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Abstract

Motivated by the One-Drop-Filling (ODF) method for the industrial manufacturing of Liquid Crystal Displays (LCDs),

we analyse pressure-driven flow of a nematic in a channel with dissipative weak planar anchoring at the boundaries of the

channel. We obtain quasi-steady asymptotic solutions for the director angle and the velocity in the limit of small Leslie angle,

in which case the key parameters are the Ericksen number and the anchoring strength parameter. In the limit of large Ericksen

number the solution for the director angle has narrow reorientational boundary layers and a narrow reorientational internal

layer separated by two outer regions in which the director is aligned at the positive Leslie angle in the lower half of the channel

and the negative Leslie angle in the upper half of the channel. On the other hand, in the limit of small Ericksen number

the solution for the director angle is dominated by splay elastic effects with viscous effects appearing at first order. As the

Ericksen number varies there is a continuous transition between these asymptotic behaviours and, in fact, the two asymptotic

solutions capture the behaviour rather well for all values of the Ericksen number. The steady state value of the director angle

at the boundaries and the timescale of the evolution towards this steady state value in the asymptotic limits of large and small

Ericksen number are determined. In particular, using estimated parameter values for the ODF method it is found that the

boundary director rotation timescale is substantially shorter than the timescale of the ODF method, suggesting that there is

sufficient time for significant transient flow-driven distortion of the nematic molecules at the substrates from their required

orientation to occur.
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I. INTRODUCTION

A. Industrial Manufacturing of Liquid Crystal Displays

The industrial manufacturing of liquid crystal displays (LCDs) involves the creation of a thin layer of nematic

liquid crystal (hereafter simply referred to as “nematic”) encapsulated between two solid substrates with the appro-

priate optical properties required for the correct functioning of the final device. The substrates typically consist of

glass or plastic plates patterned with electrodes of indium tin oxide (ITO) and coated with thin alignment layers,

whose purpose is to ensure that the nematic molecules have the required orientation at the substrates in the final

device. The manufacturing of LCDs was previously carried out using the capillary-filling method [1], but, due to its

superior scale and speed, this has now been almost entirely replaced by the One-Drop-Filling (ODF) method [1–3].

In capillary filling, the substrates are positioned parallel to each other with a typical gap size of around 5 µm [2].

The nematic is then introduced into this gap from one side of the device and allowed to fill the space between the

substrates by capillary action, often aided by an applied pressure difference (an enhancement sometimes referred to

as “vacuum filling”). Even with an applied pressure gradient, the nematic flow is still slow, and as such, capillary

filling was a bottleneck in the manufacturing process, leading to manufacturing times of the order of a day [2, 4]. In

ODF, the liquid crystal material in its nematic phase is dispensed onto the lower substrate in the form of droplets.

These droplets are allowed to equilibriate and then the upper substrate is lowered towards the droplet-laden lower

substrate, squeezing the droplets together to form the nematic layer. The introduction of the ODF method signifi-

cantly improved manufacturing speeds so that manufacturing times were reduced from of the order of a day to of the

order of an hour [2, 4], and are now even shorter than this. However, since ODF is significantly faster than capillary

filling, it involves significantly higher nematic flow speeds, which may cause transient flow-driven distortion of the

nematic molecules at the substrates from their required orientation. This may lead to permanent or semi-permanent

flow-driven misalignment of the orientation of the molecules in the alignment layers, which may in turn degrade the

optical properties of the final device. In particular, flow-driven misalignment of the orientation of the molecules in

the alignment layers may be the cause of spurious optical effects known as “ODF mura” [5–7]. We have previously

proposed a simple model for the formation of ODF mura due to coalescing droplets of a nematic [7] and have investi-

gated how they might arise in the context of squeeze-film flow of a nematic [8]. In the present work we investigate a

rather different fundamental aspect of the ODF method that may bring new insight into the formation of ODF mura,

namely the possibility that significant transient flow-driven distortion of the nematic molecules at the substrates from

their required orientation may occur during this method.

B. The Alignment Layers

In industrial manufacturing of LCDs, the precision to which the required orientation of the nematic molecules

at the substrates must be maintained is often extremely high. For instance, in vertically aligned nematic (VAN)

devices, in which the required nematic orientation is close to 90◦, deviations in the orientation as small as 1◦ can

lead to unacceptably large changes of an order of magnitude in the LCD contrast ratio [9]. The alignment layers are
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therefore crucial components of any LCD device. In particular, they are, in large part, responsible for determining

its optical characteristics [10].

There are a number of methods for fabricating alignment layers. A widely-used method for creating a preferred

orientation at the substrates is the Polymer Stabilised (PS) method. This method involves adding an ultraviolet (UV)

curable monomer to the nematic and then applying a voltage difference across the device while exposing it to UV light

in order to achieve the desired orientation at the polymer layers which form on both plates due to phase separation

[11–13]. Another method for creating a preferred orientation at the substrates involves coating the plates with a

layer of polyimide, and then mechanically rubbing these layers to create nano-grooves in their surfaces with which the

nematic tends to align [10]. Other devices use photo-activated alignment in which the plates are coated in a polymer

layer whose surface orientational properties are changed when they are exposed to polarised light [14]. All of the

methods for creating an alignment layer rely on some form of adhesion between the molecules of the alignment layer

and those of the nematic, which leads to an energetically preferred nematic orientation at the substrates. Depending

on the alignment material used, the physical mechanism for this adhesion can be either mechanical or electrostatic

[10]. The degree of preference for the preferred nematic orientation is related to the depth of the energy well in the

interaction potential between the alignment layer and the nematic, and is measured by an appropriate anchoring

strength.

C. Dissipative Weak Anchoring

The aim of the present work is to investigate the possibility that significant transient flow-driven distortion of

the nematic molecules at the substrates from their required orientation may occur during the manufacture of LCDs

using the ODF method. To do this we use the standard continuum model for the flow of a nematic, namely Ericksen–

Leslie theory [15–17]. Many other theories have been used to describe nematics, including Q-tensor theory [18],

Berris–Edwards theory [19] and statistical theories [20], but Ericksen–Leslie theory is appropriate for the lengthscales

present in device manufacturing. The Ericksen–Leslie equations describe the coupling of the average orientatation of

the nematic molecules, known as the director n, the velocity u and the pressure p through laws of conservation of

mass, linear momentum and angular momentum [17]. In order to accurately model the behaviour of the director at

the substrates, we consider both the interaction energy between molecules of the alignment layers and those of the

nematic, and, importantly, the dissipation of energy that occurs close to the substrates. The competition between the

preferred orientation and the orientation in the bulk of the nematic layer, which may be affected by forces due to flow

or electric fields, means that the orientation of the director at the substrates may differ from the preferred orientation,

albeit at an energy cost. Such a situation is usually referred to as “weak anchoring” [17, 21]. In particular, we use

the so-called Rapini–Papoular anchoring energy [22], which models the preference of the director at the substrates

to be at the preferred orientation. The Rapini–Papoular anchoring energy ω [22] is of the form ω = γ − A (n0 · n)2,

where n0 is the preferred orientation, γ is the isotropic interface tension, and A (≥ 0) is the anchoring strength. The

Rapini–Papoular anchoring energy ensures that the surface energy is at a minimum when n and n0 are parallel. In

particular, “planar anchoring” is when n0 is parallel to the substrates, and “homeotropic anchoring” is when it is

perpendicular to the substrates. The anchoring strength A (i.e. the binding energy per square metre) is a material
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parameter which measures the strength of the adhesion between the alignment layer and the nematic. It has units

of N m−1 (i.e. J m−2), and its values are typically found experimentally to lie in the range A = 10−5–10−3 N m−1

[23, 24]. The anchoring strength depends on both the nematic and the alignment material used [25]. Two important

limits of weak anchoring are zero (or no) anchoring, corresponding to the limit A → 0, in which the director has no

preferred orientation at the substrates, and strong (or infinite) anchoring, corresponding to the limit A→∞, in which

the director at the substrates is always aligned at the preferred orientation. While the anchoring energy describes

the preference of the director for the preferred orientation, it does not capture the dynamical processes which take

place close to the substrates. To include these we need to include surface dissipation, which models the dissipation

of energy close to the substrates. We assume that the only such dissipation of energy occurs due to the rotation of

the director. The surface dissipation is therefore proportional to γS (∂n/∂t)
2
, where γS (≥ 0) is the surface rotational

viscosity. The surface rotational viscosity γS has units of Pa s m, and its values are typically found experimentally

to lie in the range γS = 10−8–10−6 Pa s m [26–28]. We use the term “dissipative weak anchoring” for the combined

effects of weak anchoring and surface dissipation studied in the present work.

A dissipative weak anchoring condition has been used to study problems related to device switching, such as

relaxation of director profiles and back flow (see, for example, [26, 29–35]), while Kléman and Pikin [36] formulated

a dissipative weak anchoring condition in the context of Couette flow but only considered steady solutions. However,

to the best of the authors’ knowledge, surprisingly little research has thus far been carried out on the influence of

dissipative weak anchoring on the problem treated in the present work, namely channel flow. There has, however,

been previous work on channel flow of a nematic without surface dissipation (for a summary of some of the early

work on this problem see, for example, Quintans Carou et al. [37, 38] and the references therein). In particular,

Quintans Carou et al. [37, 38] considered steady flow of a nematic in a slowly-varying channel in the special case

of strong planar anchoring (i.e. in the special case in which the director at the boundaries of the channel is always

aligned parallel to the boundaries). Specifically, Quintans Carou et al. [37, 38] used a combination of asymptotic and

numerical methods to analyse the problem in the limit of small Leslie angle (defined in Section II C). Also relevant

here is the more recent work on the transitions which occur in channel flow of a nematic with homeotropic anchoring

observed experimentally by Sengupta et al. [39], and subsequently investigated theoretically by Anderson et al. [40]

and Crespo et al. [41] for weak homeotropic anchoring, and numerically by Batista et al. [42] for weak homeotropic,

planar and hybrid (i.e. homeotropic at one boundary and planar at the other boundary) anchoring.

II. MODEL FORMULATION

A. Governing Equations and Boundary Conditions

Consider unidirectional flow of a nematic with velocity in the x-direction within a two-dimensional channel

with fixed boundaries located at z = 0 and z = h, as shown in Figure 1, where (x, z) are Cartesian coordinates

and t denotes time. The flow is driven by a prescribed constant pressure gradient in the x-direction, denoted by

G = −dp/dx (> 0), where p = p(x) is the fluid pressure, and we assume that the director remains in the (x, z) plane.
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FIG. 1. Unidirectional pressure-driven flow of a nematic within a two-dimensional channel with fixed boundaries located at

z = 0 and z = h. The flow is driven by a prescribed constant pressure gradient in the x-direction, G = −dp/dx (> 0), and

is indicated by the black solid arrows. The director n with director angle φ is indicated by the grey lines. The Cartesian

coordinates (x, z) are also indicated.

We therefore seek solutions for the director n = n(z, t) and the velocity u = u(z, t) in the channel in the forms

n = (cos (φ(z, t)) , 0, sin (φ(z, t))), (1)

u = (u (z, t) , 0, 0), (2)

where φ = φ(z, t) is the angle between the director and x-axis, hereafter referred to as the director angle, as shown

in Figure 1. For this situation, the Ericksen–Leslie equations [15–17] for the director angle φ and the velocity u are

given by

γ1
∂φ

∂t
= f(φ)

∂2φ

∂z2
+

1

2
f ′(φ)

(
∂φ

∂z

)2

−m(φ)
∂u

∂z
, (3)

ρ
∂u

∂t
= G+

∂

∂z

(
g(φ)

∂u

∂z
+m(φ)

∂φ

∂t

)
, (4)

where the constants ρ and γ1 are the density and the bulk rotational viscosity, respectively. For a full derivation of

the Ericksen–Leslie equations for rectilinear flow, see, for example, Appendix A of Crespo et al. [41]. The elasticity

function f(φ) and viscosity functions m(φ) and g(φ) appearing in (3) and (4) are defined by

f(φ) = K1 cos2 φ+K3 sin2 φ, (5)

m(φ) = α3 cos2 φ− α2 sin2 φ, (6)

g(φ) =
1

2
(α4 + α3 + α6) cos2 φ+

1

2
(α4 − α2 + α5) sin2 φ+ α1 sin2 φ cos2 φ, (7)

respectively, where the constants K1 and K3 are the splay and bend elastic constants, and α1, . . . , α6 are the Leslie

viscosities (of which α4/2 is the isotropic viscosity) [17]. The elasticity function f(φ) is the effective elastic constant

that the nematic exhibits in a simple shear flow with a fixed director angle φ. The viscosity function m(φ) describes

the director-dependent coupling between the rotation of the director, ∂φ/∂t, and the shear rate, ∂u/∂z. The viscosity

function g(φ) is the effective viscosity that the nematic exhibits in a simple shear flow with a fixed director angle φ.

As described in Section I C, we take the boundary conditions for the director angle to be the so-called dissipative
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weak anchoring conditions (see, for example, [26, 29–36]) given by

γS
∂φ

∂t
= + f(φ)

∂φ

∂z
−A sin 2φ at z = 0, (8)

γS
∂φ

∂t
= − f(φ)

∂φ

∂z
−A sin 2φ at z = h, (9)

where the constants γS (≥ 0) and A (≥ 0) are the surface rotational viscosity and the anchoring strength, respectively.

For anchoring conditions of this form the preferred director orientation at the channel boundary is φ ≡ pπ, where

p is an integer. The present analysis is relevant to devices with planar anchoring for which the preferred director

orientations at the substrates are parallel, such as In-Plane Switching (IPS) devices [43]. While the present analysis

is not directly relevant to devices with homeotropic anchoring, such as VAN devices [12], or to devices in which the

director does not remain in the (x, z) plane, such as Twisted Nematic (TN) or Super-Twisted Nematic (STN) devices

[44], we anticipate that many of the qualitative features of the present results will also occur in these devices.

For the velocity we impose standard no-slip boundary conditions given by

u = 0 at z = 0, (10)

u = 0 at z = h. (11)

Appropriate initial conditions on φ and u will be described in Section II D.

B. Non-Dimensionalisation

The governing equations (3) and (4) with (5), (6) and (7) subject to (8)–(11) are non-dimensionalised according

to

t = τ t̃, z = hz̃, u =
Gh2

α4
ũ, f = K1f̃ , m = α4m̃, g = α4g̃,

K3 = K1K̃3, αi = α4α̃i for i = 1, . . . , 6, γi = α4γ̃i for i = 1, 2,

(12)

where τ is an appropriate timescale, which will be discussed in detail in Section II D, and non-dimensional variables

are denoted by a superimposed tilde (̃ ). Note that the velocity is non-dimensionalised using the characteristic velocity

of pressure-driven channel flow of a Newtonian fluid, which depends on G, h and α4, the elastic function f and the

bend elastic constant K3 are non-dimensionalised with the splay elastic constant K1, while the viscosity functions m

and g, the Leslie viscosities αi for i = 1, . . . , 6, the bulk rotational viscosity γ1, and the torsional viscosity γ2 are all

non-dimensionalised with α4.

The non-dimensional Ericksen–Leslie equations (3) and (4) are given by

γ1h
2

K1τ

∂φ

∂t̃
= f̃(φ)

∂2φ

∂z̃2
+

1

2
f̃ ′(φ)

(
∂φ

∂z̃

)2

− Er m̃(φ)
∂ũ

∂z̃
, (13)

Re
α4

Ghτ

∂ũ

∂t̃
= 1 +

∂

∂z̃

(
g̃(φ)

∂ũ

∂z̃
+

α4

Ghτ
m̃(φ)

∂φ

∂t̃

)
, (14)
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where the non-dimensional elasticity and viscosity functions (5)–(7) are given by

f̃(φ) = cos2 φ+ K̃3 sin2 φ, (15)

m̃(φ) = α̃3 cos2 φ− α̃2 sin2 φ, (16)

g̃(φ) =
1

2
(1 + α̃3 + α̃6) cos2 φ+

1

2
(1− α̃2 + α̃5) sin2 φ+ α̃1 sin2 φ cos2 φ, (17)

the non-dimensional dissipative weak anchoring conditions (8) and (9) are

γSh

K1τ

∂φ

∂t̃
= + f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 0, (18)

γSh

K1τ

∂φ

∂t̃
= − f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 1, (19)

and the non-dimensional no-slip conditions (10) and (11) are

ũ = 0 at z̃ = 0, (20)

ũ = 0 at z̃ = 1. (21)

Equations (13)–(21) involve three key non-dimensional groups, namely the Ericksen number Er defined by

Er =
Gh3

K1
, (22)

the Reynolds number Re defined by

Re =
ρGh3

α2
4

, (23)

and the anchoring strength parameter A defined by

A =
Ah

K1
. (24)

The Ericksen number Er is a non-dimensional measure of the relative strength of viscous effects and splay elastic

effects. The limit of zero Ericksen number (Er → 0) corresponds to a regime in which there are no viscous effects,

while the limit of infinite Ericksen number (Er → ∞) corresponds to a regime in which there are no elastic effects.

The familiar Reynolds number Re is a non-dimensional measure of the relative strength of inertial effects and viscous

effects. The limit of zero Reynolds number (Re → 0) corresponds to a regime in which there are no inertial effects

(i.e. Stokes flow), while the limit of infinite Reynolds number (Re → ∞) corresponds to a regime in which there

are no viscous effects (i.e. inviscid flow). The anchoring strength parameter A is a non-dimensional measure of the

relative strength of anchoring and splay elastic effects at the boundaries. As described in Section I C, the limit of zero

anchoring strength parameter (A → 0) corresponds to a regime in which there is zero anchoring at the boundaries,

while the limit of infinite anchoring strength parameter (A → ∞) corresponds to a regime in which there is strong

anchoring at the boundaries.

Solving the governing equations and boundary conditions (13)–(21) must, in general, be done numerically.

However, in the present work we follow an approach similar to that of Quintans Carou et al. [37, 38] and use a

combination of asymptotic and numerical methods to analyse the problem in the limit of small Leslie angle.
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C. The Leslie Angle

When the director field is static and uniformly orientated, i.e. when φ = constant, from (13) a uniform shear

flow leads to the condition m̃(φ) = 0. For flow-aligning nematics, i.e. for nematics whose viscosities satisfy α̃3/α̃2 ≥ 0,

the director angle then takes the value φ = pπ ± φL, where φL (0 ≤ φL ≤ π/2) is the Leslie angle (sometimes also

called the flow alignment angle) [17], and is defined by

φL = tan−1
√
α̃3

α̃2
. (25)

A stability analysis of the system shows that in a region of positive shear rate (∂u/∂z > 0) or negative shear rate

(∂u/∂z < 0) the director remains in the (x, z) plane and the director angle rotates towards the “positive” Leslie angle

φ = pπ + φL or the “negative” Leslie angle φ = pπ − φL, respectively, [17, 45, 46]. In particular, for a flow-aligning

nematic the director angle approaches φ = pπ ± φL when viscous effects dominate splay elastic effects (i.e. when

Er � 1), in which case reorientational boundary and/or internal layers may occur between the uniformly orientated

bulk and/or the orientation dictated by the boundaries [17, 37–42]. On the other hand, for non-flow-aligning nematics,

i.e. for nematics whose viscosities satisfy α̃3/α̃2 < 0, the Leslie angle does not exist and the director exhibits unsteady

behaviour known as tumbling [17, 47].

In the present work we will consider only flow-aligning nematics and introduce a non-dimensional viscosity

ratio denoted by ε (≥ 0) and defined by

ε =

√
α̃3

α̃2
, (26)

so that the Leslie angle defined by (25) can be written in terms of ε as φL = tan−1 ε. The viscosity ratio ε can also

be expressed in terms of the more commonly measured bulk rotational viscosity γ̃1 and torsional viscosity γ̃2 [17] as

ε =

√
γ̃1 + γ̃2
γ̃2 − γ̃1

. (27)

For nematic materials that are commonly used in industrial manufacturing of LCDs, typically ε is small. For

example, ε ' 0.210 for 4-Cyano-4’-pentylbiphenyl (5CB) [17], ε ' 0.143 for 4-Cyano-4’-heptylbihenyl (7CB) [48], and

ε ' 0.001 for 4-Cyano-4’-octyloxybiphenyl (8OCB) [49]. In fact, most modern LCDs use mixtures of nematics with

physical properties similar to E7, which contains 51% 5CB, 25% 7CB, 16% 8OCB and 8% of other similar biphenyl

compounds [50], and so typically ε is also small for these mixtures. In Section III we will exploit the smallness of ε to

seek asymptotic solutions in the limit ε→ 0.

For future reference, we note that the non-dimensional viscosity functions m̃(φ) and g̃(φ) given by (16) and

(17) can be written without explicitly mentioning α̃3 = ε2α̃2 as

m̃(φ) = α̃2

(
− sin2 φ+ ε2 cos2 φ

)
, (28)

g̃(φ) =
1

2

(
1 + ε2α̃2 + α̃6

)
cos2 φ+

1

2
(1− α̃2 + α̃5) sin2 φ+ α̃1 sin2 φ cos2 φ. (29)

8



D. Timescales

We now discuss four timescales occurring in (13)–(21), namely

τ1 =
γ1h

2

K1
, τ2 =

ρh2

α4
, τ3 =

α2

Gh
, τ4 =

γSh

K1
, (30)

over which different physical effects occur.

Using the definitions (28) and (30) in (13), (14), (18) and (19) yields the governing equations

τ1
τ

∂φ

∂t̃
= f̃(φ)

∂2φ

∂z̃2
+

1

2
f̃ ′(φ)

(
∂φ

∂z̃

)2

− α̃2Er
(
ε2 cos2 φ− sin2 φ

) ∂ũ
∂z̃
, (31)

τ2
τ

∂ũ

∂t̃
= 1 +

∂

∂z̃

[
g̃(φ)

∂ũ

∂z̃
+
τ3
τ

(
ε2 cos2 φ− sin2 φ

) ∂φ
∂t̃

]
, (32)

and the dissipative weak anchoring conditions

τ4
τ

∂φ

∂t̃
= + f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 0, (33)

τ4
τ

∂φ

∂t̃
= − f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 1. (34)

The bulk director rotation timescale τ1 appears in the angular momentum equation (31) and is the timescale

of rotation of the director within the bulk of the channel induced by the splay elastic reorientation towards a uniform

director. The fluid inertia timescale τ2 appears in the linear momentum equation (32) and is the familiar inertial

timescale for a Newtonian fluid. The director-flow coupling timescale τ3 also appears in the linear momentum equation

(32) and is the timescale on which changes in the velocity affect the director orientation and vice versa. The boundary

director rotation timescale τ4 appears in the dissipative weak anchoring conditions (33) and (34) and is the timescale

of rotation of the director at the boundaries of the channel driven by splay elastic effects. In contrast to the bulk

rotation timescale τ1, the boundary director rotation timescale τ4 depends on the surface rotational viscosity γS rather

than the bulk rotational viscosity γ1. The timescales τ1 and τ4 depend on splay elastic reorientation, for a discussion

of the timescales depending on twist elastic reorientation (i.e. those depending on K2), the reader is referred to the

work of Rey [29].

In order to obtain order-of-magnitude estimates of the timescales τ1, τ2, τ3 and τ4 in the ODF method we

used estimated parameter values for a typical nematic mixture used in industrial manufacturing of LCDs, namely a

nematic density ρ = 103 kg m−3 [17], surface rotational viscosity γS = 10−8–10−6 Pa s m [26, 27], Leslie viscosities

α2 = 10−2 Pa s and α4 = 10−1 Pa s [17, 49], bulk rotational viscosity γ1 = 10−2 Pa s [17], viscosity ratio ε = 10−1,

splay elastic constant K1 = 10−11 N [17], and cell gap h = 10−6 m [7]. To estimate the timescale τ3 we require an

estimate of the pressure gradient G. The flow of the nematic in the ODF method is driven by the squeezing together

of the substrates, and so the pressure gradient can be estimated by using the pressure gradient of squeeze-film flow of

a Newtonian fluid, namely G = α4Lwp/h
3, where L is the horizontal length scale of the flow and wp is the speed at

which the substrates are squeezed together [51]. The timescale of the ODF method, denoted by τODF, is the timescale

over which the substrates are squeezed together. We take the horizontal length scale to be the typical diameter of a

nematic droplet used in the ODF method, namely L = 10−2 m [7, 8], the typical ODF timescale τODF = 10−1 s [7],

and the speed at which the substrates are squeezed together to be wp = 10−3 m s−1 [7, 8], which yields an estimate

of the pressure gradient in the ODF method of G = 1012 Pa m−1.

9



Timescale Definition Physical Meaning Value

τ1
γ1h

2

K1
bulk director rotation 10−3 s

τ2
ρh2

α4
fluid inertia 10−8 s

τ3
α2

Gh
director-flow coupling 10−8 s

τ4
γSh

K1
boundary director rotation 10−3–10−1 s

TABLE I. Order-of-magnitude estimates of the timescales τ1, τ2, τ3 and τ4 in the ODF method using the estimated parameter

values given in the text.

Table I shows order-of-magnitude estimates of the timescales τ1, τ2, τ3 and τ4 in the ODF method using the

estimated parameter values given above. In particular, Table I shows that the fluid inertia timescale and director

flow coupling timescale, τ2 and τ3, are much shorter than the two director rotation timescales, τ1 and τ4, and so these

effects can safely be treated as instantaneous on the timescale of the ODF method, and henceforth we set τ2 = 0 and

τ3 = 0. The two director rotation timescales are comparable when γS = 10−8 Pa s m, suggesting that the regime in

which τ = τ1 ' τ4 is worthy of study, but since τ1 is 100 times shorter than τ4 when γS = 10−6 Pa s m, in the present

work we also set τ1 = 0. Since all of the timescales except the boundary director rotation timescale τ4 have been set

to zero, we can now, without loss of generality, set τ = τ4, so that the governing equations (31) and (32) become

f̃(φ)
∂2φ

∂z̃2
+

1

2
f̃ ′(φ)

(
∂φ

∂z̃

)2

= α̃2Er
(
ε2 cos2 φ− sin2 φ

) ∂ũ
∂z̃
, (35)

0 = 1 +
∂

∂z̃

(
g(φ)

∂ũ

∂z̃

)
, (36)

subject to the dissipative weak anchoring conditions (18) and (19),

∂φ

∂t̃
= + f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 0, (37)

∂φ

∂t̃
= − f̃(φ)

∂φ

∂z̃
−A sin 2φ at z̃ = 1, (38)

and the no-slip conditions (20) and (21), where the tilde (̃ ) notation on non-dimensional variables has been dropped

for clarity.

Given that the time derivatives have been removed from the governing equations (35) and (36), leaving only

time derivatives of the director angle in the dissipative weak anchoring conditions (37) and (38), we no longer require

initial conditions on the director angle and the velocity (i.e. φ(z, 0) and u(z, 0)) within the bulk of the channel. Instead

we only require initial conditions on the director angle at the boundaries (i.e. φ(0, 0) and φ(1, 0)). Specifically, we

impose initial conditions on the director angle at the boundaries in the form

φ = + φLθ at z = 0 and t = 0, (39)

φ = − φLθ at z = 1 and t = 0, (40)
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where θ (≥ 0) is the magnitude of the initial director angle at the boundaries scaled with φL.

At this point it is useful to consider typical values of the important non-dimensional groups Er and A in the

ODF method.

Using the values in Table I, the Ericksen number is found to be Er = 105, indicating that the flow is usually

dominated by viscous effects. However, this large value is slightly misleading because, as we will show in Section

III, the effective Ericksen number, denoted by Ēr, takes the somewhat smaller value Ēr = 1.7 × 102 and so, for

completeness, we will consider all values of Ēr in what follows.

As mentioned in Section I C, anchoring strengths are typically found experimentally to lie in the range of

A = 10−5–10−3 N m−1 [26, 27], and so, using (24) and the values in Table I, this corresponds to values of the

anchoring strength parameter in the range A = 1–102.

III. ASYMPTOTIC SOLUTIONS IN THE LIMIT OF SMALL LESLIE ANGLE

As described in Section II C, typically the viscosity ratio ε for commonly used nematics and mixtures of nematics

is small, and so henceforth we obtain asymptotic solutions in the limit ε → 0. In particular, in this limit the Leslie

angle φL = tan−1 ε ∼ ε� 1 is small.

In the limit ε→ 0 we seek asymptotic solutions for φ and u in powers of ε in the forms

φ(z, t) = φ0(z, t) + εφ1(z, t) + ε2φ2(z, t) +O
(
ε3
)
, (41)

u(z, t) = u0(z, t) + εu1(z, t) + ε2u2(z, t) +O
(
ε3
)
. (42)

Substituting the expansions (41) and (42) into the angular momentum equation (35), the linear momentum equation

(36), the dissipative weak anchoring conditions (37) and (38), the initial conditions (39) and (40), and the no-slip

conditions (20) and (21), and defining an appropriately rescaled effective Ericksen number Ēr [37, 38] (hereafter simply

referred to as the Ericksen number) given by

Ēr = − εα2

1 + α6
Er, (43)

yields the leading-order equations

0 = sin2 φ0
∂u0
∂z

, (44)

0 = 1 +
∂

∂z

(
g(φ0)

∂u0
∂z

)
, (45)

subject to the leading-order dissipative weak anchoring conditions

∂φ0
∂t

= + f(φ0)
∂φ0
∂z
− 2Aφ0 at z = 0, (46)

∂φ0
∂t

= − f(φ0)
∂φ0
∂z
− 2Aφ0 at z = 1. (47)

(Note that the definition of Ēr given in (43) incorporates the O(1) factor of −α2/(1 + α6) in order to simplify some

of the subsequent expressions.)
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The leading-order director angle is obtained by solving (44) and (45) subject to the (46) and (47) to yield the

trivial solution φ0 ≡ 0, i.e. the leading-order director angle is planar throughout the channel, and so at leading order

the functions f(φ) and g(φ) appearing in (35)–(38) are given by f(φ) = 1 and g(φ) = (1 + α6) /2.

The leading-order velocity is determined by integrating (45) with φ0 ≡ 0 subject to the no-slip conditions (20)

and (21) to obtain the classical Poiseuille flow profile

u0 =
z (1− z)
1 + α6

. (48)

The first-order angular momentum equation is identically satisfied, and the first-order linear momentum equa-

tion has the trivial solution u1 ≡ 0.

The first-order director angle then satisfies the second-order angular momentum equation

∂2φ1
∂z2

= Ēr (2z − 1)
(
1− φ21

)
, (49)

subject to the first-order dissipative weak anchoring conditions

∂φ1
∂t

= +
∂φ1
∂z
− 2Aφ1 at z = 0, (50)

∂φ1
∂t

= − ∂φ1
∂z
− 2Aφ1 at z = 1, (51)

and the first-order initial conditions

φ1 = +θ at z = 0 and t = 0, (52)

φ1 = −θ at z = 1 and t = 0. (53)

The second-order velocity satisfies the second-order linear momentum equation

0 =
∂

∂z

[
α2
∂u0
∂z

+ (2α1 − α2 + α5 − α6)φ21
∂u0
∂z

+ (1 + α6)
∂u2
∂z

]
, (54)

which can be integrated subject to the no-slip conditions (20) and (21) to obtain

u2 =
2α1 − α2 + α5 − α6

(1 + α6)2

[∫ z

0

(2Z − 1)φ21 dZ − z
∫ 1

0

(2z − 1)φ21 dz

]
+

α2

(1 + α6)2
z(z − 1). (55)

In the remainder of the present work we shall discuss the quasi-steady solutions for the first-order director

angle φ1 (hereafter simply referred to as “the director angle”) of (49) (hereafter simply referred to as “the director

angle equation”) subject to the dissipative weak anchoring conditions (50) and (51), and the initial conditions (52)

and (53). In particular, we will obtain asymptotic solutions in the limit of large Ericksen number Ēr→∞ in Section

IV and in the limit of small Ericksen number Ēr→ 0 in Section V, as well as numerical solutions for general values of

the Ericksen number in Section VI. Since we are particularly interested in the transient flow-driven distortion of the

director from its required orientation at the boundaries of the channel, we write Φ(t) = φ1(0, t) for the director angle

at z = 0 (hereafter simply referred to as “the director angle at the boundaries”), and note that since φ1 is symmetric

about z = 1/2, the director angle at z = 1 is given by φ1(1, t) = −Φ(t). As we shall show, in the limit t → ∞ the

director angle approaches a steady state solution which we denote by φ1 = φ1SS(z) and Φ = ΦSS, i.e. φ1 → φ1SS and

Φ→ ΦSS as t→∞. Once the director angle φ1 has been determined, the second-order velocity u2 can be calculated

using (55), but we do not undertake this calculation in the present work.
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FIG. 2. The structure of the leading-order director angle φ1,0 in the limit of large Ericksen number, Ēr→∞.

IV. ASYMPTOTIC SOLUTION IN THE LIMIT OF LARGE ERICKSEN NUMBER

In the limit of large Ericksen number Ēr→∞ the solution for the director angle φ1 has narrow reorientational

boundary layers near z = 0 and z = 1 and a narrow reorientational internal layer near z = 1/2 separated by two outer

regions, as shown in Figure 2.

A. Outer Solution

The outer solution valid in the outer regions away from the boundary and internal layers can be obtained by

seeking an asymptotic solution for φ1 in powers of Ēr−1 when ε � Ēr−1 � 1 in the form φ1 = φ1,0 + O
(

Ēr
−1
)

,

where φ1,0 denotes the term that is first order in ε and leading order in Ēr−1. Substituting this expansion into the

director angle equation (49) yields the simple solution φ1,0 = ±1, which corresponds to the director angle being equal

to either the positive or the negative Leslie angle at leading order. The leading-order velocity u0 given by (48) satisfies

∂u0/∂z > 0 for 0 < z < 1/2 and ∂u0/∂z < 0 for 1/2 < z < 1, and so, as described in Section II C, the appropriate

uniformly orientated leading-order outer solution is φ1,0 = 1 for 0 < z < 1/2 and φ1,0 = −1 for 1/2 < z < 1, as shown

in Figure 2.

B. Inner Solutions in the Boundary Layers

Inspection of (49) suggests that the boundary layer near z = 0 is of width O
(
Ēr−1/2

)
� 1 in which the

director angle adjusts from its uniform value in the outer region to its value at the boundary, and so we introduce an

appropriately rescaled inner coordinate Z defined by z = Ēr−1/2Z to yield

∂2φ1
∂Z2

=
(

2Ēr−1/2Z − 1
) (

1− φ12
)
. (56)

Seeking an asymptotic solution of (56) in the form φ1 = φ1,0 +O
(
Ēr−1/2

)
yields the leading-order equation

∂2φ1,0
∂Z2

= φ1,0
2 − 1. (57)
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FIG. 3. The leading-order director angle in the internal layer φinner obtained by solving (60) numerically using the matching

conditions φinner → −1 as Z →∞ and φinner → 1 as Z → −∞ plotted as a function of the inner variable Z.

The appropriate exact solution of (57) subject to the matching conditions φ1,0 → 1 and ∂φ1,0/∂Z → 0 as Z →∞ is

φ1,0 = 3 tanh2

(
Z√
2

+ tanh−1
√

2 + Φ0

3

)
− 2, (58)

where Φ0(t) = φ1,0(0, t) is the leading-order director angle at the boundaries. Note that setting Φ0 ≡ 0 in (58) recovers

the steady solution obtained by Quintans Carou et al. [37, 38] in the limit of strong planar anchoring, A → ∞.

However, in the present problem Φ0 is, of course, not constant, and the singular ordinary differential equation for the

evolution of Φ0 can be obtained by substituting φ1,0 given by (58) into the dissipative weak anchoring condition (50)

to yield

Ēr−1/2
dΦ0

dt
=

√
2

3
(1− Φ0)

√
2 + Φ0 − 2kΦ0, where k =

A
Ēr1/2

(≥ 0). (59)

In Section IV E we will consider the solution to (59) subject to the initial condition Φ0(0) = θ. The corresponding

inner solution valid in the boundary layer near z = 1 follows immediately from the symmetry of φ1 about z = 1/2

mentioned earlier.

C. Inner Solution in the Internal Layer

Inspection of (49) also suggests that the internal layer near z = 1/2 is of width O
(
Ēr−1/3

)
� 1 (i.e. much

wider than the boundary layers but still much narrower than the channel) in which the director angle adjusts between

its uniform values in the outer regions, and so we introduce an appropriately rescaled inner coordinate Z defined

by z = 1/2 + Ēr−1/3Z. Seeking an asymptotic solution in the form φ1 = φ1,0 + O
(
Ēr−1/3

)
yields the leading-order

equation

∂2φ1,0
∂Z2

= 2Z(1− φ1,02) (60)

subject to the matching conditions φ1,0 → −1 as Z →∞ and φ1,0 → 1 as Z → −∞. Equation (60) cannot be solved

analytically, but, since it contains no parameters, it only needs to be solved once numerically. This numerical solution

is denoted by φinner(Z) = φ1,0(Z) and is plotted as a function of Z in Figure 3.
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D. Composite Solution

Combining the inner and outer solutions for φ1 yields the composite solution

φ1 = 3 tanh2

(√
Ēr

2
z + tanh−1

√
2 + Φ0

3

)
− 3 tanh2

(√
Ēr

2
(1− z) + tanh−1

√
2− Φ0

3

)

+ φinner

(
Ēr1/3

(
z − 1

2

))
+O

(
Ēr−1

)
, (61)

where Φ0 satisfies (59) subject to the initial condition Φ0(0) = θ.

E. The Director Angle at the Boundaries

As we have already seen, the leading-order director angle at the boundaries Φ0 satisfies the singular ordinary

differential equation (59) subject to the initial condition Φ0(0) = θ. Inspection of (59) reveals that Φ0 rapidly evolves

towards its constant steady state value of Φ0SS given by

Φ0 = Φ0SS =
2

3

[
k − |χ|1/3 cos

(
1

3
arg(χ)

)]2
− 2 +O

(
Ēr−1

)
(62)

over a short timescale of O
(
Ēr−1/2

)
� 1. Rescaling t appropriately according to t = Ēr−1/2t̂ shows that this rapid

evolution is described by the implicit solution

−
√

2

3
t̂ = a log

(√
2 + Φ0 − v1√
2 + θ − v1

)
+ b log

(√
2 + Φ0 − v2√
2 + θ − v2

)
+ c log

(√
2 + Φ0 − v3√
2 + θ − v3

)
, (63)

where

a =
2v1

(v1 − v2)(v1 − v3)
, b =

2v2
(v2 − v1)(v2 − v3)

, c =
2v3

(v3 − v1)(v3 − v2)
. (64)

The constants v1, v2, and v3 are the roots of the cubic polynomial

F(v) = v3 +
√

6kv2 − 3v − 2
√

6k, (65)

which can be written explicitly as

v1 = −
√

2

3

[
k − |χ|1/3 cos

(
1

3
arg(χ)

)]
, (66)

v2 = −
√

2

3

[
k + |χ|1/3 cos

(
1

3
arg(χ)− π

3

)]
, (67)

v3 = −
√

2

3

[
k + |χ|1/3 cos

(
1

3
arg(χ) +

π

3

)]
, (68)

where |χ| and arg(χ) are the modulus and argument, respectively, of the complex number χ, defined by

χ = 18k − 8k3 + 6i
√

6 + 3k2 + 16k4. (69)

It is informative to consider three cases for the size of the parameter k (and hence for the relative size of the non-

dimensional groups Ēr and A) in which further analytical progress can be made. Specifically, we consider the cases

k � 1 (A � Ēr1/2 � 1), k � 1 (either Ēr1/2 � A� 1 or Ēr1/2 � 1� A), and k = O(1) (Ēr1/2 = O(A)� 1).
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1. The case k � 1

In the case k � 1 (A � Ēr1/2 � 1) the implicit solution (63) reduces to the simple explicit solution

Φ0 = θe−2kt̂, i.e. Φ0 = θe−2At, (70)

which approaches its steady state value Φ0SS = 0 as t → ∞, i.e. the director at the boundaries becomes planar as

t→∞. This case represents a regime in which the anchoring is sufficiently strong that the effects of flow are negligible

at the boundaries, and the (non-dimensional) timescale of the evolution of the director at the boundaries towards its

steady state value, denoted by σ, is given by

σ =
1

2A
� 1. (71)

2. The case k � 1

In the case k � 1 (either Ēr1/2 � A � 1 or Ēr1/2 � 1 � A) the implicit solution (63) reduces to the

appropriate explicit solution

Φ0 = −2 + 3 tanh

(√
1

2
t̂+ tanh−1

√
2 + θ

3

)2

, (72)

which approaches its steady state value Φ0SS = 1 as t→∞, i.e. the director angle at the boundaries approaches the

Leslie angle as t→∞, according to

Φ0 = 1− 12 exp

[
−2 tanh

√
2 + θ

3
−
√

2Ēr1/2t

]
+O

(
exp
[
−2Ēr1/2t

])
. (73)

This case represents a regime in which the flow is sufficiently strong that the effects of anchoring are negligible at the

boundaries, and the timescale σ is given by

σ =
1√

2Ēr1/2
� 1. (74)

3. The case k = O(1)

In the case k = O(1) (Ēr1/2 = O(A) � 1) the implicit solution (63) approaches its steady state value Φ0SS

(0 < Φ0SS < 1) given by (62) as t → ∞. Unfortunately (63) does not yield an explicit expression for the timescale

σ. However, as we shall show in Section VI B, σ is always less than both (71) and (74), and so (71) and (74) provide

a upper bound on σ for all values of k. This case represents a regime in which the effects of anchoring and flow are

comparable at the boundaries, and hence the behaviour of the director at the boundaries depends on a combination

of these two effects.
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V. ASYMPTOTIC SOLUTION IN THE LIMIT OF SMALL ERICKSEN NUMBER

In the limit of small Ericksen number Ēr → 0 we seek an asymptotic solution for φ1 in powers of Ēr when

ε� Ēr� 1 in the form φ1 = φ1,0 + Ērφ1,1 +O
(
Ēr2
)
, where φ1,0 denotes the term that is first order in ε and leading

order in Ēr and φ1,1 denotes the term that is first order in ε and first order in Ēr.

At leading order in Ēr the director angle equation (49) reduces to simply

∂2φ1,0
∂z2

= 0, (75)

subject to the dissipative weak anchoring conditions (50) and (51)

∂φ1,0
∂t

= +
∂φ1,0
∂z

− 2Aφ1,0 at z = 0, (76)

∂φ1,0
∂t

= − ∂φ1,0
∂z

− 2Aφ1,0 at z = 1, (77)

and the initial conditions (52) and (53) φ1,0(0, 0) = +θ and φ1,0(1, 0) = −θ. Integrating (75) twice with respect to z,

using (76) and (77) and the initial conditions on φ1,0, yields the solution for φ1,0, namely

φ1,0 = θ(1− 2z) e−2(1+A)t. (78)

At first order in Ēr the director angle equation (49) reduces to

∂2φ1,1
∂z2

= (2z − 1)(1− φ21,0), (79)

subject to the dissipative weak anchoring conditions (50) and (51)

∂φ1,1
∂t

= +
∂φ1,1
∂z

− 2Aφ1,1 at z = 0, (80)

∂φ1,1
∂t

= − ∂φ1,1
∂z

− 2Aφ1,1 at z = 1, (81)

and the initial conditions (52) and (53) φ1,1(0, 0) = 0 and φ1,1(1, 0) = 0. Integrating (79) twice with respect to z,

using (78), (80) and (81) and the initial conditions on φ1,1, yields the solution for φ1,1, namely

φ1,1 =
2z − 1

60

[
5

(
2z2 − 2z − 1

1 +A

)
+

5 + 3θ2

1 +A
e−2(1+A)t

+ 3θ2
(

4z4 − 8z3 + 6z2 − 2z +
1

1 +A

)
e−4(1+A)t

]
. (82)

Using (78) and (82) the asymptotic solution for φ1 is therefore

φ1 = θ(1− 2z)e−2(1+A)t +
2z − 1

60

[
5

(
2z2 − 2z − 1

1 +A

)
+

5 + 3θ2

1 +A
e−2(1+A)t

+ 3θ2
(

4z4 − 8z3 + 6z2 − 2z +
1

1 +A

)
e−4(1+A)t

]
Ēr +O

(
Ēr2
)
, (83)

and hence the asymptotic solution for the director angle at the boundaries Φ is

Φ = θ e−2(1+A)t +
1

60(1 +A)

[
5− (5 + 3θ2) e−2(1+A)t − 3θ2 e−4(1+A)t

]
Ēr +O

(
Ēr2
)
. (84)
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In particular, from (83) the steady state solution φ1SS is given by

φ1SS =
2z − 1

12

[
2z2 − 2z − 1

1 +A

]
Ēr +O

(
Ēr2
)
, (85)

and from either (84) or (85) the steady state value ΦSS is given by

ΦSS =
Ēr

12(1 +A)
+O

(
Ēr2
)
. (86)

In particular, the solution for the director angle given by (83) and (84) is dominated by splay elastic effects with

viscous effects appearing at O
(
Ēr
)
� 1. In addition, from (84) the timescale σ is given by

σ =
1

2(1 +A)
. (87)

Note that even in the special case A = 0 in which case there is no anchoring force in (50) and (51), there is still

an elastic restoring force due to the ∂φ1/∂z term, and hence the director angle at the boundaries still rotates such

that Φ→ ΦSS = Ēr/12 +O
(
Ēr2
)

as t→∞.

VI. SOLUTIONS FOR GENERAL VALUES OF THE ERICKSEN NUMBER

In this section we obtain numerical solutions of the director angle equation (49) subject to (50)–(53) for general

values of the Ericksen number and, in particular, compare them with the quasi-steady asymptotic solutions in the

limits of large and small Ēr described in Sections IV and V, respectively. The numerical approach we adopt uses

the MATLAB boundary value problem solver bvp4c [52] with an implicit Euler method for approximating the time

derivatives in (50) and (51). In all of our numerical calculations the simulation time is chosen to be six times longer

than the appropriate timescale given by (71), (74) or (87) in order to allow sufficient time for convergence to the

steady state solution. In all of the numerical calculations reported here use the value θ = 0.5 for the initial value of

the director angle at the boundaries.

A. The Director Angle

Figure 4(a) shows the initial director angle φ1(z, 0) and Figure 4(b) shows the steady state solution for the

director angle φ1SS(z), both plotted as functions of z according to the numerical solution (solid lines) when Ēr = 10−1,

Ēr = 10, Ēr = 102 and Ēr = 104, the large Ēr asymptotic solution (dashed lines) given by (61) when Ēr = 102 and

Ēr = 104, and the small Ēr asymptotic solution (dotted lines) given by (83) when Ēr = 10−1 and Ēr = 10. The insets

in Figure 4 show the corresponding results for an intermediate value of Ēr, namely Ēr = 50. In particular, Figure 4

shows how the leading-order velocity in the channel u0 given by (48) affects both the initial director angle and the

steady state director angle. Specifically, as described in Section II C, in the lower half of the channel the positive shear

rate (∂u0/∂z > 0) rotates the director angle towards the positive Leslie angle φ1 = +1, while in the upper half of the

channel the negative shear rate (∂u0/∂z < 0) rotates it towards the negative Leslie angle φ1 = −1. When Ēr is large

(e.g. when Ēr = 104), the behaviour of the director is dominated by viscous effects, with flow alignment at either

the positive or the negative Leslie angle except for within the narrow reorientational boundary and internal layers
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(a) (b)

FIG. 4. (a) The initial director angle φ1(z, 0) and (b) the steady state solution for the director angle φ1SS(z) plotted as functions

of z for A = 1 and θ = 0.5 according to the numerical solution (solid lines) when Ēr = 10−1, Ēr = 10, Ēr = 102 and Ēr = 104,

the large Ēr asymptotic solution (dashed lines) given by (61) when Ēr = 102 and Ēr = 104, and the small Ēr asymptotic

solution (dotted lines) given by (83) when Ēr = 10−1 and Ēr = 10. In both (a) and (b) the insets show the corresponding

results when Ēr = 50. The arrows show the direction of increasing Ēr.

at leading order in the limit of large Ēr, as described in Section IV. When Ēr is small (e.g. when Ēr = 10−1), the

behaviour of the director is dominated by splay elastic effects, with viscous effects appearing at first order in the limit

of small Ēr, as described in Section V. Figure 4 also shows that as Ēr varies there is a continuous transition between

the asymptotic behaviour for large Ēr and that for small Ēr and that, in fact, the two asymptotic solutions capture

the behaviour of φ1 rather well for all values of Ēr. This continuous transition is rather different to the discontinuous

transitions observed in channel flow of a nematic with homeotropic anchoring by Sengupta et al. [39], Anderson et al.

[40], Crespo et al. [41], and Batista et al. [42].

Figure 5 shows the director angle φ1(z, t) plotted as a function of z for various times t according to (a) the

numerical solution (solid lines) and the large Ēr asymptotic solution (dashed lines) when Ēr = 104, (b) the numerical

solution (solid lines) when Er = 50, and (c) the numerical solution (solid lines) and the small Ēr asymptotic solution

(dotted lines) when Ēr = 10−1. In each part of Figure 5 the final time plotted is chosen so that the solution is close

to its steady state solution φ1SS shown in Figure 4(b). In particular, Figure 5 illustrates that φ1 always approaches

its steady state solution φ1SS monotonically as t→∞.

Figure 6 shows the director angle at the boundaries Φ plotted as a function of time t according to the numerical

solution (solid lines) when Ēr = 10−1, Ēr = 10, Ēr = 50, Ēr = 102 and Ēr = 104, the large Ēr asymptotic solution

(dashed lines) when Ēr = 102 and Ēr = 104, and the small Ēr asymptotic solution (dotted lines) when Ēr = 10−1,

Ēr = 10. In particular, Figure 6 illustrates that Φ always approaches its steady state value ΦSS monotonically from

above when ΦSS < θ and from below when ΦSS > θ as t → ∞, and that ΦSS is a monotonically increasing function

of Ēr.

Figures 5 and 6 also illustrate that the approach to the steady state solution gets monotonically faster as Ēr is

increased. This behaviour will be analysed in more detail in Section VI B.
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(a)

(b)

(c)

FIG. 5. The director angle φ1(z, t) plotted as a function of z for A = 1 and θ = 0.5 according to (a) the numerical solution

(solid lines) and the (barely visible) large Ēr asymptotic solution (dashed lines) given by (61) when Ēr = 104 for t = 0.0,

t = 0.006, t = 0.012, and t = 0.06, (b) the numerical solution (solid lines) when Er = 50 for t = 0.0, t = 0.15, t = 0.3 and

t = 3.0, and (c) the numerical solution (solid lines) and the (barely visible) small Ēr asymptotic solution (dotted lines) given

by (83) when Ēr = 10−1 for t = 0.0, t = 0.15, t = 0.3 and t = 3.0. The arrows show the direction of increasing t.
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FIG. 6. The director angle at the boundaries Φ plotted as a function of time t for A = 1 and θ = 0.5 according to the numerical

solution (solid lines) when Ēr = 10−1, Ēr = 10, Ēr = 50, Ēr = 102 and Ēr = 104, the large Ēr asymptotic solution (dashed

lines) given by (63) when Ēr = 102 and Ēr = 104, and the small Ēr asymptotic solution (dotted lines) given by (84) when

Ēr = 10−1, Ēr = 10.

Figure 7 shows the steady state value the director angle at the boundaries ΦSS plotted as a function of the

Ericksen number Ēr according to the numerical solution (solid lines), the large Ēr asymptotic solution given by (62)

(dashed lines), and the small Ēr asymptotic solution (dotted lines) given by (86) for various values of A. In particular,

Figure 7 illustrates that ΦSS is a monotonically decreasing function of A. Figure 7 also confirms that the numerical

solutions for ΦSS for large and small values of Ēr are in excellent agreement with the asymptotic solutions in the

limits Ēr→∞ and Ēr→ 0 given in Sections IV and V, respectively. Moreover, as we have already seen, in the former

limit the leading-order expression for the value of ΦSS depends on Ēr and A only in the combination k = A/Ēr1/2,

and hence the curves for ΦSS for large values of Ēr are simply appropriately horizontally stretched versions of each

other, and as Figure 7 illustrates, the range of validity of this expression widens as A increases.

B. The Timescale σ

In order to extract the timescale σ introduced in Section VI A from the numerical solutions we fitted the

numerical solutions for ΦSS with a function of t of the form

log |ΦSS − Φ| = C − t

σ
, (88)

where C = C(θ) is a function of the initial director angle at the boundaries only. In particular, this procedure recovers

the asymptotic expressions for σ derived in Sections IV E and V, namely (71), (74) and (87).

Figure 8 shows σ plotted as a function of Ēr extracted from the numerical solution using (88) and according

to the large Ēr asymptotic solution when k � 1 given by (74) and the small Ēr asymptotic solution given by (87).

(Note that, for clarity, the timescale according to the large Ēr asymptotic solution when k � 1, namely σ = 1/(2A),

is omitted from Figure 8 as it is virtually indistinguishable from σ = 1/(2(1 + A)).) In particular, Figure 8 shows

that σ is a monotonically decreasing function of Ēr, and that as Ēr varies there is a continuous transition between
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(a) (b)

(c) (d)

FIG. 7. The steady state value of the director angle at the boundaries ΦSS plotted as a function of the Ericksen number Ēr

according to the numerical solution (solid lines), the large Ēr asymptotic solution (dashed lines) given by (62), and the small

Ēr asymptotic solution (dotted lines) given by (86) for (a) A = 10−1, (b) A = 1, (c) A = 10, and (d) A = 102.

FIG. 8. The timescale σ plotted as a function of the Ericksen number Ēr extracted from the numerical solution using (88) (solid

line) and according to the large Ēr asymptotic solution when k � 1 (dashed line) given by (74) and the small Ēr asymptotic

solution (dotted line) given by (87) for A = 10 and θ = 0.5.
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Ēr→∞
Ēr→ 0

k � 1 k = O(1) k � 1

ΦSS 0 Equation (62) 1
Ēr

12(A+ 1)
� 1

σ
1

2A � 1 (?)
1√

2Ēr1/2
� 1

1

2(A+ 1)

TABLE II. The steady state value for the director angle at the boundaries ΦSS and the timescale σ in the asymptotic limit

of large Ēr in the cases k � 1, k = O(1) and k � 1, where k = A/Ēr1/2, and in the asymptotic limit of small Ēr. The star

(?) denotes that, while there is no explicit expression for σ in this case, the expressions for k � 1 and k � 1 provide a upper

bound on σ for all values of k.

σ = 1/(
√

2Ēr1/2) = O
(
Ēr−1/2

)
� 1 for large values of Ēr and σ = 1/(2(1 + A)) = O(1) for small values of Ēr.

Moreover, Figure 8 also shows, as mentioned in Section IV E 3, that σ is always less than both (71) and (74), and so

(71) and (74) provide a upper bound on σ for all values of Ēr.

VII. CONCLUSIONS

Motivated by the ODF method for the industrial manufacturing of LCDs, in the present work we analysed

pressure-driven flow of a nematic in a channel with dissipative weak planar anchoring at the boundaries of the channel.

We obtained quasi-steady asymptotic solutions for the director angle φ and the velocity u in the limit of small Leslie

angle, in which case the key parameters are the Ericksen number Ēr and the anchoring strength parameter A. In the

limit of large Ericksen number Ēr→∞ the solution for the director angle has narrow reorientational boundary layers

of width O
(
Ēr−1/2

)
� 1 near z = 0 and z = 1 and a narrow reorientational internal layer of width O

(
Ēr−1/3

)
� 1

near z = 1/2 separated by two outer regions in which the director is aligned at the positive Leslie angle in the lower

half of the channel and the negative Leslie angle in the upper half of the channel. On the other hand, in the limit

of small Ericksen number Ēr → 0 the solution for the director angle given by (83) and (84) is dominated by splay

elastic effects with viscous effects appearing at O
(
Ēr
)
� 1. As Ēr varies there is a continuous transition between

these asymptotic behaviours and, in fact, the two asymptotic solutions capture the behaviour rather well for all values

of Ēr. The steady state value of the director angle at the boundaries ΦSS and the timescale of the evolution towards

this steady state value σ in the asymptotic limits of large and small Ēr are summarised in Table II. In particular, the

values of σ in Table II correspond to the dimensional boundary director rotation timescale στ4 given by

στ4 ∼ γS ×



1

2A
for Ēr� 1 and k � 1,√

−(α4 + α6)

2(α2α3)1/2GhK1
for Ēr� 1 and k � 1,

h

2(K1 +Ah)
for Ēr� 1.

(89)
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Using the estimated parameter values for the ODF method given Section II D gives Ēr = 1.7× 102, A = 1–102

and hence k = 0.08–8, suggesting that the regimes in which Ēr � 1 and k � 1 or k = O(1) are probably the most

relevant to the ODF method. Hence (89) yields a dimensional boundary director rotation timescale of στ4 ' 5×10−3

s or less, which is substantially shorter than the dimensional timescale of the ODF method of τODF = 10−1 s,

suggesting that there is sufficient time for significant transient flow-driven distortion of the nematic molecules at the

substrates from their required orientation to occur, which could lead to the formation of ODF mura. An obvious

conclusion is that this distortion could, in theory, be reduced by decreasing Ēr and/or increasing A by, for example,

reducing the speed at which the substrates are squeezed together and/or increasing the strength of the adhesion

between the alignment layer and the nematic, however the extent to which either of these are realistic options in

practice is not clear. It should, however, be noted that once the squeezing stops, and hence the flow of the nematic

virtually ceases (so that Ēr becomes very small), then (89) yields a dimensional boundary director rotation timescale of

approximately στ4 ' 2.5×10−2 s or less, which means that the flow-driven distortion of the nematic molecules relaxes

almost immediately. The remaining issue is, therefore, whether the significant transient flow-driven distortion of the

nematic molecules described in the present work causes permanent or semi-permanent flow-driven misalignment of

the orientation of the molecules in the alignment layers. Answering this question could lead to further understanding

of ODF mura but requires more detailed modelling of the molecules in the alignment layers, and so is beyond the

scope of the present work.

Finally, mentioned in Section II A, the present analysis of dissipative weak planar anchoring is not directly

relevant to devices with homeotropic anchoring, such as VAN devices, or to devices in which the director does not

remain in the (x, z) plane, such as TN or STN devices. However, in such devices flow alignment towards the (typically

small) Leslie angle involves a much larger rotation of the director than that described in the present work, and so

we suspect that such devices are even more susceptible to flow-driven misalignment of the director at the boundaries

during filling than those studied in the present work.
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[22] A. Rapini and M. Papoular. Distorsion d’une lamelle nématique sous champ magnétique conditions d’ancrage aux parois.

Journal de Physique Colloque, 30(C4):C4–54–C4–56, 1969.

[23] H. Yokoyama and H. A. van Sprang. A novel method for determining the anchoring energy function at a nematic liquid

crystal-wall interface from director distortions at high fields. Journal of Applied Physics, 57(10):4520–4526, 1985.

[24] Yu. A. Nastishin, R. D. Polak, S. V. Shiyanovskii, V. H. Bodnar, and O. D. Lavrentovich. Nematic polar anchoring

strength measured by electric field techniques. Journal of Applied Physics, 86(8):4199–4213, 1999.

25



[25] H. Yokoyama. Surface anchoring of nematic liquid crystals. Molecular Crystals and Liquid Crystals, 165(1):265–316, 1988.

[26] R. F. de Souza, D.-K. Yang, E. K. Lenzi, L. R. Evangelista, and R. S. Zola. Effect of surface viscosity, anchoring energy,

and cell gap on the response time of nematic liquid crystals. Annals of Physics, 346:14–21, 2014.

[27] P. Oswald. Measurement with a rotating magnetic field of the surface viscosity of a nematic liquid crystal. Europhysics

Letters, 100(2):26001, 2012.

[28] P. Oswald, G. Poy, F. Vittoz, and V. Popa-Nita. Experimental relationship between surface and bulk rotational viscosities

in nematic liquid crystals. Liquid Crystals, 40(6):734–744, 2013.

[29] A. D. Rey. Periodic textures of nematic polymers and orientational slip. Macromolecules, 24(15):4450–4456, 1991.

[30] G. E. Durand and E. G. Virga. Hydrodynamic model for surface nematic viscosity. Physical Review E, 59(4):4137–4142,

1999.

[31] J. G. McIntosh and F. M. Leslie. Flow induced surface switching in a bistable nematic device. Journal of Engineering

Mathematics, 37(1–3):129–142, 2000.

[32] A. J. Davidson and N. J. Mottram. Flexoelectric switching in a bistable nematic device. Physical Review E, 65(5):051710,

2002.

[33] G. Barbero and E. K. Lenzi. Importance of the surface viscosity on the relaxation of an imposed deformation in a nematic

liquid crystal cell. Physics Letters A, 374(13–14):1565–1569, 2010.

[34] R. T. de Souza, E. K. Lenzi, and L. R. Evangelista. Surface viscosity and reorientation process in an asymmetric nematic

cell. Liquid Crystals, 37(12):1559–1568, 2010.

[35] R. F. de Souza, E. K. Lenzi, R. T. de Souza, L. R. Evangelista, Q. Li, and R. S. Zola. Surface induced twist in nematic

and chiral nematic liquid crystals: stick-slip-like and constrained motion. Soft Matter, 14(11):2084–2093, 2018.
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