coin, i.e. P(C1|hFC) = P(C2|hFC), the representativeness model shows that 

sequence HTTHT is clearly more representative for a fair coin than sequence HHHHH, 

i.e. R(C2, hFC) > R(C1, hFC). This outcome reflects the effect of such heuristic bias, 

because most people judge the sequence HTTHT to be more likely for a fair coin than 

sequence HHHHH, which does not appear random, even if the two sequences have the 

same probability of occurrence. The second column of Table 1 presents the achieved 

results. 

Let’s now calculate the Bayesian posterior probabilities that, given sequence C1, 

the coin is fair, or it is the one that mostly comes up heads. Using Bayes’ theorem, as in 

Equation (16), we achieve: 

P(hFC|C1)
 
 = 57.27%  >  P(hMH|C1)

 
= 42.73%. (25) 

Notice that, with the prior assumptions made, the rational conclusion is that the coin is 

most probably fair, even if it has yielded a sequence of 5 heads in a row. This result may 

sound counterintuitive to the layman, unfamiliar with formal logic, who tends to judge 

heuristically, driven by the representativeness of the observed result.  



It is possible to reproduce this heuristic behaviour using, for instance, the vanilla 

inference model of Equation (7), which indeed yields the following distorted posterior 

judgments: 

P(hFC|C1)
𝑠𝑡 

 = 0.49%  <  P(hMH|C1)
𝑠𝑡 

= 99.51%, (26) 

which is to say that to the individual biased by representativeness, the coin looks most 

likely the one that mostly comes up heads. We find a similar result using the other 

inference model of Bordalo et al., as in Equation (9): using a subjective parameter θ = 

0.8, which correspond to a high level of representativeness, we obtain: 

P(hFC|C1)
𝑠𝑡 

 = 1.88%  <  P(hMH|C1)
𝑠𝑡 

= 98.12%, (27) 

which again shows that a sequence of five heads heuristically (but mistakenly) suggests 

that the coin is the one that mostly comes up heads. Clearly, in this case the perceived 

posterior probability depends on the parameter θ, as will be discussed in detail in Section 

6.3.  

Table 1 presents the outcomes from all the inference models reviewed in Section 

4, including Grether’s, i.e. Equation (11), evaluated with α = 0, β1 = 0.8 and β2 = 0.2, i.e. 

for an irrational manager with a high level of representativeness. It is evident that all the 

heuristic inference models, if evaluated using subjective parameters which correspond to 

a high level of representativeness, agree on judging most likely that the coin is the one 

that mostly comes up heads hMH, in contrast to the rational conclusion inferred through 

Bayes’ theorem.  

Table 1. Achieved results for each model. 

In conclusion, with this numerical example we have clarified the substantial 

difference between likelihood and representativeness. We have also shown how the 



representativeness bias may alter the posterior judgment to the point of suggesting 

conclusions opposite to those consistent with rational inference. 

6. Case study 

In this section we wish to verify whether the judgment models reviewed in Section 4 are 

suitable to describe the typical confusion between condition state and safety of a bridge 

frequently observed in bridge management. As described in Section 1, bridge managers 

often tend to delay retrofit of substandard bridges which do not show sign of deterioration, 

while repair promptly deteriorated bridges as soon as the damage is observed, regardless 

of their actual residual load-carrying capacity. We have already observed that the biased 

rationale behind this apparent behaviour is that undamaged bridges ‘look’ safe, while 

damaged bridges ‘look’ unsafe, simply because, generally speaking, we know that 

deterioration negatively affects safety.  

We discuss this bias with reference to one of the case studies reported in Zonta et 

al. (2007), i.e. the SP65 bridge on the Maso River, which is operated by the Autonomous 

Province of Trento (APT). The bridge, shown in Figure 2(a), is a common type of bridge 

in the APT stock. The structure has two simple spans of 19.0 m and 22.0 m, and a total 

length of 43.0 m. Each span has four girders spaced at 2.1 m, 2.4 m and 2.1 m respectively. 

The cross-section of the girders is shown in Figure 2(b). The deck slab consists of 22–27 

cm of reinforced concrete and a 15 cm surface layer of asphalt. The roadway width is 7 

m with 0.70 m pedestrian pavements and hand railing on each side. 

[Figure 2. SP65 bridge on Maso River: (a) overview; (b) plan view, elevation and cross 

section of the deck (Zonta, et al., 2007).] 

Managing its bridges, APT uses an inventory model and condition state appraisal 

system consistent with the AASHTO (1997) Commonly Recognized (CoRe) Standard 



Element System. The CoRe element standard has been adopted since 1995 by FHWA and 

AASHTO as broadly accepted way to represent bridges condition on a uniform scale. The 

CoRe element standard inventories a bridge into a set of Standard Elements (SE), each 

specified in term of quantity (surface, length or number). For example, the bridge deck 

of the SP65 bridge includes the following SE: slab, beam, pavement, sidewalk, guard rail 

and railing. 

The state of deterioration of each element is appraised through routine visual 

inspections. The inspector classifies the state of deterioration of an element choosing 

among five possible deterioration levels, called Condition States (CS), specified, for each 

element type, in the inspector manual. Table 2 reports, as an example, the definition of 

the five CS of a concrete slab, or CoRe standard element #12, as reported in APT 

inspection manual available from the website of the APT (2018). As a general rule, 

Condition State 1 (CS1) always means ‘as per design’, or ‘no deterioration’, while CS5 

corresponds to the most severe observable deterioration state. 

While the deterioration condition is apprised through visual inspection, its safety 

level is evaluated separately, through a five-step formal assessment procedure (Zonta, et 

al., 2007), whose ultimate objective is to calculate the bridge reliability index . We have 

already observed in the Introduction that condition state and safety are obviously 

correlated, but not the same thing, and that we can well have a severely deteriorated bridge 

which is perfectly safe or an intact bridge which is not safe. We have also noticed that a 

rational bridge manager should address safety above all, while in practice the intervention 

priority is often biased by the apparent state of deterioration of the bridges, regardless 

their actual residual load-carrying capacity. 

Table 2. SE #12 concrete slab: state description for each Condition State (CS). 



In this section, we want to numerically analyse and describe the following case: 

• As far as its safety is considered, the bridge could be in two possible states: SAFE 

(hS) or FAIL (hF). SAFE means that, following to a formal safety assessment 

carried out by an expert structural engineer, the bridge load-carrying capacity is 

judged sufficient for the bridge to operate without restrictions. On the other hand, 

FAIL means that the bridge is not found to have sufficient load-carrying capacity 

and should be closed to traffic. 

• Based on a frequentist analysis of the load-carrying capacity formally assessed for 

similar bridges of the same type and age, it is estimated that only one bridge out 

of one thousand is found to be in the FAIL state. We formalize this information 

assuming prior base rates P(hF) = 0.001 for the state hypothesis FAIL, and 

therefore P(hS) = 0.999 for the state hypothesis SAFE. 

• Based on the last visual inspection, the bridge exhibits no or minimal 

deterioration, except for the concrete slab, which is classified in the most severe 

condition state, or CS5. 

• Based on the condition state assessed via visual inspection, the bridge manager 

judges the bridge in FAIL state. 

This case study effectively describes a prototypical situation where the bridge manager 

judges the state of safety of the bridge based on the condition state of one of its elements 

and disregarding any information on its actual residual load-carrying capacity. The 

manager implicitly assumes that a severe deterioration of an element automatically 

implies that the bridge load-carrying capacity is insufficient, simply because deterioration 

is representative for a reduced capacity. We hypothesize this situation could be described 

as a case of the representativeness bias, where the safety is improperly judged based on 



how much deterioration is representative of loss in capacity. 

In order to verify this conjecture, we will answer quantitatively the following 

questions:  

(1) What is the likelihood P(CS5|hF) of an unsafe bridge to be in CS5? 

(2) How much CS5 is representative of a bridge in FAIL state? 

(3) What is the proper posterior probability of this bridge to be in FAIL state? 

(4) How does representativeness bias distort the manager judgment as to the bridge 

safety? 

6.1 Likelihood and representativeness 

To start, we have to define a proper likelihood distribution for each hypothesis, i.e. 

P(CSi|hF) and P(CSi|ℎS). In the following, the procedure used for the definition of the 

likelihood is the same as in Zonta et al. (2007). 

According to (Melchers, 1999), we employ II level probabilistic methods, which 

allows to calculate the reliability index β = -Φ-1(PhF
), where Φ is the cumulative normal 

distribution function. Two stochastic variables are considered: the loads effect S and the 

starting resistance R0 of the bridge, both supposed to be Normal distributions (Norm), 

with their mean μ and coefficient of variation V. In formula: 

 f
𝑅0

(r) = Norm(r, μ
𝑅0

,V𝑅0
),    f

𝑆
(s) = Norm(s, μ

𝑆
,V𝑆). (28a,b) 

Because of the prioritization approach, we assume that the structure will not maintain its 

mechanical characteristics in the years, i.e. we have to take into account the deterioration 

of construction material through the following probabilistic degradation model (Zonta, et 

al., 2007): 



R = R0(1 - δ(CSi)), (29) 

where δ(CSi) is a probabilistic capacity degradation function, depending only on the CSi 

of the SE that controls the capacity of the structural unit at the limit state. Its density 

function δ𝑖 is the probability density function of the loss in capacity when the element is 

in the i-th CS. Recall that the elements are rated based on visual inspections, δ𝑖 represents 

the likelihood of a certain loss in capacity when the element has been rated into the i-th 

reference state. Typically, low values of CS, i.e. CS1 CS2 and CS3, are not associated 

with any loss of capacity: in this case δ𝑖 coincides with a Dirac delta function and 

therefore R = R0. On the other hand, higher CSi are associated with distributions that 

reflect the uncertainty of the system in correlating the actual loss in capacity, with the 

verbal description of the reference state proposed by the inspection manual. CS4 is 

associated with a uniform distribution δ4 of loss in capacity, for values of δ included in 

[0, 5%]. In the same way, the system associates the reference state 5 with a triangular 

distribution, for values of δ included in [5%, 70%], as Figure 3 shows. 

[Figure 3. Capacity degradation function δ(CSi).] 

Because most of the information required to define the distribution of capacity R 

and actions S are not explicitly contained in the system database, a simplified approach 

must be adopted. It is convenient to define a normalized capacity r = R/µS, with mean 

value µr = μ
R0

/µS, equal to the central safety factor γ
0
, associated with the limit state Z, 

and a normalized demand s = S/µS with mean value µS = 1. The coefficients of variations 

of the normalized variables 𝛾 and s are equal to those of R and S. The Normal distribution 

of the capacity and actions become: 

 f
γ
0
(r) = Norm(r, γ

0
, V𝑅),          f

S
(s) = Norm(s, 1, V𝑆), (30a,b) 



where the reliability index is related to the central safety factor γ
0
 through the expression: 

β = 
γ

0
− 1

√VR
2 ∙ γ

0
2 + VS

2

. (31)
 

Finally, the normalized limit state function is z = r - s, and the probability of failure PhF
 

associated with the limit state Z coincides with that of z: 

PhF
(CS𝑖) = P(Z < 0) = P(z < 0). (32) 

According to Eurocode 0, if we employ II level probabilistic methods, the target 

reliability index β for Class RC2 structural member in the Ultimate Limit State and with 

a reference time of 1 year is equal to β = 4.75. Assuming VR = 0.05 and VS = 0.10, from 

Equation (31) we can obtain γ
0
 = 1.96. Once we know γ

0
, the probability of failure 

PhF
(CS𝑖) is then calculated through Monte Carlo methods by computing the cumulative-

time failure probability of the normalized limit state z, by using a normalized Gaussian 

distribution for the demand  f
S
(r) and a normalized non-Gaussian distribution for the 

reduced capacity r = γ
0
(1- f

δ
), which depends on CS𝑖: 

 f
r
(r, CSi) =  f

γ
0
(r)(1 -  f

δ
). (33) 

Consequently, assuming PhF
(CS1) = PhF

(CS2) = PhF
(CS3), we obtain the following 

failure probability for each CS𝑖: 

[PhF
(CS1);  PhF

(CS2); PhF
(CS3);  PhF

(CS4); PhF
(CS5)] =

[2.35 ∙ 10−5;  2.35 ∙ 10−5;  2.35 ∙ 10−5;  6.61 ∙ 10−4;  2.04 ∙ 10−1]. (34)
 



Assuming the following a priori distributions for CS, i.e. P(CS) = 

[50%, 20%, 15%, 10%, 5%], we can calculate the probability for each hypothesis, i.e. 

“FAIL = ℎF” and “SAFE = ℎS” respectively: 

PhF
= ∑ PhF

(CS𝑖)∙P(CS𝑖)
CS𝑚𝑎𝑥=5

𝑖=1
= 0.0102, (35) 

PhS
= 1 − PhF

= 0.9898. (36) 

It is important to explain why these values are different from the assumed prior base rates 

(i.e. P(hF) = 0.001 and P(hS) = 0.999): APT, as most of the transportation agencies, 

calculates the nominal probability of collapse using a mechanical model, which is based 

on conservative assumptions and an estimate of the loss in capacity due to degradation, 

which is also based on conservative assumptions. In theory, if the model used by APT 

was unconditionally correct, then PhF and the prior P(ℎF) should be identical. However, 

in practice the model is clearly conservative and predicts a number of fail cases greater 

than 1% (i.e. PhF = 0.0102), that is much higher than the actual number frequentistically 

observed (i.e. P(ℎF) = 0.001). This is a very typical situation for transportation agencies 

because prediction models are deliberately conservative. In order to cope with this 

apparent contradiction, we assume that, although the model is overconservative in the 

prediction of the probability of collapse, the ratio between two different probability of 

collapse is reasonably correct. In other words, the mechanical model is not suitable to 

predict the actual absolute probability of collapse given the CS, but is reliable enough to 

predict that the probability of collapse of a structure in CS5 is about 300 times bigger than 

the probability of collapse in CS4. 

Then, according to Bayes’ rule, for both hypothesis “S = SAFE” and “F = FAIL” 

we can evaluate the relative likelihood distributions for each Condition State CS𝑖, as 



follows: 

P(CS𝑖|hF) =
PhF

(CS𝑖) ∙ P(CS𝑖)

PhF

,    P(CS𝑖|hS) =
(1 − PhF

(CS𝑖)) ∙ P(CS𝑖)

PhS

. (37a,b) 

Figure 4 shows the results for each CS𝑖, which numerically correspond to the following 

likelihood distributions: 

P(CSi|hS) = [50%, 20%, 15%, 10%, 5%],    P(CSi|hF) = [0, 0, 0, 2%, 98%]. (38a,b) 

[Figure 4. Likelihood distributions for each state hypothesis.] 

After the evaluation of the likelihoods, we are interested in understanding how 

much CS5 is representative of the bridge in FAIL state. We can calculate it according to 

Equation (4): 

R(CS5|h
F
)  = 19.6,                      R(CS5|h

S
)  = 0.05. (39a,b) 

These outcomes show that, as expected, CS5 is very representative of the failure state of 

the bridge, with an enormous difference in comparison to the safe state of the bridge, i.e.  

R(CS5|hF) ≫ R(CS5|hS): this is very important because we have learnt that this can be 

the reason for a distorted final judgment.  

6.2 Posterior judgment 

We evaluate the posterior judgment of the manager, in the case that the bridge is classified 

in CS5. The proper posterior probabilities, computed using the rational framework 

provided by Bayes’ theorem, results: 

P(hF|CS5)
 
 = 1.92%  <  P(hS|CS5)

 
= 98.08%. (40) 

This means that rational managers, in line with Bayes’ rule and after observing CS5, 



would judge the possibility that the bridge could be in the FAIL state as very unlikely. 

However, we have introduced before that, based on the condition state assessed 

via visual inspection, the bridge manager has judged the bridge in FAIL state. It is 

possible to explain this judgment by evaluating the distorted posterior probability. Using 

the vanilla inference model of Equation (7), we achieve: 

P(hF|CS5)
𝑠𝑡 

 = 99.75%  >  P(hS|CS5)
𝑠𝑡 

= 0.25%. (41) 

Similarly, accepting the inference model of Bordalo et al., the distorted posterior 

probability is: 

P(hF|CS5)
𝑠𝑡 

 = 69.97%  >  P(hS|CS5)
𝑠𝑡 

= 30.03%. (42) 

In both cases the failure state turns out to be the most likely, and this outcome allows to 

explain the judgment of the manager, which is biased since CS5 is very representative of 

a fault bridge.  

Table 3 reports all the achieved results; the last row of the table presents again the 

results that come from the inference model of Grether, which agree with those obtained 

with the other biased models, i.e. the FAIL state is the most likely, in contrast to the 

rational conclusion inferred through Bayes’ theorem. 

Table 3. Achieved results for each model. 

In summary, we have demonstrated that when an inspector judges the safety state 

of a bridge by only accounting for the observed condition state CS, they are biased by 

representativeness: in their posterior judgments they tend to neglect the prior probability 

of the failure condition, which is typically very low, P(hF) = 0.001 in this specific case 

study, and to weight too much the ratio between the likelihood of the observations, which 



is the representativeness itself. Therefore, their final judgment results distorted in 

comparison to the one achieved by a manager who stick to rational thinking. 

6.3 Discussion about inference models 

To develop the numerical calculations in the previous sections, we had to assume specific 

values for the subjective parameters of the inference models introduced in Section 4.2, 

i.e. θ = 0.8, α = 0, β1 = 0.8, β2 = 0.2: these values correspond to a high level of the 

representativeness heuristic since they maximize the importance of R and minimise the 

contribute of the prior information. Since these parameters depend on different behaviour 

of people and could vary considerably, it is interesting to develop a sensitivity analysis in 

order to understand how they affect the model and then the conclusive results. 

Let’s take for instance the model of Bordalo et al.: as we can see from Equation 

(8), it depends only on one subjective parameter, i.e. θ ≥ 0. Figure 5 shows how the 

posterior failure probability of the bridge, after observing CS5, varies according to θ: even 

if θ can be also larger than 1, we study just the interval 0 ≤ θ ≤ 1 since this is sufficient 

to understand how the results change. The previous assumption of θ = 0.8 resulted in 

P(hF|CS5) = 69.97%, but we notice that the outcome is highly sensitive to the choice of 

θ: it changes from P(hF|CS5) = 1.92% if θ = 0, i.e. in line with a rational manager who 

follows Bayes’ rule, to P(hF|CS5) = 88.49% if θ = 1, i.e. in line with an irrational manager 

biased with a high level of the representativeness heuristic. Furthermore, we observe that 

the posterior failure probability P(hF|CS5) is larger than the posterior safe probability 

P(hS|CS5) when θ > 0.67. These results demonstrate the importance of calibrating 

properly the subjective parameters according to the specific inspector. The same generic 

conclusions can be extended to the model of Grether, since we have demonstrated that it 

is based on the same mathematical formulation. 



[Figure 5. How the distorted posterior probability P(hF|CS5)st varies according to the 

subjective parameter θ.] 

Conversely, the vanilla model introduced in Equation (7) is less sophisticated 

because it does not depend on a subjective parameter. Even if this may seem like a 

shortcoming, the results obtained in both Section 5 and Section 6 demonstrate the 

correctness of the vanilla model in reproducing the distorted judgment based on the 

representativeness bias. In detail, it is evident that its outcomes are similar to those that 

can be obtained assuming the maximum level of representativeness in the subjective 

parameters of the other inference models. As such, the vanilla model reproduces the 

behaviour of an inspector completely biased by this heuristic. This conclusion is 

consistent with the mathematical formulation of the model itself, since it overlooks the 

contribution of the prior and it completely replaces the likelihood with the 

representativeness. 

7. Conclusions 

Judging the state of a bridge based on SHM observations is an inference process which 

should be rationally carried out using a logical approach. However, we often observe that 

real-life decision makers depart from this ideal model of rationality, judge and decide 

using common sense, and privilege fast and frugal heuristics to rational analytic thinking.  

For instance, confusion between condition state and safety of a bridge is one of the most 

frequently observed examples in bridge management. In this contribution, we have 

demonstrated that this bias can be described by Kahneman and Tversky's 

representativeness heuristic. 

A review of the technical literature shows that representativeness heuristic has 

been widely analysed from a descriptive point of view, while only few models have been 



proposed to describe this bias from a mathematical perspective. In the literature there is 

a general agreement that the degree of representativeness of an observable class for a 

reference hypothesis is in some way related to odds of observable quantities. However, 

there is not a general agreement on how the standard Bayes’ rule, which is typically taken 

as the baseline model to reproduce the judgment of a rational thinker, should be distorted 

to consider representativeness. Most authors do not provide an explicit expression for the 

distorted posterior, but understand the statement that ordering hypotheses by perceived 

probabilities follows representativeness rather than Bayesian posterior. This is consistent 

with a distorted judgement model, here referred to as ‘vanilla’, whereby (i) 

representativeness is used instead of likelihood and (ii) the prior information is neglected. 

Bordalo et al. and Grether provide more refined models for reproducing the subjective 

distorted judgement, which allow to blend more flexibly likelihood, representativeness 

and prior information, through a number of subjective parameters, in order to better 

reproduce the distorted perception of a particular subject. 

We have first applied these mathematical models to a classical literature 

representativeness problem, to better appreciate the difference among the various 

formulations of representativeness and heuristic judgement models. Next, we have 

applied the same models to the case of a transportation manager who wrongly judges a 

particular bridge unsafe simply because deteriorated, regardless its actual residual load-

carrying capacity. Their judgment is biased due to the apparent behaviour that damaged 

bridges ‘look’ unsafe, in contrast with undamaged bridges which ‘look’ safe. 

In the particular case study, we have demonstrated that Bayes’ theorem correctly 

identifies the bridge as safe, while application of the three judgment models analysed 

(vanilla, Bordalo et al.’s and Grether’s) all predict the manager will mistakenly judge the 

bridge as unsafe based on the observed condition state. Given the simplicity of the case 



study, which is essentially a two hypotheses inference problem where the individual 

distorted behaviour is characterized by the ordering of the two hypotheses by subjective 

probabilities, the three models are equivalent in this particular instance, as they reproduce 

equally well the observed distorted perception. The main difference between these three 

inference models is that ‘vanilla’ model reproduces the behaviour of an individual whose 

judgement is blatantly driven by representativeness, while the other two models describe 

more subtle forms of distorted judgment, whose limit cases are rational Bayesian 

inference on one side and the vanilla representativeness bias on the other. The three 

models may not be equivalent in a more complex setting, where the vanilla inference 

model may fail to reproduce the observed representativeness bias. Bordalo et al.’s and 

Grether’s model are clearly more flexible, but at the same time very sensitive to a number 

of subjective parameters, which have to be accurately calibrated, typically with cognitive 

tests, on the particular individual whose distorted judgment is to be described. While it is 

not the objective of this paper, we suggest that there may be applications which require 

to identify precisely the best representativeness model, and then the subjective 

parameters, for example if we need to predict the rational behaviour of the manager in a 

future instance: in this case we would need additional observations of the manager 

behaviour, in order to identify the proper model. This can be done either by further 

unelicited observations or through proper cognitive tests in an elicitation process: see 

Verzobio et al. (2020) for an example of elicitation process applied to an engineering real-

life case study. 

To conclude, we reiterate once again that we are not suggesting in any way that 

representativeness should be used instead of rational logic. At the same time, predicting 

the actual behavior of managers is required when setting a general policy for bridge 



maintenance, acknowledging that the managers who are going to enact the policy may 

behave irrationally. 

Declaration of interest statement 

The authors declare no potential conflicts of interest with respect to the research, 

authorship, and/or publication of this article. 

References 

American Ass. State Highway and Transportation Off. (1997). AASHTO guide for 

commonly recognized (CoRe) structural elements. Washington D.C.: AASHTO. 

Autonomous Province of Trento. (2018). www.bms.provincia.tn.it/bms. [Online]. 

Barberis, N., Shleifer, A. & Vishny, R. (1998). A model of investor sentiment. Journal 

of Financial Economics, 49(3), 307-343. 

Bolognani, D., Verzobio, A., Tonelli, D., Cappello, C., Zonta, D. & Glisic, B. (2017). An 

application of Prospect Theory to a SHM-based decision problem. Proceedings of 

SPIE, Portland. 

Bolognani, D, Verzobio, A., Tonelli, D., Cappello, C., Glisic, B., Zonta, D. & Quigley, J. 

(2018). Quantifying the benefit of strutural health monitoring: what if the manager 

is not the owner?. Structural Health Monitoring, 17(6), 1393-1409. 

Bolstad, W. M. (2010). Understanding Computational Bayesian Statistics. NJ, USA: 

John Wiley & Sons. 

Bordalo, P., Coffman, K., Gennaioli, N. & Shleifer, A. (2016). Stereotypes. Quarterly 

Journal of Economics, 131(4), 1753-1794. 

Cappello, C., Zonta, D. & Glisic, B. (2016). Expected utility theory for monitoring-based 

decision-making. Proceedings of the IEEE, 104(8), 1647-1661. 



Edward, W. (1968). Conservativism in Human Information Processing. In B. Kleinmuntz 

(Ed.), Formal representation of Human Judgment (17-52). New York: Wiley. 

Feigenbaum, E. A. & Feldman, J. (1963). Computers and thought. New York: McGraw-

Hill Inc. 

Gigerenzer, G. (1995). How to improve Bayesian Reasoning Without Instructuion: 

Frequency Formats. Psychological Review, 102(4), 684-704. 

Gigerenzer, G. & Gaissmaier, W. (2011). Heuristic Decision Making. Annual Review of 

Psychology, 62, 451-482. 

Gilovich, T., Griffin, D. W. & Kahneman, D. (2002). Heuristics and Biases: The 

Psychology of Intuitive Judgment. Cambridge University Press. 

Gong, C. & Frangopol, D. M. (2020). Condition-Based Multiobjective Maintenance 

Decision Making for Highway Bridges Considering Risk Perceptions. Journal of 

Structural Engineering, 146(5). 

Grether, D. M. (1980). Bayes Rule as a Descriptive Model: The Representativeness 

Heuristic. Quarterly Journal of Economics, 95(3), 537-557. 

Grether, D. M. (1992). Testing Bayes rule and the representativeness heuristic: some 

experimental evidence. Journal of Economic Behavior and Organization, 17(1), 

31-57. 

Griffin, D. & Tversky, A. (1992). The weighing of evidence and the determinants of 

confidence. Cognitive Psychology, 24(3), 411-435. 

Griffiths, T. L. & Tenenbaum, J. B. (2007). From mere coincidences to meaningful 

discoveries. Cognition, 103(2), 180-226. 

Kahneman, D. & Tversky, A. (1972). Subjective Probability: A Judgment of 

Representativeness. Cognitive Psychology, 3, 430-454. 



Kahneman, D. & Tversky, A. (1973). Availability: A Heuristic for Judging Frequency 

and Probability. Cognitive Psychology, 5(2), 207-232. 

Kahneman, D. & Tversky, A. (1973). On the psychology of prediction. Psychological 

review, 80(4), 237-251. 

Kahneman, D. & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. 

Econometrica, 47(2), 263-292. 

Melchers, R. E. (1999). Structural reliability: analysis and prediction. 2nd ed. 

Chichester: John Wiley & Sons. 

Neumann, J. V. & Morgenstern, O. (1944). Theory of Games and Economic Behavior. 

Princeton University Press. 

Parmigiani, G. & Inoue, L. (2009). Decision Theory: Principles and Approaches. 

Chichester: Wiley. 

Raiffa, H. & Schlaifer, R. (1961). Applied Statistical Decision Theory. Boston: Clinton 

Press. 

Romanycia, M. H. J. & Pelletier, F. J. (1985). What is a heuristic? Computational 

Intelligence, 1(1), 47-58. 

Sivia, D. & Skilling, J. (2006). Data analysis: A Bayesian Tutorial. Oxford: Oxford 

University Press. 

Tenenbaum, J. B. & Griffiths, T. (2001). The rational Basis of Representativeness. Proc. 

23rd Annual Conf. of the Cognitive Science Society, Edinburgh. 

Tonelli, D., Verzobio, A., Bolognani, D., Cappello, C., Glisic, B., Zonta, D. & Quigley, 

J. (2018). The conditional value of information of SHM: what if the manager is not 

the owner?. Proceedings of SPIE, Denver (USA). 

Tonge, F. M. (1960). Summary of a heuristic line balancing procedure. Management 

Science, 7(1), 21-42. 



Tversky, A. & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. 

Science, New Series, 185, 1124-1131. 

Tversky, A. & Kahneman, D. (1983). Extensional vs. intuitive reasoning: The 

conjunction fallacy in probability judgment. Psychological Review, 90(4), 93-315. 

Verzobio, A., Bolognani, D., Zonta, D. & Quigley, J. (2019). Quantifying the benefit of 

structural health monitoring: can the value of information be negative?. 

Proceedings of the 12th International Workshop on Structural Health Monitoring, 

Stanford (USA). 

Zonta, D., Glisic, B. & Adriaenssens, S. (2014). Value of information: impact of 

monitoring on decision-making. Structural Control Health Monitoring, 21, 1043-

1056. 

Zonta, D., Zandonini, R. & Bortot, F. (2007). A reliability-based bridge management 

concept. Structure and Infrastructure Engineering, 3(3), 215-235. 

 

  



Table 1. Achieved results for each model. 

 

Likelihood P(C𝒊|h𝒋) 

or Representativeness 

R(C𝒊|h𝒋) 

Posterior probability 

P(h𝒋|C𝒊) 

Posterior odds 

P(h𝒋|C𝒊)/P(-h𝒋|C𝒊) 

 

Bayes 

 

P(C1|hFC) = 0.0313 

P(C2|hFC)  = 0.0313 

P(C1|hMH) = 0.4437 

P(C2|hMH) = 0.0024 

P(hFC|C1) = 57.27% 

P(hMH|C1) = 42.73% 

P(hFC|C1)

P(hMH|C1)
 = 1.34 

Vanilla model 

(Equation (4) 

and (7)) 

R(C1|hFC) = 0.07 

R(C2|hFC) = 13.04 

R(C1|hMH) = 14.18 

R(C2|hMH) = 0.08 

P(hFC|C1)
𝑠𝑡 

= 0.49% 

P(hMH|C1)
𝑠𝑡 

= 99.51% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.01 

Bordalo et al. 

 (θ=0.8) 

R(C1|hFC) = 0.07 

R(C2|hFC) = 13.04 

R(C1|hMH) = 14.18 

R(C2|hMH) = 0.08 

P(hFC|C1)
𝑠𝑡 

= 1.88% 

P(hMH|C1)
𝑠𝑡 

= 98.12% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.02 

Grether 

 (α=0; β1=0.8; 

β2=0.2) 

R(C1|hFC) = -2.65 

R(C2|hFC) = 2.57 

R(C1|hMH) = 2.65 

R(C2|hMH) = -2.57 

P(hFC|C1)
𝑠𝑡 

= 18.05% 

P(hMH|C1)
𝑠𝑡 

= 81.95% 

P(hFC|C1)
𝑠𝑡

  

P(hMH|C1)
𝑠𝑡

 
 = 0.22 

 

  



Table 2. SE #12 concrete slab: state description for each Condition State (CS). 

CS State description of the slab surface 

1 No delamination, spalling or water infiltration. 

2 
Possible delamination, spalling or water infiltration. Possible segregation and 

consequently reinforcement exposure. 

3 

Previously repaired or subjected to delamination or spalling. 

Segregation and consequently reinforcement exposure. Limited water 

infiltration. 

4 

Extended parts previously repaired or subject to delamination or spalling; 

deep segregation phenomena with extended exposure of reinforcement. 

Extended water infiltration. 

5 
Deep deterioration or anomalies. Reinforcement corrosion and cross-section 

loss require a deep analysis to verify the structural safety of the element. 

 

  



Table 3. Achieved results for each model. 

Model 

Likelihood P(C𝒊|h𝒋) 

or Representativeness 

R(C𝒊|h𝒋) 

Posterior probability 

P(h𝒋|C𝒊) 

Posterior odds 

P(h𝒋|C𝒊)/P(-h𝒋|C𝒊) 

 

Bayes 

 

P(CS5|hF) = 0.98 

P(CS5|hS) = 0.05 

P(hF|CS5) = 1.92% 

P(hS|CS5) = 98.08%  

P(hF|CS5)

P(hS|CS5)
 = 0.02 

Vanilla model 

(Equation (4) 

and (7)) 

R(CS5|hF) = 19.6 

R(CS5|hS) = 0.05 

P(hF|CS5)
𝑠𝑡 

 = 99.75% 

P(hS|CS5)
𝑠𝑡 

= 0.25%  

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 399 

Bordalo et al. 

(θ=0.8) 

R(CS5|hF) = 19.6 

R(CS5|hS) = 0.05 

P(hF|CS5)
𝑠𝑡 

 = 69.97% 

P(hS|CS5)
𝑠𝑡 

= 30.03%  

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 2.33 

Grether 

 (α=0; β1=0.8; 

β2=0.2) 

R(CS5|hF) = 2.98 

R(CS5|hS) = -2.98 

P(hF|CS5)
𝑠𝑡 

 = 73.19% 

P(hS|CS5)
𝑠𝑡 

=26.81% 

P(hF|CS5)
𝑠𝑡

P(hS|CS5)
𝑠𝑡

 
 = 2.73  

 

 

  



 

Figure 1. The rational process of SHM-based decision-making. 

  



 

Figure 2. SP65 bridge on Maso River: (a) overview; (b) plan view, elevation and cross 

section of the deck (Zonta, et al., 2007). 

  



 

Figure 3. Capacity degradation function δ(CSi). 

  



 

Figure 4. Likelihood distributions for each state hypothesis. 

  



 

Figure 5. How the distorted posterior probability P(hF|CS5)st varies according to the 

subjective parameter θ. 


