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Abstract

In this study, a new peridynamic model is presented for higher-order plate theory. The
formulation is derived by using Euler-Lagrange equation and Taylor’s expansion. The
formulation is verified by considering two benchmark problems including simply supported
and clamped plates subjected to transverse loading. Moreover, mixed (simply supported-
clamped) boundary conditions are also considered to investigate the capability of the current
formulation for mixed boundary conditions. Peridynamic results are compared with finite
element analysis results and a very good agreement was obtained between the two approaches.
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1 Introduction

Classical continuum mechanics (CCM) developed by Cauchy has been widely used for the
analysis of deformation behaviour of materials and structures. Although CCM has been very
successful in dealing with numerous complex problems of engineering, it encounters difficulties if
the displacement field is discontinuous. This situation mainly arises when cracks occur inside the
solution domain. In this case, the partial derivatives in the governing equations of CCM become
invalid along the crack surfaces. Moreover, as the technology advances and nanoscale structures
become a significant interest, accurate material characteristic at such a small scale cannot always
be captured by CCM since CCM does not have a length scale parameter.

To overcome the aforementioned issues related with CCM, a new continuum mechanics
formulation, peridynamics, was proposed by Silling [1]. The governing equations of
peridynamics (PD) are in the form of integro-differential equations and do not contain any
spatial derivatives. Therefore, they are always valid even if the displacement field is discon-
tinuous. Moreover, it has a length scale parameter, horizon, which can be utilized to model
structures at nanoscale. According to dell’Isola et al. [2], the origins of peridynamics go back
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to Piola. Since its introduction, there has been rapid development in peridynamics research
especially during the last years. PD has been applied to analyze different material systems
including metals [3], composites [4, 5], concrete [6] and graphene [7]. Moreover, it is not
limited to elasticity behaviour and PD-based plasticity [8], viscoelasticity [9] and
viscoplasticity [10] formulations are available. In addition, PD equations have been extended
to other fields to perform heat transfer [11], diffusion [12], porous flow [13] and fluid flow [14]
analyses. An extensive review on peridynamics is given in Javili et al. [15].

Simplied structures including beams, plates and shells can also be represented in PD
framework. Taylor and Steigmann [16] introduced a two-dimensional model for thin plates.
Diyaroglu et al. [17] developed a PD Euler-beam formulation which was further extended to
Kirchhoff plates by Yang et al. [18]. The effect of transverse shear deformation in thick plates
was taken into account by Diyaroglu et al. [19] by developing PD Timoshenko beam and
Mindlin plate formulations. O’Grady and Foster [20, 21] proposed Euler beam and Kirchhoff
plate formulations by utilizing non-ordinary state-based peridynamics. Chowdhury et al. [22]
developed a state-based PD formulation suitable for linear elastic shells.

In this study, a new PD formulation is presented for higher-order plate theory suitable for
analysis of thick plates. The formulation is developed by using Euler-Lagrange equations and
Taylor’s expansion. The formulation does not have any limitation on material constants as in
bond-based peridynamics. The developed formulation is validated by considering two bench-
mark problems and peridynamic results are compared against finite element analysis results.

2 Higher-Order Plate Formulation

The displacement field of any material point, u(x, y, z, £),»(x, y, z, £) and w(x, y, z, f), can be
represented in terms of the displacement field of a material point on the mid-plane, u(x, y, 0, 7),
v(x, y, 0, 1) and w(x, y, 0, ), by using Taylor’s expansion as

Ou 1 &%u , 1 Su 3
u(x,y,2,t) = ul,_y+ = zZ+—— Z - 70 4 e la
(xX,3,2,1) =01 5. . 2 072 0 3163 o (la)
ov 18y , 1 &y 3
t) = — [ - 1b
V(-x7y7z7 ) V|z:0 + 6Z ZZOZ + ) azz ZZOZ 3 6Z3 ZZOZ -+ ( )
ow 1w , 13w 3
wx,y,2,t) =w|__o+—— Z+—— z - 24 lc
( Y ) z=0 0z 0 2 8Z2 0 31 613 0 ( )

In this study, only flexural deformations are taken into consideration. Thus, eliminating axial
deformation effects and higher-order terms in Egs. (1), the components of the displacement
field can be expressed as

u(x,p,z2,1) = 20x(x,y,1) + 220, (x,,1) (2a)

V(x,,2,1) = 20,(x,y,1) + 20, (x, 3, 1) (2b)
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w(x,p,2,8) = W(x,y,t) + 22w (x,,1) (2¢)

where 0,, 0,, 6:, 0; and w* are introduced as five new independent variables, respectively,

which are defined as (see Fig. 1)

Oc(x,y,1) = %Z » (3a)
Oy(x,,1) = % » (3b)
0, (x,y,1) = %%{ » (3¢)
0,(x,y,1) = %g% B (3d)
w(x,p, 1) = %%%V » (3¢)

In order to simplify the expressions, hereafter, w(x, y, t), 0(x, y, t), w*(x, y, t) and 6*(x, y, 1)
will be written simply as w, 6, w* and 6*, respectively.

After utilizing the displacement relationships given in Egs. (2), strain-displacement rela-
tionships of 3-dimensional elasticity can be expressed as

%

00, 500,
=z— — 4
en zal+z e, (4a)
a0, 400,
=z — 4b
= Za.XQ te E}xz ( )

Fig. 1 Independent variables for each material point in higher-order plate theory
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£33 = 2zw" (4¢)

€2 =€ = { (gﬁ; + Zif) +z (g—i+g—i>] (4d)
€13 = €31 :% [(91 +§TZ) (391 gx*)} (4e)
€33 =€3 = % [(92 + g—r;) (36 + ZWZ ﬂ (4f)

with x; =x, x, = y.
These strain-displacement relationships can be also expressed in following form by using

indicial notation:
00, 00, 00, 00,
j== Sl L) | 6usy
& [<6x1+5x1>+z <6x1+5x )} %

1 ow . ow" B
+ ) [(91 + a—XI> +72 (391 + 6—x1)} (61i63.i + 53,'511‘) + 2zw (53,‘(53]~ (5)

where i, j=1, 2, 3 and , J= 1, 2. Note that this convention where capital letter indices, e.g., I,
J, K, ... vary from 1 and 2, and lowercase letter indices, e.g., 1, j, k, ... vary from 1, 2 and 3,
will be applied throughout this study.

Assuming the material is isotropic and obeys 3-dimensional constitutive relationship, the
stress components can be expressed as

gjj = C ikl €k (6)
where Cyy, is the elastic modulus tensor which is defined as
Ev
(14+v)(1-2v)

with E and v being elastic (Young’s) modulus and Poisson’s ratio, respectively. Substituting
Eq. (7) into (6) yields:

Ciju = (Sl + Ouwdy) + 0;i0u (7)

E
2(1+v)

Ev
(14+v)(1-2v)

O = 81161]' (8)

v

The strain energy density is defined as:

1
W =3 oiey 9)

Inserting Egs. (8) and (5) into Eq. (9) and rearranging the indices gives the expression of strain
energy density as
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The average strain energy density for a particular material point on the mid-plane can be
obtained by integrating the strain energy density function, Eq. (10), through the transverse
direction and divided by the thickness as

1 h/2 G 691 6(91 591 69J 691 69_1
W=—I"" Wi =2 | —
i Wie = [ <axj ax, oy ox | ox axj>
(30052000, 20
448 aXJ 6xJ ax‘] axl le 8xJ

(06, a0, 00, 80, 00, 30,
an 6)6] an 8x1 6x1 GXJ

G(4v-1) (h* 60, 06, 5 W 06, 00,  h® 00, 00
12 8x1 6XJ 80 6)(] 6XJ 448 8x1 GXJ

2(1-2v) 448 ox; ox,

0+8w +h4 9+8w
T oy 80 ox;

s ow . ow'
+2 12 (6‘14‘6 )(391+8—x[):|
L 4G (m

1-2v 12

NG
2

. a0, h4 *aej

3 Peridynamic Higher-Order Plate Formulation

PD is a new continuum mechanics formulation. It is within the class of non-local continuum
mechanics where material points that are within an influence domain, horizon, H, can interact
with each other. The governing equations of peridynamics are in integro-differential equation
form and can be written as

p()u(x,t) = fo<u/, u,xl,x) dv' + b(x,t) (12)
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where p is the density, # and u represent acceleration and displacement and ¢ denotes time.
b(x, f) corresponds to body load vector and is utilized to apply external load. As shown in
Fig. 2, f(u',u,x ,x) represents the peridynamic interaction (bond) force between two
interacting material points located at x and x'.

Obtaining analytical solution for Eq. (12) is usually not possible. Instead, numerical
techniques such as meshless approach are widely utilized. Therefore, the PD equations of
motion for a material point k£ can be expressed in discrete form as

} .
Py = Zi—1 fo(in Vi) + b (13)

where N indicates the total number of family members inside the horizon of material point &
and V represents the material point volume.
The PD equations of motion can be derived by utilizing Euler-Lagrange equation as
d OL oL

e 14
dl@u(k> 6u(k) ( )

where L =T— U is the Lagrangian. The system’s kinetic energy, 7, and potential energy, U,
can be expressed as

1 .
T = Ezkﬂuw) “u Vi (15a)

and
U=2Wiuy\Viy—2ibw - um Ve (15b)

where uy and b are the generalized displacement vector and generalized body force density
vector, respectively, which in this study can be defined as

T
— [ gtk plk) *(k) *(k) *
Uy = (9x Gy Qx 9y W(k) W(k) (168.)
and
,"“" ~N\\

/’¢ ® ® \“

'I' ® [ “

-------- . I o

’¢¢" e © ‘~~~ ’:' @ [ ) ¢ .:

8 /o [ ] & P N\ "l ° @ y "'
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e ——
[

iz

-
-
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Deformed state

X
Undeformed state

Fig. 2 Peridynamic interaction force between two material points [23]
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T
b= b 0 0 b0 o) (16b)

Here, the entries of the body force density vector, b,, and b,, correspond to moment and

transverse force, respectively. The generalized velocity vector, li(x, ¥,2,1t), can be obtained by
taking derivative with respect to time from Eq.(2) as:

u(x,,2,1) = (26, +2°6, (17)

6, + 7 G.y

W+ zzv{/*
Thus, inserting Eq. (17) into (15a), integrating throughout the thickness and dividing by the
thickness gives the (average) kinetic energy of the system as

2
1 B /0 0 ) h (k) SN2 K
r=53e0| 1 (9 ) )+m(a, 4, ) (9 4, )-&-hw(k)-&-%(wm) +25mewey | Vi (18)

with 4 being the thickness of the plate. The first term of Euler-Lagrange equation can be
obtained by substituting Eq. (18) into Eq. (14) as

2w
dor _, )as 80 (19)
dt uy, (k) . W

Unlike the classical elasticity theory, according to PD theory, the strain energy density function
has a non-local characteristic such that the strain energy of a particular material point k£ depends
on both its displacement and all other material points in its family and can be expressed as

Wi =W (”(k)’u(l“)7u(2‘)7u(3‘)7 ) (20)
where u is the displacement vector of material point k& and u(l.A) (i=1, 2,3, =) is the

displacement vector of the ith material point inside the horizon of the material point £.
The total potential energy stored in the body can be obtained by summing potential energies
of all material points including strain energy and energy due to external loads as

U=XWu ( (1) M () B(3) ) Vi =Ziebiwmm Vi (21)
Thus, the second term of the Euler-Lagrange equation can be written as

oL 0

- =—>3 W b \% 22
Sy~ B > () (W) uay ey gy, ) Vi = au = Vb Vi) (22)
=Y, i (Ot + 0,5 )V (0= Znb() 0V () = (M Vi + 2, o V(/)) bV

6u(k) 6u(k) 6u<k>
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Inserting Eqgs. (22) and (19) into the Euler-Lagrange equation yields

W) W)
W /A Vi + X, —= Vi
AR ool T g TV
I 4 W) 0) ()
47789)(/{) —5—%95/{) 2o ® " ® 2 60*(1:) ) bgl
= 7 /
o W +ﬁw* Yo Wy vy Moy, ! b Vo)
) (k) 122 (k) 8W<k) (k) /j 6W(k) () 0
LA W) oWy
80k T2 o Vi +2; T Vi)

In order to express the strain energy density function given in Eq. (9) in PD form for a
particular material point £, it is necessary to transform all the differential terms into an
equivalent form of integration and the nonlocalized strain energy density function should be
in accordance with the form given in Eq.(20). As derived in the Appendix, the strain energy
density function for the material point £ and its family member j can be expressed as
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where 1 = cos ¢, ny =sin ¢ with ¢ being the bond angle with respect to x-axis.
Substituting these PD strain energy expressions into Eq. (23) yields the final PD equations
of motion for higher-order plate theory as:
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Note that when the Poisson’s ratio is v = 0.25, PD equations of motion will have simpler forms:
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4 Boundary Conditions

In this study, the displacement boundary conditions are applied by introducing a fictitious
boundary layer, R, outside the boundary of the actual material domain as shown in Fig. 3. The
width of this layer can be chosen as the size of the horizon for the Poisson’s ratio value of v =
1/4 or double size of the horizon for the Poisson’s ration of v # 1/4. This is mainly because the
size of the influence domain is equal to double size of the horizon for v # 1/4. Two common
types of boundary conditions, i.e. clamped and simply supported, are explained below for PD
higher-order plate formulation.

4.1 Clamped Condition

To implement the clamped boundary condition, a fictitious boundary layer is created outside
the actual material domain. If the horizon size is chosen as 0 = 3Ax, the size of the fictitious
domain can be specified as 3Ax for v = 1/4 or 6Ax for v # 1/4 in which the discretization size is
Ax. The clamped boundary condition constrains zero transverse displacement and zero rotation

R

Fig. 3 Actual, R and fictitious, R, solution domains
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for the material points adjacent to the clamped end. In this study, this can be achieved by
enforcing symmetrical displacement fields for w and w* and anti-symmetrical displacement
fields for §; and 6, (I=1, 2), respectively, to the material points in the fictitious region with
respect to the actual displacement field as (see Fig. 4)

* *

W) =Wk Wik = Wik (- (27a)
g0 — gD g0 _ "D (27b)
W) = W) = W) = W) = 0 (27¢)

i=12,....6 forv#1/4,i=1,2,3 forv=1/4)
4.2 Simply Supported Condition

To implement the simply supported boundary condition, a fictitious boundary layer is created
outside the actual material domain as in the clamped boundary condition. If the horizon size is
chosen as & = 3Ax, the size of the fictitious domain can be specified as 3Ax for v =1/4 or 6Ax
for v # 1/4. The simply supported boundary condition constrains zero transverse displacement
for the material points adjacent to the constrained boundary. In this study, this can be achieved
by enforcing anti-symmetrical displacement fields for w and w* and symmetrical displacement
fields for 6; and 6; (I=1, 2), respectively, to the material points in the fictitious region with
respect to the actual displacement field as (see Fig. 5)

WEH = "W Yoo = W) (28a)
o0 _ gD G0 _ g (28b)

(for i=12,....6 if v#1/4, for i=12.3 if v=1/4)

Fictitious Boundary X5 X1y X

(n)(1) '\lmt:l

SE A AR AR S S5 0’/ v DA 4 ~ < - ~ ~ <
RN 0 L L L L L L L L 0

‘_ ,_:__"\Mu-l7"1&)11)"': . > i ” : b - v g

e

Ve :

7 ° » -

B ~“— e
o O P P P 7 P P P R

I i S8 il N4

'\.Illl'll'\‘d\l-H'\.Illlll '\.11)111 \\\ w*
A 4 " ,"’.\Wmus]

Waes Deformed Axis

Fig. 4 Application of clamped boundary condition
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W6 v /{o.".--‘ AT // e /| /Eoi d
Wrae b PRy d 57 0/, VA a2 /ol
el 7 7 7 7 A e /01 X
- AP Do N I e e
'@* (i . AR %)(ﬁ@ i ] -
8065 ..
i R ) ;W*m(e)

. ‘."'i.w )
Deformed Axis ~—°
Fig. 5 Application of simply supported boundary condition

5 Numerical Results

In order to verify the PD formulation for a higher-order plate theory, two numerical examples
are considered for simply supported and clamped boundary conditions. The PD solutions are
compared with the corresponding finite element (FE) analysis results.

5.1 Simply Supported Plate Subjected to Transverse Loading

A simply supported plate with a length and width of L = W= 1m and a thickness of 4 =0.2m is
considered as shown in Fig. 6. The Young’s modulus and Poisson’s ratio of the plate are F =
200GPa and v = 1/4, respectively. The model is discretized into one single row of material
points along with the thickness direction and the distance between material points is Ax=1/
70 m. The horizon size is chosen as 6 =3.015Ax. A fictitious region is introduced outside the
edges as the external boundaries with a width of 6. The plate is subjected to a distributed
transverse load of p = 100N/m through the y-centre line. The line load is converted to a body

load of b = % = 1.25 x 10*N/m? and it is distributed to two columns of material points
A

through the centre line as shown in Fig. 7.

The FE model of the plate is created by using SOLID185 element in ANSYS with 50
elements along the length and width, and 8 elements along the thickness. Boundary conditions
below were applied in ANSYS as:

i L

Fig. 6 Simply supported plate subjected to transverse loading
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Fig. 7 Application of transverse loading in PD model and fictitious region

u(0,,0) = u(L,y,0) = u(x,0,0) = u(x, W,0) = 0
v(0,»,0) = v(L,y,0) = v(x,0,0) = v(x, W,0) =0
w(0,y,0) = w(L,y,0) = w(x,0,0) = w(x, W,0) =0

As depicted in Fig. 8, the transverse displacement variation results along the central x-axis and
y-axis obtained from PD and FE analyses are compared with each other and a very good
agreement is obtained between the two approaches.

5.2 Clamped Plate Subjected to Transverse Loading

A clamped plate with a length and width of L=W=1m and a thickness of #=0.15m is
considered as shown in Fig. 9. Young’s modulus and Poisson’s ratio of the plate are £ =
200GPa and v = 0.3, respectively. The model is discretized into one single row of material
points along with the thickness and the distance between material points is Ax = 1/70 m. The
horizon size is chosen as 6 = 3.015Ax. A fictitious region is introduced outside the edges as the
external boundaries with a width of 25. The plate is subjected to a distributed transverse load of
W

2(x2)
AV = 1.3021 x 10*N /m> and it is distributed to two columns of material points through the
centre line as shown in Fig. 10.

The FE model of the plate is created by using the SOLID185 element in ANSYS with 50
elements along the length and width, and 8 elements along the thickness. Boundary conditions
below were applied in ANSYS as:

p =100N/m through the y-centre line. The line load is converted to a body load of b =

0”079‘ - - - - - - - T 0”0'9‘ - - - - - - - -

— FE FE
£ b PD| | €'1’ PD]|
= =
N 2
g .l 5.l
© o
a ©
(%) a
A (7]

2 4
37 o
7] )
o 5| 2 5l
> )
0 >
g 2 \ ,
=6 - g 6 R

. = X :

705 04 03 02 01 0 01 02 03 04 05 05 -04 03 02 01 0 01 02 03 04 05
Location, x(m) Location, y(m)

(a) (b)

Fig. 8 Variation of transverse displacements along a central x-axis and b central y-axis
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r o

L

Fig. 9 Clamped plated subjected to transverse loading

o AT = Z LS 7.5 =z Z s III./‘*‘
Y 20

0 T
Fig. 10 Application of transverse loading in PD model and fictitious region

u(0,y,2) = u(L,y,2) = u(x,0,z) = u(x,W,z) =0
v(0,,2) = v(L,y,2) = v(x,0,2) = v(x, W,2) = 0
w(0,,0) = w(L,y,0) = w(x,0,0) = w(x, W,0) =0

PD results for transverse deflection obtained along the central x-axis and y-axis are compared
against FE results as shown in Fig. 11. PD results agree very well with FE results.

5.3 Plate Subjected to Transverse Loading and Mixed (Simply Supported-Clamped)
Boundary Conditions

In the final numerical case, a mixed (simply supported-clamped) boundary condition is
considered, as shown in Fig. 12. The plate has a length and width of L=W=1m and a

0 10 0 x10°
N PD — PD |
T — 1 ETr ]
= X 2 2 ,/
£ 2f ) 22 j
= o) N J
5 8 ) /
g 3t g 3l ,
8 ® /
a ;
©
= (7]
o -4 L 41 £
2 o . Vi
8 ° \ .
Q L o L N Yy
g -5 // 55 N A
> ~ / 2 RN 7
5 , 2 . _z
& Or S © -6
[
= =

-05 04 03 02 -00 0 01 02 03 04 05 -05 -04 -03 -02 -01 0O 01 02 03 04 05
Location, x(m) Location, y(m)

() (b)

Fig. 11 Variation of transverse displacements along a central x-axis and b central y-axis
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€ L

Fig. 12 Simply supported-clamped plated subjected to transverse loading

thickness of 7 =0.2m. The material properties are same as in the previous case. The plate is
subjected to a distributed transverse load of p = 100N/m through the y-centre line. The line
load is converted to a body load of b = - (:i v)VAV = 1.25 x 10*N/m? and it is distributed to two
columns of material points through the centre line. The top and bottom edges of the plate are
subjected to clamped boundary condition, whereas the left and right edges of the plate are
subjected to simply supported boundary condition.

The FE model of the plate is created by using the SOLID185 element in ANSY'S with 50
elements along the length and width, and 8 elements along the thickness. Boundary conditions
below were applied in ANSYS as:

u(0,,0) = u(L,y,0) = u(x,0,z) = u(x, W,z) = 0
v(0,,0) = v(L,y,0) = v(x,0,2) = v(x, W,z) = 0
w(0,,0) = w(L,,0) = w(x,0,0) = w(x, W,0) =0

Transverse deflection results obtained along the central x-axis and y-axis are shown in Fig. 13
and PD and FE results agree very well with each other demonstrating that the current
formulation is capable of considering mixed boundary conditions.

<100
!
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0 210

T T . .
FE FE
PDIT PD| 1

)

Transverse Displacement, w(
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o S
o o

= '

o =
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Fig. 13 Variation of transverse displacements along a central x-axis and b central y-axis
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6 Conclusions

In this study, a new peridynamic model was presented for higher-order plate theory. The
formulation was derived by using Euler-Lagrange equation and Taylor’s expansion. The
formulation was verified by considering two benchmark problems including simply supported
and clamped plates subjected to transverse loading. Moreover, mixed (simply supported-
clamped) boundary conditions are also considered to investigate the capability of the current
formulation for mixed boundary conditions. Peridynamic results were compared with finite
element analysis results and a very good agreement was obtained between the two approaches.
Therefore, it can be concluded that the developed approach can be used as an alternative
approach for problems in which higher-order plate theory is applicable.

Appendix

In this section, the derivation of the PD form of strain energy density function given in Eq. (11) is
presented. To clarify the derivation, strain energy density expression is separated into four parts:

W=W;+W,+ W53+ W, (29)
where
_ E W (00, 00, 891 69] 691 00,
Mi=aason |2 (ax, o, oxy x| om axJ> (302)
W (3000 o000, | 000, I (30 30 o0, o, o000,
448 6xj 6xj 8XJ 8x1 6x1 6)6_/ 80 6)6_/ 6)6_/ 6xJ 6x1 6)61 6)6]
E(4v-1 n* o6, o0 1 o0, 00, h 00, o0,
W, = _ E(l) 1 (k06,00 [t B ATt B’ (30b)
4(1 + v)(1-2v) h \ 12 ox; Ox, 80 Ox; Ox; 448 Ox; Ox

E 1 ow\? i ow' " ow . ow'
e —— _ J— 2_
W3 4(1+V)h{h<91+6x1> +80< o ) + <91+6 ><3€1+6x1)] (30c)

2F n o0, h5 . 00,
- 1 el It &
Va5 oa2mn (12 {( B~ } 30" ax,> (30d)

Transforming W; into PD form
As shown in Fig. 14 in the Appendix, the function 6 can be expressed by using Taylor’s
expansion up to 1st-order terms about point x as

0-01x) = L g, (1)
91( (x+£)—91< (x) = ag%ix)fl’u (3 lb)
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X2

Fig. 14 Peridynamic interaction between two material points

where & = €| and unit direction vector n is defined as
n:{"1 }:{C‘?S"D} (32)
ny sin ¢
Multiplying Eq. (A31a) by (A31b) gives
[0 (x+€)—0:(x)] [0k (x+€) O (x)] _ 06;(x) 00k (x)

¢ ox, ox, Enyny (33)
Multiplying both sides of Eq. (A33) yields
[0 (x+&)—0, (x)] [0k (x+&)—Ok (x)] P 90, (x) 90k (x) €n npngns (34)

¢ K ox;  ox

Considering x as a fixed point, integrating both sides of Eq. (A34) over a circular domain with
centre of x and radius of 6 result in:

o [01CeA-€) =01 ()] [0k (x+£) 0 ()]
0 -0 6

nns&dédo

691 (x) 691( (x)
ﬁxj 6xL
a0, (x) Dbk (x) 5

7T
= W? (04L0rs + 0yrOLs + 0sOLr) T

_ (20) 2005, 010 20l 21 0]

ox J ox J ox R Ox, S Ox. S ox R

27 10
IO IoﬁnjnLansgdédQO

12

(35)
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Multiply both sides of Eq. (A35) by dzdsk vields:
o 816+ €) 010 (x-) 6 ()
0 o
3

71'(53 891( ) 80K(x) 5 + 591()() 891(()6) + 661(x) 89K(x)
12 ox J ox J RS 8xR Bxs 6xs 8xR

nrnsdpidsx&dédyp

Rearranging the indices gives:

691(x) 691(x) + 691(x) 80J(x) + 891(x) 89J(x)

ox J ox J 6x1 ox J ox J 6x1
_ %Ig”]’g [91(x+£)_91 (x)}éeK(x_'—S)_eK(x)} nnxEdédep (37)

which can be written in discretized form as:

(k) (k) ~p(k) (k) Apk) </ 1 )( J J) # i‘
89 09, +69, 09, +69, 00, 12 ()(k)n( )<k)V(l.k) (38a)

0)(] ax_/ Bxl 6xj ij axl 77‘(‘(53]1

Following a similar approach, the following expressions can also be obtained:

‘ ) , ) _p i)\ [ o () _pe)
a0,") a6, +ae}‘<k> a0,") L) o0 12 5. (91 b )\0r b NOCROIM
8xj 6xJ 8x1 aXJ 6xj 6)(?1 7r(53 ! S(i")(k) ! J (i,‘)
(38b)
(") _g0)\ ( g*(F) _p*th)
o0l a0, a0 06,0 a6l 06,") 12 5 (91 O )\0r KOOI
6xJ 6xJ 6x, 6xJ aXJ r';‘x, 7r(53h i g(ik)(k) ! J (ik)
(38¢c)
Substituting Egs. (38) into (A30a) results in
(F)_g0\ (o) _ptk)
6, '—0 0y -0
w_ E 112 ﬁ (1 ! N GERGG
Wil = 41+ ) haeth | 12 i 5(5‘)(/() n; ny V(l-k) (39)

Z[ n n 7
448 6(1’*)(1»)
i* * *
i (65 o) (01" ej(k) (*)® (#)®
+2% 2 np gV gy

Transform W, into PD form:
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If we recall the expression given in Eq. (31a)

e e01x) = "2 g, (40)

and multiply Eq. (A40) by the direction vector ng yields:

Or(x+€)—-0:(x) ~ 0b:(x)

§ ng 8xJ njng (41)

Considering x as a fixed point, integrating both sides of Eq. (A41) over a circular domain with
centre of x and radius of & result in:

s Or(x-+€)—0 a0 - a0 5 a0 5
2 w nxddy = "2 (;‘) [ on nxdedy = {;T(j)%dm = aIT(:)WT (42)
Multiplying both sides of Eq. (A42) with 6, gives
2 7o -
00;(x) _ 2P POt e (43a)
an (5 5

Rewriting Eq. (A43a) with another index, J gives:
60J(x) ijZﬂ'jJ 0J(x+£)—0J(x)
070

n &dédy (43b)

ox a w6 &
Multiplying Eq. (A43a) with (A43b) yields:
6, (x) 06 2\’ 0 -0 "y -6
e B e )

which can be written in discretized form as

(") o0,
0, -0, ()
(#) 2 —g(i")(k) n;y V(ik) (45a)

ik
o0 onl) & >229§ 6P @,
w0/ T

Following a similar approach, the following expressions can also be obtained:

5X1 6xj

(2, >ZZ_M,,(’*>% L A L
ox; Oxy 762 ' f(;k)(k) ! ()= £(i")(k) ! *)
k) Ap*(k () ok ) _grk
o0, a3 _ (2)22,Wno*><k>v BB B0y s
ox; Oxy 76* ' 5(,-/»’)@ ! ()= 5(i'k)(k) *)
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Substituting Egs. (A44) into (A30b) results in

w _ E@v-1) 1 2f e(ik)_e(k) ()b e(i")_e(k) o
2 _m <7r52) (Ez’ Ig(ik)(;) ny V(i")ziunj V(l«k)

80 5 ( i* ) (k)
s ik X
AR 606" ()
-3, n 1% =L L n Viw
423 > Som ()2 Som (*)
(46)
Transform Wj into PD form:
Similar to Eq. (A31a), the following relationship can be written as:
ow
wlrk€)wix) = Y g, (472
aX]
0r(x+§&) + 0r(x
—[( 6)2 ]( ) 5”!1 = 6‘1 (x)En, (47b)
Combining Eq. (A47a) with (A47b) yields:
) 0 ow
w Eny + wlx+€)—w(x) = a;EX) Eny + 0, (x)Eny (48a)
I
Rewriting Eq. (A48a) with another index, J gives:
0;(x+&) +0,(x ow(x
wéru + wW(x+€)-w(x) = ax(J) Eny+0;(x)Eny (48b)
Multiplying Eq. (A48a) with (A48b) and then dividing each term by & results in:
OO g et | [ PO 4w wi)
(49)

SCCIICEI

Considering x as a fixed point, integrating both sides of Eq. (A49) over a circular domain with
centre of x and radius of & yield:

Ig”fg {w Enp + w(x+€)-w(x } fl x+£ T8 E,nj + w(x+§)*w(x)] s0)
&dédp = <%f) + 9,(x)> ( +0,(x )I o&nm ydédep
(S eon) (5t v o) o= (57000 (5o 00)
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which gives:

[0 gy e )-wie) 2
(B2 010) (S5 + 1)) = 6 Io[ — L e (AS1)

Eq. (A51) can be written in a discretized form as

90 gl (,-k)(k))Z
w ; —w, + L I € ; n
(6W(k) i H(k)) (6W(k) . G(k)> _ 3 5 ( (k) (k) 2 (A)(k) 1 v
AN RV A Emyw (*)

(52a)

Following a similar approach, the following expressions can also be obtained

. 9<>+9 (#) k) 2
o OW ow,, <W(z*) Wiy +37 Sewm )
*(k) (k) k) (k) i
(39, . am)(% W2 ) s, Vi (52b)

X1 f(ik)(k)
and
o N 6w*(
(G s ) (w + %) (52)
o + 6 * N R )k
(W(ik)_w(k) +- d {(k) ( )<k) <W(#)—W(k) +3-L— ) = 5(1k)(k)n5 J®
7_‘_6} ZL {([k)(k) V(i")
Substituting Egs. (24) into (30c) results in:
9“ +e ) )(k) :
o VI
w G 3 <W(f )Wt (*)®)
Wy = 2 1 hy, E(,-k) " v(ik)
k) p*() Y
o (Wi + 355 ")
+ %ZiA §(ik) V('*)
0 + 0 ( (k) \ B o 49" #) (k)
5 (W“‘)_W“‘) ’ S ) <W<fk>‘W<k> 3y
* zﬁz'* f(ik) V("A)
(53)
Transform W, into PD form:
Multiplying both sides of Eq. (3a) by v yields:
00;(x
Vor(er€)-0r 0] = v 2 (s4a)
J
w*(x) can be Taylor expanded as
WA W ) g (54b)

2
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Multiplying Eq. (A54a) by Eq. (A54b) gives

591()6)

w(x+€) +w'(x)
v a)CJ

7 (07 (x+&)=0; (x)]ng = vw’(x)

Engng (55)

Considering x as a fixed point, integrating both sides of Eq. (A55) over a circular domain with
centre of x and radius of & result in:

Iﬁ”fivw 01401 (<) nceded = 1w () (j‘) Jo T micededy
. 00(x) T . .00 5
=o' (x) a;(j‘)TajK = v (%) a; (;)WT (56)

Multiplying both sides of Eq. (A56) by d yield:

« 00i(x) 3 2 w(x+8) +w'(x)
T T

(o) DS ek lmded (57)

Adding both sides of Eq. (A57) with (1 —v)(w*(x))? and performing some algebraic manipu-
lation gives:

W (%) ((m)w*(x) e 59’(")>

ox 7

3 W) AW e omededy

|
W
()
SJIN)
|
3,
=
Py
=
+
I
NN g 9]
+
=
Py
=
~—

(01 (x+&€)~0; (x)|ni{déd o

ere) + w2 oo S eded
+(1_V)<w(+£)+ ()> i

’ 110§ eded
- %Iﬁ”ﬁiuw (601 (x+€)~0; (x)|n dedep
sy {W} “scdeds
- %Jﬁﬂgw*(@ (y[e, (x+€)—8; (X)) + %w 5) &dédp  (58)

Eq. (A58) can be written in discretized form as

a8 3 YT # Hw 1= e T
I ):mzf‘ o Me’( B Uf(z*)w} Vi) (59)

W <(1—u)w(k) +v =
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Following a similar approach, the following expression can also be obtained:

" 59*(k) 3 W&) + W*ik x( k (e *) (k)
W(k) a;] = 7T63h Z[" 2 ( ) (e]( )_e[( ))Vl[( ) V([k) (59b)

Inserting Eqgs. (A59) and into (A30d) yields:
3w, +w, . o ow Fw
ng) _ 2F 31 (h_zA (k) (*) |:IJ<9,(, )795,())"[(1 ) +27(k) (*) f(i")(k):| V(ik) (60)

(1+v)(1=2v) 78 h \ 127 2
» WEF/() + W*,k (i . 4
+agVEH f() (91( )—9,(")>n§ )(k)v(l‘)

Finally, combining Egs. (A39), (A46), (A53) and (A60) gives the strain energy density of
material point £ in PD form as:

\ [(0(’ ) 0<k> (i )<k>]
® L e _ G 12k
Wy =W + Wy + Wy +wy =— —3. v, 61

(k) 1 2 3 4 2 7r53h2 12~ 5(#)@ (,k) ( )

v (-]

Taas > & () * 2502 & CEC AN
6(1 )—6 (rk)(k) ’
12 " m ()
Glv-1)1/( 2 \? +2EZ; 91(') 91(” nl(ik)(k) () iesl) 08’{) n(lk)(@V(k)
=T (M) 807 Sy T e '
wf & 2
oo 60
448 (zx {(ik)(k) V(’k)
(k k 2
G 3 (W(zk)‘w<k>+9’ S Sy ()(k)>
2 783 n? R f(iﬂ)(k) V(’A)
() ; 2
oo (oo 55 gunl™)
e Som *)
b 4 o) . N SR »
e <W<f*>w<k> It | [ Wiy i+ 35 e
+2 Ezik E(ik)(k) V(i;f)

46 3 (B Yt o)_g®),()® 1—uwfk>+WEk>
+1—21/7ns3h2<122’ 2 [ ( o )”’ T NOCIMO!

B 0TV o) ) ()@
+%uzﬂ7()(e,( )—6,(k>>n,( )(”v(#)
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