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Abstract 
The mechanical failure of battery electrode, caused by the cyclic diffusion-induced stress, is generally 
thought to be a direct reason leading to the loss of capacity and deterioration of performance for Li-
ion battery. In the present work, the cyclic plasticity behaviour of primary electrode particle under 
electrochemical-mechanical condition is evaluated by using the Linear Matching Method (LMM). The 
coupled diffusion-stress analysis of electrode particle during lithiation-delithiation process is 
performed with the developed finite element subroutines as the groundwork for the subsequent cyclic 
plasticity assessment. The shakedown boundaries are established for electrode particle considering 
the variation of particle diameter by means of the LMM. ABAQUS full cyclic incremental analysis is 
employed to verify the applicability and accuracy of the obtained boundary. Two types of failure 
mechanisms known as low-cycle fatigue and ratcheting are investigated for particle subjected to 
loading history out of shakedown boundary. Steady state cycle analysis is conducted to study the 
generation of plastic strain range of particle under certain electrochemical-mechanical condition and 
the corresponding low-cycle fatigue damage is assessed. Different forms of ratcheting boundaries for 
electrode particle with various dimensions are created and the influences of cyclic current density and 
mechanical load on cyclic plasticity limits are clarified. The established critical failure diagrams will 
offer the instructional information regarding the design of electrode material in microscale within 
designated electrochemical condition.    

Keywords: Li-ion battery electrode, Diffusion induced stress, Cyclic plasticity behaviour, The linear 
matching method   

1. Introduction 
Lithium-ion battery is widely regarded as a promising solution for coping with energy crisis and has 
been commonly used for portable electronics, electric vehicles, aerospace applications, etc. [1, 2, 3]. 
Working as a cyclic energy system, the battery runs on the basis of Li-ion inserting into and extracting 
from electrode. The swell and shrink of electrode caused by this lithiation-delithiation behaviour will 
result in the diffusion-induced stress (DIS) [4, 5, 6], which has been investigated by a large number of 
researchers with adopting various methods. Christensen and Newman [7] have derived a 
mathematical model for studying the concentration and stress fields of particle structure under 
lithiation-delithiation condition. Zhang et al. have studied the DIS generated in an ellipsoidal particle 
by using the finite difference method and finite element methods [8]. Weng et al. [9] have presented 
an analytical model for studying the diffusion-induced stress in nanowire electrode under 
galvanostatic and potentiostatic operations. Cui et al. have established a stress-related chemical 
potential and applied it to investigate the DIS within silicon particle [10]. Korsunsky and co-workers 
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[11] presented an explicit closed form approximate solution for intercalation stress in spherical 
particle, which provides a basis for the subsequent damage assessment of Li-ion battery electrode. In 
our preliminary work, we [12] have developed the diffusion driven approach and the chemical 
potential driven approach in commercial finite element software ABAQUS to study the evolution of 
diffusion-induced stress within primary electrode particle. Besides, for some materials, the volumetric 
change caused by lithiation-delithiation behaviour is relatively large and large deformation theory is 
required to be applied. When studying the mechanical failure in silicon electrode, An et al. presented 
a finite element based numerical method to investigate the coupled diffusion and large deformation 
problem [13]. Yang and co-workers have employed the large deformation theory to study the 
diffusion-induced buckling of silicon nanowire electrode [14] and the formulated diffusion equation 
and the theory of nonlinear elasticity to analyze the influence of local deformation velocity on the 
evolution of diffusion-induced stress for large deformation electrode [15]. Wen et al. [16] have found 
that the large deformation and the change of elastic material properties both influence the validity of 
Stoney-equation for in-situ stress detection in thin film electrode. A variational-based coupled chemo-
mechanical model is established by Zhang et al. [17] to research the phase field fracture and large 
plastic deformation caused by diffusion for silicon electrode.  

One severe consequence from diffusion induced stress is the occurrence of cyclic plasticity behaviour 
like plastic shakedown or ratcheting, which is thought to be a major factor affecting the mechanical 
stability and electrochemical performance of battery [18, 19]. Brassart and cooperators [19] have 
applied a coupled diffusion and finite-strain plasticity theory to study the intercalation-deintercalation 
cycles of electrode particle and presented the effects of elastic behaviour, elastic shakedown and 
plastic shakedown on the electrochemical performance of electrode. Haftbaradaran and Gao [20] 
have investigated the ratcheting behaviour in Si island electrode under cyclic lithiation-delithiation by 
performing theoretical and numerical calculations. A solution has been presented to obtain the critical 
size for avoiding the plastic deformation and ratcheting failure. Xu et al. [21] have provided an 
analytical model to simulate the ratcheting mechanism of flexible planar Sn electrode considering 
bending deformation. In another work of this research group [22], the ratcheting behaviour is 
investigated for both thin film electrode and negative Poisson's ratio electrode. Guarding against the 
cyclic plasticity accumulation or incremental plastic collapse is crucial in maintaining structural 
integrity of battery electrode. However, the complexity of cyclic plasticity mechanisms makes it not 
easily accessible to obtain the analytical solutions. Hence, advanced computational method such as 
incremental Finite Element Analysis (FEA) is required to model these post yielding behaviour. This 
step-by-step elastic-plastic method can be applied to investigate the structure response under a 
combination of various loads, but it will consume enormous computational efforts to produce critical 
plasticity boundaries like Bree diagram [23].  

For efficiently obtaining boundary diagram to avoid alternating plasticity or incremental plastic 
collapse, a number of direct methods, including the mathematical programming methods [24-26], the 
Uniform Modified Yield (UMY) surface method [27], the Generalized Local Stress Strain (GLOSS) r-node 
method [28], the Elastic Compensation Method (ECM) [29] and the Linear Matching Method (LMM) 
[30, 31], built on the Koiter's [32] kinematic and the Melan's [33] static theorems have been developed 
and applied in shakedown and ratcheting analyses. In these methods, the LMM has been 
demonstrated to be capable of providing accurate evaluations on cyclic plasticity behaviour for 
complex structures under various loading conditions [34, 35], and has also been verified by comparing 
with experimental tests [36]. Besides, the LMM ABAQUS user subroutines [37] have been solidated by 
R5 [38] research program of British Energy Generation Ltd. (BEGL) as commercial standard, and widely 
used in academic research and industrial community. Therefore, the Linear Matching Method is 
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adopted in this work to simulate the post yielding behaviour of electrode particle under cyclic 
electrochemical-mechanical condition. 

The objective of this work is to investigate and evaluate the cyclic plasticity failure of primary electrode 
particle under electrochemical-mechanical condition by utilizing the LMM. With the developed finite 
element subroutines, the coupled diffusion-stress analysis of electrode particle is conducted for 
providing the linear elastic solutions for the subsequent cyclic plasticity assessment in the LMM. The 
shakedown limits and trends of primary particle considering the changing of particle diameter are 
systematically investigated by using the LMM. ABAQUS step-by-step analysis is adopted to verify the 
accuracy of the results obtained from the LMM. Low-cycle fatigue damage of electrode particle is 
evaluated using the calculated plastic strain range from steady state cycle analysis by the LMM. The 
ratcheting boundaries are also built up so as to avoid the incremental plastic collapse of electrode 
particle experiencing electrochemical-mechanical load.  

2. Theoretical Background 
2.1. Diffusion problem 
2.1.1 Coupled diffusion-stress problem 
The diffusion process obeys the following mass conservation rule [8, 39]: 

     !"
!#
+ 𝛻𝐽 = 0                                                               (1) 

Where 𝑐 and 𝜏	denote concentration and time. 𝐽	represents diffusion flux.  The diffusion flux can be 
expressed as Eq. (2) in classical Fick’s law, where 𝐷	denotes the diffusion coefficient. The interaction 
between diffusion and stress generation can be implemented by introducing the stress effect in 
modifying the diffusion coefficient according to Ref. [40], shown as Eq. (3) 

                                                               𝐽 = −𝐷𝛻𝑐                                                                  (2)                                

                                                          𝐷 = 𝐷$ exp .
Ω&!
'(
/                                                             (3) 

Where 𝐷$ is the diffusion coefficient without considering stress effect. Ω and 𝜎) represent the partial 
molar volume of Li-ion and the hydrostatic stress. The effect of stress on diffusion is thereby 
incorporated in updating the diffusion coefficient and diffusion flux. The diffusion boundary condition 
in the coupled diffusion-stress analysis is set as Neumann boundary condition, as shown below. 𝑖* in 
equation represents the current density acting on the particle surface, and 𝐹+is Faraday constant.  

                                                                                   𝐽 = ,"
-#

                                                                                  (4) 

In the coupled diffusion-stress analysis, due to the fact that the rigidity of bonding material 
surrounding the particle is far less than that of the particle, it is accessible to make the assumption 
that there is no traction acting on the particle surface. The mechanical boundary condition can then 
be given as traction-free surface for single particle having no contact with other particles and shown 
as Eq. (5) [8], where 𝑙, 𝑚, 𝑛 are direction cosines between axis and external normal. It is worth noting 
that the Eq. (5) does not apply for multiple particles contacting each other.    

 𝐹./ = 𝜎/𝑙 + 𝜏/0𝑚+ 𝜏/1𝑛 = 0                                                          (5a) 

𝐹.0 = 𝜏0/𝑙 + 𝜎0𝑚+ 𝜏01𝑛 = 0																																																								    (5b)	

					𝐹.1 = 𝜏1/𝑙 + 𝜏10𝑚+ 𝜎1𝑛 = 0																																																															  (5c) 
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2.1.2 Finite element implementation  
For implementing the diffusion-stress coupling in finite element software ABAQUS, one can take the 
diffusion behaviour analogous to the heat conduction behaviour [41]. The heat conduction process 
follows the energy conservation law:                                            

𝜌𝑐.
!2
!#
+ 𝛻𝑞 = ∅                                                            (6) 

𝜌 ,𝑐!, ∅ are density, specific heat, internal heat source. 𝑡 	and 𝑞  are temperature and heat flux 
respectively. It is available to analogize mass diffusion with heat conduction by using the following 
hypothesis.  
                                                                                                                

                                                  (7)                                 

 

Additionally, the thermal expansion coefficient can be replaced by partial molar volume with 𝛼 = Ω
3

 
[8]. The aforementioned formulas make it available for converting ABAQUS coupled thermal-stress 
analysis to coupled diffusion-stress analysis with developing UMATHT subroutine [42]. 

2.2. The framework of Linear Matching Method 
In this work, we consider a structure experiencing a cyclic history of diffusion-induced stress 𝜆4𝐷(𝑥, 𝑡) 
throughout its volume V and cyclic surface load 𝜆5𝑃(𝑥, 𝑡) acting on portion of the structure surface 
𝑆(. 𝜆 herein represents a scalar load multiplier and the rest part of structure surface 𝑆6 (𝑆 = 𝑆( + 𝑆6) 
is fixed. One loading cycle is assumed to be in the time interval 0 ≤ 𝑡 ≤ ∆𝑡. The material of the 
structure is set as isotropic, elastic-perfectly plastic and obeys von Mises yielding condition. The linear-
elastic solution of the aforementioned loading condition can be given as 

𝜎E,7(𝑥, 𝑡) = 	 𝜆4𝜎E,74(𝑥, 𝑡) +	𝜆5𝜎E,78(𝑥, 𝑡)                                    (8) 

𝜎E,74(𝑥, 𝑡)  and 𝜎E,78(𝑥, 𝑡)  represent the linear-elastic solutions produced by 𝐷(𝑥, 𝑡) and 𝑃(𝑥, 𝑡) 
respectively. 

After plenty of cycles, the stresses and strain rates will approximate to a cyclic state, i.e., 

𝜎,7(𝑡) = 𝜎,7(𝑡 + ∆𝑡),												𝜀,̇7(𝑡) = 𝜀,̇7(𝑡 + ∆𝑡)                              (9) 

The cyclic stress history herein consists of three components, 

                                               𝜎,7(𝑥, 𝑡) = 𝜆𝜎E,7(𝑥, 𝑡) + 𝜌̅,7(𝑥) + 𝜌,79 (𝑥, 𝑡)                                 (10) 

Where 𝜆𝜎E,7 represents the elastic stress solution, 𝜌̅,7 is a constant residual stress field in equilibrium 
with no surface traction acting on 𝑆( and corresponds to the residual stress filed at the start and end 
of the cycle. 𝜌,79  denotes the variation of residual stress within the cycle and follows 

𝜌,79 (𝑥, 0) = 𝜌,79 (𝑥, ∆𝑡)                                                  (11) 

2.2.1. Evaluation of the shakedown limit 

The shakedown analysis in the LMM calculates both the upper and lower bounds of shakedown limit 
using the Koiter's upper bound theorem and Melan’s lower bound theorem respectively. Koiter’s 
theorem presents that the shakedown behaviour will not happen if any kinematically admissible 
strain rate can be satisfied such that the strain field is compatible with the applied displacements and 
the plastic dissipation is less than or equal to the applied work. Melan states that the 

  t=c 														∅ =0      

  q=J             	𝜌𝑐.=1 
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structure will enter shakedown state if there is a constant residual stress field such that, for any 
combination of residual stress filed and elastic stress field caused by the applied load, the yielding 
criterion is not violated within the whole structure.  

The cyclic stress history in shakedown problem can be simplified to the following form, as the variation 
of residual stress 𝜌,79  equals to zero. 

𝜎,7(𝑥, 𝑡) = 𝜆𝜎E,7(𝑥, 𝑡) + 𝜌̅,7(𝑥)                                            (12) 

The upper bound shakedown limit 𝜆:;< can be obtained through 

𝜆:;< = ∫ ∫ &$>̇@
∆&
' (>̇())424C*

∫ ∫ (&D()>̇())
∆&
'* 424C

                                                 (13) 

Where 𝜎0	 is the yield strength of the material, 𝜀̇ ̅ and 𝜀,̇7  represent the effective strain rate and 
kinematically admissible strain rate. In shakedown problem, the combination of the elastic stress fields 
and constant residual stress field under von Mises yielding condition will not lead to the accumulation 
of plastic strain. It is thereby to obtain the lower bound of shakedown limit through applying the 
following equation at all integration points for each loading instances. 

𝑓(𝜆E;< 𝜎E,7(𝑥, , 𝑡) + 𝜌̅,7(𝑥,)) ≤ 0                                            (14) 

𝜆E;< 	in equation denotes the multiplier of lower bound shakedown limit.  

2.2.2. Evaluation of the ratcheting limit 
The evaluation of ratcheting limit can be decomposed to two parts [43]. The first part is to solve the 
varying residual stress field 𝜌,79 	which is implemented as the Direct Steady Cycle Analysis (DSCA) of 
LMM framework. The DSCA involves m iterative cycles, where m=1, 2…M. Each iterative cycle consists 
of n increments, where n=1, 2…N for N load instances. By employing Eq. 15, it is available to calculate 
the constant residual stress 𝜌̅,79 .  

𝜌̅,79 = ∑ ∑ ∆𝜌,79F
*GH

I
JGH (𝑥K,𝑡*)J                                         (15) 

where ∆𝜌,79 (𝑥K,𝑡*)J denotes the changing residual stress corresponding to elastic stress 𝜎,7∆(𝑥K , 𝑡*). 
The varying residual stress 𝜌,79 (𝑥, 𝑡*) at the steady state cycle can then be given as  

𝜌,79 (𝑥, 𝑡*) = 𝜌̅,79 (𝑥) + ∑ ∆𝜌,79 (𝑥, 𝑡K)I*
KNH                                (16) 

The associated converged increment of plastic strain at time 𝑡*is described as  
∆𝜀,7

5 (𝑥, 𝑡*) =
H

OPQ"(/,2")
K𝜎E,7∆

+(𝑥, 𝑡*) + 𝜌,79
+
(𝑥, 𝑡*)L                              (17) 

𝜇̅*  in equation denotes the iterative shear modulus which can be calculated by linear matching 
equation [43]. 𝜎E,7∆  is the linear elastic solution of the predefined cyclic loading and the notation (′) 
represents the deviator component of the stress and strain. 

The second part is to apply the shakedown theorem to calculate the ratcheting limit, where the linear 
elastic solution of the predefined cyclic loading is modified by the changing residual stress 𝜌,79 (𝑥, 𝑡*). 
By using the von Mises yielding criteria, an upper bound multiplier of ratchet limit can be given as  

𝜆 =
∫ ∑ (&$>@(∆>()

" (/,2")))4C,
"-.* G∫ ∑ ((&D()

∆ (/,2")ST()
/ (/,2"))∆>()

" (/,2"))4C,
"-.*

∫ &D()
01 (/)* (∑ ∆>()

",
"-. (/,2"))4C

         (18) 

Where 𝜀N̅∆𝜀,7*O = PO
3
∆𝜀,7*∆𝜀,7*  and ∆𝜀,7*  denotes a kinematically admissible plastic strain rate. The 

ratcheting multiplier λ here defines the capacity of the structure subjected to a combination of cyclic 
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loads to accommodate an additional constant load without ratcheting happens. According to the 
aforementioned framework, the LMM iteratively generates a series of monotonically decreasing 
upper bounds and converges to the least upper ratchet limit for the selected class of displacement 
fields. The aforementioned numerical methods are implemented in ABAQUS [42] by developing user 
subroutines and detailedly described in Ref. [43]. 

3. Problem Description 
3.1. Finite element model and material property 
The model of primary electrode particle is constructed and meshed by employing the finite element 
program ABAQUS. The geometry and mesh configurations are identical in the coupled diffusion-stress 
analysis and cyclic plasticity analysis. For element type, C3D20RT is employed for coupled diffusion-
stress analysis and C3D20R is applied in cyclic plasticity analysis.                                                                                                                  

The adopted properties in numerical work for the NCM material are listed in Table 1. The NCM 
material is assumed as isotropic, elastic-perfectly plastic and obeys von Mises yielding condition in this 
work. The elastic-perfectly plastic constitutive equation ( 𝜎 = 𝐸𝜀	, 𝜀 ≤ 𝜀0; 	𝜎 = 𝐸𝜀0 , 𝜀 > 𝜖0  ) is 
commonly applied to model the stress-strain response for electrode material [47, 48], and is accessible 
to simulate the mechanical behaviour of the material in the lack of hardening material properties. 
Considering the hardening effect is not significant for NCM electrode, the material is assumed to 
follow the elastic-perfectly plastic law in this work. The yield stress of NCM material is to be considered 
within a range, and it is determined by material preparation, material composition, etc. The 
preparation technology for such an oxide electrode material makes it difficult to experimentally 
measure the exact value of the yield strength, which is also rarely reported in the literature. The widely 
used yield stress 100MPa for oxide electrode material having similar lattice structure with NCM is 
employed in this paper. 

According to the section 2.1.2, the diffusion-induced expansion strain can be calculated asΩ
3
∆𝑐 [8, 49]. 

For NCM electrode material, the maximum expansion strain is 3.3761%. Based on the Hooke's law, 
the maximum elastic strain can be obtained as 0.08%. The total strain is less than 4% for NCM material, 
which makes it reasonable to consider the material satisfying small deformation assumption.   

Table 1. Material properties of NCM electrode 

Property	 Value	
Young’s	modulus	(GPa)	 125		[44]	
Poisson	ratio	 0.3	[44]	
Maximum	concentration	(mol/m3)																																																	48230	[45]	
Diffusivity	(cm2/s)	 10-11	[45]	
Partial	molar	volume	(m3/mol)	 2.1E-6	[46]	
Yield	strength(MPa)	 100	

 

3.2. Linear Elastic Solutions  
The theoretical foundation of the Linear Matching Method can be summarized as utilizing a series of 
iterative linear analyses to model the nonlinear material response, and represent the history of stress 
and inelastic strains. Therefore, calculating the linear elastic solutions of electrode particle under 
lithiation-delithiation condition works as the first step before performing the subsequent cyclic 
plasticity assessment. 

By employing ABAQUS with the developed user subroutines, it is available to investigate the 
concurrent diffusion and stress generation process for spherical particle during intercalation-
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deintercalation condition. Fig. 1 shows the history of cyclic diffusion-induced stress for 3um diameter 
electrode particle under 0.3 A/m2 within one cycle. The DoD and SoC on X-axis respectively denote 
the depth of discharge and the state of charge, which are used to describe the status of  electrode 
particle in the lithiation-delithiation cycle. Due to the variation of concentration gradient caused by Li-
ion flow, the diffusion-induced stress presents the initial decreasing and subsequent increasing trends 
in both lithiation and delithiation phases. The LMM applies finite representative loading instants to 
describe the entire loading history and the rest instants with smaller loads are assumed to be 
encompassed. According to Fig. 1, four instants representing extreme situations are employed to 
reflect the cyclic diffusion-induced stress history. The contours of stress and concentration fields at 
these four instants are presented in Fig. 2 (a) and (b) respectively. Instant 1 is the time point at the 
start of lithiation process (discharge phase, DoD 0%), when the residual concentration gradient from 
last working cycle results in the residual stress field. Due to the influx of Li-ion, the concentration 
gradient is rapidly reduced leading to the decrease of diffusion-induced stress, and the instant with 
the minimum stress is defined as instant 2 at lithiation phase  (discharge phase, DoD 0.84%). Hereafter, 
the continuing lithiation makes the concentration gradient reversely magnified, leading to the rise of 
diffusion-induced stress to instant 3  (discharge phase, DoD 100%), which experiences the maximum 
stress in lithiation process. For the delithiation process, it also experiences the initial decrease phase 
and the subsequent increase phase of concentration gradient and stress field due to the outflow of Li-
ion. The inflection point in this process is presented as instant 4 (charge phase, SoC 0.84%) with the 
minimum stress. Hence, the instants with the maximum and minimum stresses in both lithiation and 
delithiation phases are applied to construct the loading cycle.  

Besides, the lithiation caused swelling will result in the extrusion force between neighbouring particles 
as illustrated in Fig. 2 (c), which will further influence the carrying capacity of the configuration. Fig. 1 
also gives the variation of a mechanical reference stress on electrode particle within lithiation-
delithiation cycle, where the extremum of the mechanical stress emerges at the end moment of 
intercalation process when the configuration is assumed to experience the maximum expansion and 
is defined as instant 3  (discharge phase, DoD 100%). The contour of mechanical reference stress at 
instant 3 is given as Fig. 2 (d). This varying mechanical reference stress is applied as the reference load 
for the LMM and is scaled to represent the cyclic plasticity limit of the configuration. 

 
   Fig. 1 The history of diffusion-induced stress under 0.3 A/m2 and mechanical reference stress for 
3um diameter electrode particle within one cycle (DOD - depth of discharge, SOC - state of charge) 
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lithiation DoD 0% (instant 1)       lithiation  DoD 0.84% (instant 2)    lithiation DoD 100% (instant 3)    delithiation SoC 0.84% (instant 4)  

(a) 

 
lithiation DoD 0% (instant 1)       lithiation  DoD 0.84% (instant 2)    lithiation DoD 100% (instant 3)    delithiation SoC 0.84% (instant 4)     

(b) 

 

                             (c)                                                                           (d) 
 Fig. 2 (a) The contours of elastic von Mises effective stress of four selected instants, (b) the contours 

of concentration fields of four selected instants, (c) the schematic diagram of lithiation caused 
extrusion between adjacent particles, (d) the contour of mechanical reference stress at instant 3  

4. Shakedown Assessment 
The shakedown limit in this section is defined as the capacity to withstand cyclic current density 
leading to the generation of diffusion-induced stress and cyclic mechanical load. The LMM is employed 
to perform shakedown analysis and ABAQUS step-by-step inelastic assessment is also conducted so 
as to testify the accuracy of the acquired shakedown boundary from LMM.   

4.1. Shakedown limits of electrode particle 
By calculating different combinations of cyclic current density and mechanical load, it is available to 
obtain the shakedown limit curves for electrode particle subjected to cyclic lithiaion-delithiation 
process. Fig. 3 (a) presents the shakedown boundaries for a primary electrode particle with 3um 
diameter under the cyclic current density and symmetrically isometrical external pressures caused by 
adjacent electrode particles. It is observable that the loading range is separated by shakedown 
boundary to two parts as shakedown zone and cyclic plasticity zone. The Y-coordinate in Fig. 3 (a) 
denotes the strength of current density which leads to the generation of cyclic diffusion-induced stress, 
and X-coordinate in Fig. 3 (a) represents the ratio between the applied mechanical load and 
mechanical reference load. Additionally, the loading conditions on Y-axis of Fig. 3 (a) represent the 
shakedown limits of primary particle subjected to only cyclic diffusion-induced stress, where the 
particle is presumed to have no contact with neighbouring particles when swelling happens.  

It should be highlighted that the different particle arrangements such as schematic diagrams shown 
in Fig. 3 (b) and (c) may also affect the cyclic plasticity limit of electrode particle. In Fig. 3 (b), the 
central particle will withstand two symmetric external pressures during swelling process, and the 
central particle in Fig. 3 (c) will experience four symmetric external pressures accompanying with 
lithiation phase. The cyclic plasticity boundaries for these two scenarios are presented in Fig. 3 (a), 
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and it is noteworthy that the shakedown boundaries under two symmetric external pressures are 
identical with that under four symmetric external pressures. Fig. 4 (a) and (b) provide the elastic von 
Mises stress solutions for particle under two and four mechanical reference loads. It is observed that 
two extra mechanical loads have no impact on the maximum von Mises stress which always emerges 
at where the mechanical load acts. In addition, it is known that the shakedown limit is decided by the 
maximum elastic stress range. Hence, the shakedown limits for particle under two or four isometrical 
external pressures are identical.    
 

 
(a) 

          

  (b)                                                    (c) 
Fig. 3 (a) Shakedown boundaries of 3um diameter particle under cyclic current density and 

mechanical load considering different particle arrangements, the schematic diagrams of different 
particle arrangements, (b) one central particle with two neighbouring particles, (c) one central 

particle with four neighbouring particles.  

 
(a)                                                                (b) 

Fig. 4 The distribution of von Mises stress for 3um diameter particle under (a) two, and (b) four 
mechanical reference loads 
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4.2. ABAQUS step-by-step analysis 
For validating the accuracy of the obtained shakedown limits from the LMM, loading conditions in and 
out of the shakedown boundary are chosen for conducting the ABAQUS step-by-step analyses. Fig. 5 
(a) and (b) present the plastic strain history (PEMAG) for the most dangerous position of the particle 
under load points A and B shown in Fig. 3 (a). The evolution of plastic strain in Fig. 5 (a) presents that 
there will be no more new plastic strain generated after early cycles, which indicates the particle will 
experience shakedown mechanism subjected to load point A. It is observed from Fig. 5 (b) that, the 
produced positive plastic strain is equal to the negative plastic strain for the particle under the load 
point B at the steady state, which shows the reverse plasticity status of the structure. Therefore, the 
applicability of employing LMM to perform the cyclic plasticity evaluation for electrode particle has 
been verified via ABAQUS step-by-step analysis. 

 
(a)                                                                                   (b) 

Fig. 5 Plastic strain history (PEMAG) obtained from ABAQUS step-by-step analyses for cyclic loading 
(a) load point A, (b) load point B 

4.3. Shakedown boundaries with the changing of particle diameter  
Due to the non-uniform size distribution of active material particles in micrometer scale, it is 
significant to investigate how the size variation affects the shakedown boundaries of the particle. Fig. 
6 presents the shakedown boundaries for electrode particle with varying dimensions subjected to 
cyclic current density and mechanical load. The shakedown limits on Y-axis present the permissible 
current density for individual particle losing contact with adjacent particles during swelling process. It 
is observed as general trend that this permissible current density decreases with an increase of particle 
dimension. In our previous work [12], we have also concluded the similar phenomenon that, with just 
considering the effect from current density, the particle with larger size is more vulnerable to initiate 
crack and proceed crack propagation. Fig. 7 (a) and (b) show the maximum von Mises stress during 
the lithiation-delithiation process for particles with diameter 2um and 4um only under 0.15A/m2. It 
can be seen that the stress generated of 2um diameter particle is less than that of the particle with 
4um diameter under the same electrochemical condition, thus the smaller particle is capable of 
withstanding greater current density. 
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Fig. 6 The shakedown limit curves of the electrode particle with various dimensions subjected to 
cyclic current density and mechanical load 

Another notable point is that, under the same current density, the capacity for particle to withstand 
mechanical load is in positive correlation with the increasing of particle dimension. Fig. 7 (c) and (d)  
illustrate the maximum von Mises stress for particles with diameter 2um and 4um only under 
mechanical reference load. In contrast to the electrochemical load, the particle with smaller size will 
experience relatively greater stress than that of the larger particle under the same mechanical load, 
which makes the larger particle accessible to withstand more mechanical load. The aforementioned 
mechanisms decide the changing trend of shakedown boundaries for particles with varying 
dimensions, and the change of particle size makes considerable impact on the carrying capacity of 
electrode particle under electrochemical-mechanical condition.   

 
(a)                                                 (b) 

                             
(c)                                                 (d) 

Fig. 7 The maximum von Mises stress under 0.15A/m2 (a) particle with diameter 2um, (b) particle 
with diameter 4um, the maximum von Mises stress under mechanical reference load (c) particle 

with diameter 2um, (d) particle diameter 4um  
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5. Steady state cycle and ratchet limit analysis 
Two categories of failure mechanisms will occur when the configuration subjects to the loading 
condition out of shakedown boundary. In a loading cycle at steady state, when the produced plastic 
strain forms a closed cycle, the structure is assumed to be in reverse plasticity status. Associating the 
generated plastic strain range with material fatigue parameters, it is available to assess the low-cycle 
fatigue damage for the structure. Alternatively, if the plastic strain settles into an open cycle, the 
ratcheting behaviour is considered to happen where the strain accumulation will lead to the 
incremental plastic collapse of the structure.       

5.1. Steady state cycle analysis 
By employing the direct steady cycle analysis in the LMM, it is accessible to efficiently obtain the plastic 
strain range of the structure under certain loading condition and further evaluate the corresponding 
low-cycle fatigue damage. Fig. 8 (a) presents the shakedown boundary of 3um particle with three 
loading histories out of shakedown boundary. The locations of these three loading points are relatively 
far from the shakedown boundary so as to present more obvious plastic strain range and low-cycle 
fatigue damage. Fig. 8 (b), (c) and (d) illustrate the corresponding contours of plastic strain range for 
3um particle under these loading histories, where the maximum values of plastic strain range reach 
0.09905, 0.03395 and 0.001335 respectively. For loading point 1 and 2, the plastic strain range is 
mainly dominated by the cyclic mechanical load, where the significant plastic strain range appears to 
occur at the area applied with mechanical load. Whereas for loading point 3, the cyclic diffusion-
induced stress works as the primary effective load. The maximum plastic strain range locates at the 
outermost layer of the particle where the maximum diffusion-induced stress happens. 

 
(a) 

                                                              

       (b) loading point 1                              (c) loading point 2                        (d) loading point 3 
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(e) loading point 1                              (f) loading point 2                        (g) loading point 3 

Fig. 8 (a) shakedown boundary of 3um particle with selected loading points, the contours of plastic 
strain range of 3um particle under (b) loading point 1, (c) loading point 2, (d) loading point 3, the 

contours of ratcheting strain of 3um particle under (e) loading point 1, (f) loading point 2, (g) loading 
point 3 

According to the Manson-coffin equation shown below, the plastic strain range can be used as the 
input parameter to predict the fatigue life.  

                                                                                ∆>;
O
= 𝜀UV(2𝑁)"

+                                                                     (19) 

where ∆𝜀5 is the plastic strain range, 2N  denotes the number of reversals to failure. 𝜀Ú 	and 𝑐V  
represent two empirical constants known as the fatigue ductility coefficient and the fatigue ductility 
exponent respectively. By formula transformation, it is available to obtain the caused fatigue damage 
per cycle at steady state.  

                                                                          2(
O><

+

∆>;
)
.
=+ = H

F(
= 𝑑𝐷J,                                                             (20) 

Table 2 presents the fatigue ductility coefficient and fatigue ductility exponent for NCM ternary 
material [50]. According to the generated plastic strain range, it is thereby available to obtain the 
corresponding low-cycle fatigue damage per cycle of electrode particle at steady state. Table 3 shows 
the fatigue damage per cycle of the most dangerous position on particle and the corresponding 
number of cycles to low-cycle fatigue failure under three loading histories. It is obvious that, under 
different loading conditions, the generated fatigue damage varies greatly. For loading points 1 and 2, 
the generated low-cycle fatigue damage makes a relatively great contribution to the structural failure. 
While for the loading point 3, the low-cycle fatigue caused damage is not significant. Additionally, the 
ratcheting strain can also be given by using the direct steady cycle analysis, as shown in Fig 8, where 
the ratcheting strain is defined as the net accumulation of the plastic strain per cycle. It is available to 
see that, there is relatively small ratcheting strain generated under loading point 3. While for the 
loading points 1 and 2, the obvious ratcheting strain will accumulate at the mechanical load acting 
area and the ratcheting failure assessment is required to conduct. 

Table 2. Fitted parameters in the fatigue damage model 
𝜀!́ 𝑐′ 
3.184 -0.688 

 

Table 3. Fatigue damage and number of cycles to fatigue failure 
 Maximum	damage	per	cycle Number	of	cycles	to	failure	
Load	point	1 4.7e-3 212 
Load	point	2 9.9e-4 1010 
Load	point	3 9.0e-6 111111 
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5.2. Ratcheting assessment 
A body experiencing ratcheting behaviour, which eventually results in the incremental plastic collapse, 
should be rigorously avoided. The ratcheting limit in this work is defined as the capacity for 
configuration under a predefined cyclic load to accommodate an extra constant load without 
representing ratcheting failure.  

With the calculation of different combinations of cyclic current density and constant mechanical load, 
we plot the ratcheting boundaries for 3um particle shown in Fig. 9, where the shakedown boundaries 
are also given. In this case, the ratcheting limit can be expressed as the capacity for structure 
experiencing cyclic current density to withstand extra constant mechanical load. For the Y-axis, the 
arbitrary applied cyclic current density is normalized with respect to a reference current density set 
as 0.3A/m2. The entire loading range is divided by boundaries to three zones known as shakedown 
zone, reverse plasticity zone and ratcheting zone, which makes it easily accessible to understand the 
structural state under certain loading condition. The contour plot in Fig 9 presents the ratcheting 
behaviour caused failure state of electrode particle, which indicates that the strain accumulations are 
mainly centered on the mechanical loading acting area.  

 

 

Fig. 9 Ratcheting and shakedown boundaries for 3um particle subjected to cyclic current density and 
constant mechanical load 

Considering the variation of particle diameter, we present the ratcheting boundaries for electrode 
particle with various dimensions under cyclic current density and constant mechanical load in Fig. 10. 
As explained in shakedown analysis, it is concluded that the capacity for particle to withstand 
electrochemical load decreases with an increase in the particle size. On the contrary, larger particle is 
able to bear more mechanical load. Hence, the ratcheting boundaries for electrode particles with 
various dimensions evolve in this way.  
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Fig. 10 Ratcheting and shakedown limit curves for electrode particle with various dimensions under 
cyclic current density and constant mechanical load 

For comprehensively investigating the carrying capacity of electrode particle under electrochemical-
mechanical load, we present the ratcheting and shakedown limit curves in another way shown in Fig. 
11, where the cyclic plasticity limit is expressed as the particle subjected to a coupled cyclic current 
density - mechanical load to withstand an additional constant mechanical load . The values 
on Y-axis represent the ratio between the applied coupled current density - mechanical load and 
coupled reference current density - mechanical load. As the cyclic plasticity carrying capacity of small 
particle is sensitive to mechanical load, both the shakedown and ratcheting limits of 1um and 2um 
particles are greatly reduced with the adding of cyclic mechanical load to the predefined loading 
conditions. On the contrary, the cyclic plasticity limits of bulky particles (diameter 4um and 5um) are 
rarely modified due to the better carrying capacity to mechanical load, but it is greatly restricted by 
the cyclic current density. From the view of general performance under electrochemical-mechanical 
load, particle with 3um diameter presents better mechanical stability under large range of 
electrochemical-mechanical condition and this particle size is recommended in NCM material 
preparation.  

 
Fig. 11 Ratcheting and shakedown limit curves for electrode particle with various dimensions under 

coupled cyclic mechanical load - current density and constant mechanical load 

DPD P
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6. Conclusion 
In the present work, we have comprehensively analyzed the cyclic plasticity behaviours of electrode 
particle under electrochemical-mechanical condition by employing the shadedown analysis, direct 
steady cycle analysis and ratchet analysis using the corresponding Linear Matching Methods. The 
coupled diffusion-stress analyses are performed with the developed ABAQUS subroutines as the basic 
work for failure assessment. Three categories of structural response, known as shakedown, reverse 
plasticity and ratcheting, are detailedly studied for primary electrode particle. The critical failure 
diagrams are established for electrode particle with considering the variation of particle diameter for 
avoiding the rapid material failure and related performance deterioration. 

With the calculation of different combinations of cyclic current density and mechanical load by using 
the LMM, the shakedown boundaries of electrode particle with various dimensions are established. It 
is observed as general trends that, the endurance of electrode particle against current density, which 
leads to the generation of cyclic diffusion-induced stress, will decrease with an increase of particle 
dimension. On the contrary, larger particle is proved to be able to withstand greater mechanical load. 
The aforementioned mechanisms codetermine the evolution trends of shakedown boundaries for 
particles with various dimensions. For verifying the accuracy of the results from the LMM, ABAQUS 
step-by-step analysis is adopted to observe structural response under certain loading conditions. 

For the configuration subjected to loading history out of the shakedown limit, two failure scenarios 
are investigated, known as low-cycle fatigue failure and ratcheting failure. By using the direct steady 
cycle analysis in the LMM, it is accessible to efficiently assess the plastic strain range and identify the 
most dangerous location for particle under different loading conditions at steady state. Associating 
with the presented low-cycle fatigue model, we evaluate the low-cycle fatigue damage of electrode 
particle under representative loading cycles. Two different forms of ratcheting boundaries of 
electrode particle are established to clarify the influence from cyclic current density as well as 
mechanical load on cyclic plasticity limits, and avoid the rapidly plastic collapse of electrode particle. 
It is concluded that, the particle with 3um diameter presents relatively better mechanical stability 
under large range of electrochemical-mechanical load and is recommended in the preparation of NCM 
cathode material. These results present a comprehensive understanding of cyclic plasticity failure of 
electrode particle under electrochemical-mechanical condition. 
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