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Abstract

This paper combines a previously developed Intelligent Classification Systems (ICS) for collision risk prediction with
a simple Collision Avoidance Manoeuvre (CAM) allocation procedure. The Intelligent Classification System is based
on a combination of Evidence Theory for collision risk assessment and a Machine Learning model that classifies
conjunction events given the encounter geometry, the uncertainty in the probability of collision and the time at which
the conjunction event occurs.

We introduce a quick method to compute a Collision Avoidance Manoeuvre when the Intelligent Classification System
suggests that a CAM is needed. The method presented in this paper accounts for epistemic uncertainty in the collision
prediction. The inclusion of the epistemic uncertainty requires solving a min-max problem to find the optimal impulse
for the worst-case scenario. Finally, the paper introduces the basis for a future ML-based system able to predict the
optimal CAM under epistemic uncertainty.

keywords: Space Traffic Management, Artificial Intelligence, Machine Learning, Collision Avoidance Manoeuvre,
min-max optimisation, Epistemic Uncertainty

ACRONYMS 1. INTRODUCTION
AT Artificial Intelligence. The increase on the launches rate during the last
years and the emergence of new Mega-Constellation
ANN Artificial Neural Network. with thousands of satellites already on deployment
along with the growing number of space debris ob-
bpa Basic Probabilistic Assumption. jects, makes the Space Safety no longer guaran-
teed."?2 To ensure the safe operation of satellites
CAM Collision Avoidance Manoeuvre. in orbit, Space Traffic Management (STM) system

requires new techniques and modifications affecting
different areas3: close encounter detection, automatic
risky event classification, or autonomous Collision
Avoidance Manoeuvre (CAM) design.

Among those new techniques, Artificial Intelli-
gence (AI) and Machine Learning (ML) appear as
good candidates to improve the STM system. Al
and ML are able to cope with the great amount of
information expected to be available the next years
and even learn from the new data collected, allow
the automation of the system required to handle the
expected increase on encounter alerts, and perform

DSt Dempster-Shafer theory of Evidence.
FE Focal Element.

HBR Hard Body Radius.

ICS Intelligent Classification System.

ML Machine Learning.

P¢ Probability of Collision. faster than dynamic-based methods, which helps on
automation.

RF Random Forest. Some works have been already developed on the
application of ML to improve and support STM oper-

STM Space Traffic Management. ations: autonomous Intelligent Classification System
of risky events, automatic Artificial Neural Network

TCA Time of Closest Approach. (ANN)-based close encounter detection,® orbit error
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propagation using ML,% or automatic application of
Collision Avoidance Manoeuvre.”

In this paper, the Intelligent Classification System
(ICS) presented in Sanchez and Vasile* is the starting
point to introduce a step further in the development
of an Intelligent Agent capable to autonomously pre-
dict collisions, determine whether a CAM is required,
execute the manoeuvre, and detect again potential
encounters along the new orbit.

The Intelligent Classification System uses an
evidences-based event classification criterion account-
ing for the epistemic uncertainty affecting the space
objects’ position. The system makes use of Random
Forest (RF)® to propose the best action to be imple-
mented when a close encounter is detected.

When the ICS classifies a conjunction event like
a collision, a possible recommendation is to perform
a Collision Avoidance Manoeuvre. In this paper, we
present a modification of a simple linear model to
calculate an optimal CAM. Different authors have
proposed linear models for computing the optimal di-
rection of the impulse manoeuvre.” ! In this work,
a variation of the approach proposed by Vasile and
Colombo? has been implemented.

The novel approach followed on this paper is the
inclusion of epistemic uncertainty in the calculation
of the CAM. The epistemic uncertainty is quantified
with Dempster-Shafer Theory of Evidence (DSt),'2
which requires solving a min-max optimisation prob-
lem'? ' in order to find the optimum CAM for the
worst-case scenario.

The rest of the paper is structured as follows:
in Section 2, the evidence-based risk assessment ac-
counting for epistemic uncertainty approach is pre-
sented. Section 3 includes the Intelligent Classifi-
cation System performances based on the evidence-
based classification criterion. Section 4 explains how
the Linear Model for CAM can be used for executing
a manoeuvre when the Intelligent Classification Sys-
tem classifies an event as high risk and introduces the
path for a future ML-based CAM execution system.
Finally, Section 5 concludes the paper and presents
future works.

2. EVIDENCE-BASED RISK ASSESSMENT

In this section, the quantification of epistemic un-
certainty for collision risk assessment and the evalu-
ation of the risk based on the degree of belief on the
value of Probability of Collision is presented.

TAC-20-A6,2,12,x58045

2.1 Dilution of Probability of Collision

The Probability of Collision, P¢, is a common met-
ric used on Collision Risk Assessment. It is usually
computed under the assumption of short-term en-
counter'®: i) the relative motion between objects is
assumed to be rectilinear; ii) the uncertainty distribu-
tions of the positions of the two bodies are Gaussian
and uncorrelated; iii) the velocity vectors are not un-
certain; iv) the objects are modelled as hard spheres.
This assumption allows reducing the computation of
Pc to the double integral of the 2D Normal Distribu-
tion over the area delimited by the Hard Body Radius
(HBR) of the combined two objects!®:

Pe “alrem i) dgag

®
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with re = [e 0 pc] the miss distance of the cen-
tre of the ellipsoid in the B plane and 3 the covari-
ance matrix. It simplifies into Equation (2) when the
ellipse is aligned with the B plane reference frame:

1 Eee? | Cono?
Po = g T >dfdc 2]
B((0,0),R)
Eq. (2) leads to the known paradoxical phe-

nomenon of dilution of probability'®. Thus, given an
encounter, when the uncertainty increases, quantified
exclusively as an increase on the covariance, at the be-
ginning the P also rises until reaching a maximum,
after which it starts decreasing. This seems to sug-
gest that the reduction in the amount of information
on the satellite’s position reduces the Po. This effect
is not just counterintuitive, but also leads to false
confidence for operators on the satellites’ safety'”.

The reason behind this phenomenon can be seen
in Figure 1: when uncertainty is only modelled as
purely aleatory (an irreducible random process), the
area on the bounded region under the Normal Distri-
bution decreases when the curve flattens due to the
increase on the standard deviation, describing and ac-
tual reduction on Pc'”. However, when uncertainty
is epistemic, the reasoning should lead to the conclu-
sion that a higher ignorance corresponds to a higher
risk of a collision.

In the following, we maintain the calculation of
the Po with Eq. (2) but we propose to model
the epistemic uncertainty in the observations using
Dempster-Shafer Theory of Evidence (DSt).!? 1In
particular, we consider the case in which the values of
(e, pe] and [o¢, o¢| are partially known and we can
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Fig. 1: Flatten of the Normal Distribution
curve when standard deviation increases. The grey
area (HBR) below the curves makes larger for low
values of o¢ (0¢ < 5m) but decrease for higher
values (¢ > 5m). HBR = 5m and pe = 5m.

assign a degree of belief (or confidence) to the set
to which they belong. This situation can derive, for
example, from the fusion of different conflicting ob-
servations or from a lack of knowledge on the quality
of the sensors.

2.2 FEvidence Theory

In this section, we provide a brief description of the
main features of DSt that will be used in the remain-
der of the paper. In DSt one can associate a degree of
belief in the realisation of an event without an exact
knowledge of an associated probability distribution.

Given an event space, the set © of all the mutu-
ally exclusive and collectively exhaustive elementary
events (or hypotheses) © = {01, Oz, ..., (9|@‘} is consid-
ered. The collection of all non empty subsets of O,
including the Empty Space and © itself, is the Power
Set 29 = (O,U). One can now assign a probabil-
ity mass, called basic probability assignment (bpa),
to the elements of 2°. Each element of 2® with a
non-zero bpa is called a Focal Element (FE) and is
represented with the symbol v in the following. The
bpa functions have the following properties:

bpa(D) =0 (3]
Vv € T,0 < bpa(y;) <1 [4]
> bpa(y) = L,Vy €T [5]

In this work, the pair (I',bpar) - where I' > ~
and bpar > bpa, - is called the Body of Evidence
and the power set U = 29 the Uncertainty Space.

TAC-20-A6,2,12,x58045

Considering now the set:
Q={uelU|f(u) € &} [6]

where f is a quantity of interest, u a vector of uncer-
tain parameters and ® is a desirable target set for f.
Given ), we define the two quantities, Belief (Bel)
and Plausibility (PI):

Bel()= > bpa(v), [7]
Y CQy: €U
PIQ) = > bpa(v), (8]

viNQ#D, v, €U

which give, respectively, the lower and upper limit on
our confidence on 2 given the available evidence sup-
porting statement, Eq. (6). Belief and Plausibility
have the following properties:

Bel(Q) + PI(-Q) = 1 [9]
Bel(Q) + Bel(-Q) < 1 [10]
PU(Q) + PI(-Q) > 1 1]

PI(Q) > Bel(Q) 12]

The difference between Belief and Plausibility,
A(Q) = PI(Q) — Bel(R2), associated with €, is called
Degree of Confidence and can be used to determine
the degree of epistemic uncertainty associated with
an event given the available evidence. This concept
will be exploited in this paper to classify conjunction
events.

2.3 Ewidence Theory for Collision Risk Assessment

The idea is that when [ue, pt¢] and [o¢, o¢] are af-
fected by epistemic uncertainty, their values are not
precisely defined and we can only say that they be-
long to a given set with a given degree of belief. A
higher uncertainty translates into a larger set or in
more, possibly disjoints, focal elements.

The evidence on the values of [ug, p¢] and [o¢, o¢]
comes from our degree of knowledge or ignorance on
the source of the observations and the associated bpa
assignment can come from a subjective opinion on the
reliability of the source or from quantitative analysis.

Given the belief the sources assigned to the uncer-
tain variables and their bpa, it is possible to compute
the P¢ associated with the pieces of evidence and its
corresponding Belief and Plausibility.

Noting that Pc now belongs to a set since [, p¢]
and [og,0¢] also do, calling f = Pc and the de-
sired set of value for Po, ® = {Pc|Pc < Pco},
and defining the join uncertain space U so that
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u = [ug, pi¢c,0¢,0¢)7, it is possible to compute the
Bel and Pl on the correctness of the value of Po us-
ing Egs. (7) and (8), taking 2 = {u € U|Pc(u) € ®}.

In Figs. 2 and 3, an illustrative example of this ap-
proach is presented. Only for this example, the uncer-
tain variables have been reduced to two: p¢ and og.
Two sources of information are supposed to provide
uncertain information on the encounter geometry pa-
rameters, which translates into two different families
of uncertain ellipses. A data-fuse of the sources is car-
ried out for creating the joint uncertain space. Table
1 includes the information provided by the sources.
The HBR has been taken as Rggr = 5m and cen-
tre in (0,0). Two scenarios are presented on the fig-
ures: a) both sources are equally reliable, thus, the
bpa = 0.5 for both, b) one source is more reliable,
with a bpa assignment of 0.9 and 0.1, respectively.

Table 1: Encounter parameters provided by Source
1 and Source 2.

Variable Source 1 Source 2
pre [m] [4,7] [15,20]

pi¢ [m] 5 6

o¢ [m] [1,2.5] [2,6]

o¢ [m] 3 3

In Fig. 2, the uncertain families distribution are
presented. The green ellipses are associated with
Source 1, the blue ellipses with Source 2. It can
be seen that although partially overlapping, the two
sources do not give coherent information. The red el-
lipse represents the single joint distribution used for
computing the P if only using Eq. (2).

Given the conflict between the two sources, it is
clear that there is a degree of epistemic uncertainty
that cannot be neglected in the computation of Pc.
Thus we can now try to use DSt to capture this epis-
temic uncertainty and derive a quantification of the
uncertainty in the value of Pg.

Fig. 3 includes the Plausibility and Belief distri-
bution for the examples presented in Fig. 2. The gap
between both curves represents the degree of conflict
between them. It can be seen that it is smaller when
one source if assigned a larger bpa. At the same time,
it can be seen that the Pe value obtained with Eq.
(2) falls in a region with a low degree of confidence
(big gap between Pl and Bel), which indicates that
this value cannot be reliable due to the high degree
of uncertainty by which it is affected.

TAC-20-A6,2,12,x58045

Source 1: 30 ellipses
51| Source 2: 30 ellipses
~10 -~ 20 enclosing ellipse
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Fig. 2: Conjunction geometry on the impact

plane, centred on the secondary body: (a) sources
Equally reliable, (b) sources not equally reliable.
Source 1 (dotted green) and Source 2 (dotted blue)
represent the families of Normal Distributions pro-
vided by intervals. The ellipse enclosing both fam-
ilies of distributions is represented in red: 20 (dash
red) and 30 (dash-dotted red) ellipses. The HBR
is represented by the yellow solid line.

3. INTELLIGENT CLASSIFICATION SYSTEM

In this section, an Intelligent Classification System

based on an evidence-based criterion classification is
presented.

3.1 Evidence-based classification criterion

There are currently classification methods based

solely on the value of Pg to trigger actions. These
methods activate or not those actions when the Prob-
ability of Collision is found to be higher or lower than
a given threshold. However, no information is given
on the correctness of Po. Thus the operator might
react to false positives or do nothing in the case of
false negatives. Furthermore, unknown cases, which
require further observations, are identified only by the
thresholds and not by an actual quantification of the
degree of ignorance on the probability of a collision.
This kind of methods can be found in the Conjunc-
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Fig. 3: Belief (dash line) and Plausibility
(solid line) curves for the geometry in Fig. 2 and
Pc for the combined ellipse (red vertical dash line):
(a) equally reliable sources; (b) Source 1 more reli-
able than Source 2.

tion Assessment Risk Analysis team of NASA'® and
the Space Debris Office of ESA.'°

In an evidence-based classification criterion three
additional pieces of information may be available to
the operator: the value of Bel, the value of Pl and
the gap between the two at the threshold. A large
gap between Pl and Bel implies that there is a lack
of information on the calculation of Ps. If both Pl
and Bel are low then there is little evidence that the
value of P¢ is to be trusted. Finally, if Bel is low one
should be wary that the evidence fully supporting the
value of the Pg is low.

Table 2 includes the evidence-based classification
criterion used in this paper. It takes into account
the time to the encounter (or time to the Time of
Closest Approach, TCA), the value Pg, at which the
belief jumps above a certain threshold, Bely, and the
degree of confidence, A(Pcg,), or gap between Pl and
Bel, at the Probability of Collision threshold, P, .

The class refers on the last column of Table 2 en-
codes a suggested action to be considered by the op-
erators: Class 1 means a CAM should be executed to
avoid an imminent risky event or an event that, even

TAC-20-A6,2,12,x58045

Table 2: Evidence-based classification criterion.

Time to Pc for Degree of Class
TCA Bel = Belp confidence
at Pc,
Pc, > Pc, - 1
trca <711 Pl—Bel <A 5
Pey <Peo  p_pag>a 1
> -
Th <trca Pe, = P, 2
¢ <T, Po <P Pl—Bel <A 5
reas -z SG S TC%  pl_Bel>A 3
Pc, > Pc, - 2
Ty < Pl—Bel <A 4
2 <trca Pe, < Pe, l el <

Pl—Bel>A 3

if the evidence does not support the fact that it poses
neither high risk nor low risk, it is so close in time to
the encounter that an action should be done. Class
2 indicates a CAM should be considered, although
it is possible to collect better data that reduces the
uncertainty. On the other side, Class 4 includes cases
that posse a low risk, but far enough in time to the
encounter it is still possible to collect better infor-
mation before making a final decision, while Class 5
indicates that the event is close in time but poses
no actual risk. Finally, Class 3 includes those cases
where the encounter is not immediate but the evi-
dence does not support either high or low risk, and
more information needed would be needed.

In Fig. 4, there is an example of the class distribu-
tion of a set of 9000 encounter geometries according
to the evidence-based criterion. The thresholds used
for the criterion are detailed in Table 3. Blue and
black colours are associated with cases with high P
when using only with Eq. (2), while red and pink
colours with cases with low Po when computed with
that equation

Table 3: Classification thresholds for the
evidence-based criterion

Parameter Value
Probability of Collision (Pg,) 4.4 x 1074
Degree of confidence (A) 0.3

Belief (Belp) 0.5

Lower time threshold (77) 2 days
Upper time threshold (7%) 4 days

The samples have been obtained from 5 different
encounter geometries, differentiated in whether both
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Fig. 4: Histogram showing the distribution
among classes according to the evidence-based clas-
sification criterion. Blue/black colours represent
samples classified as ” Collision” by a purely prob-
abilistic approach, red/pink colours shows samples
classified as "No Collision” by a probabilistic ap-
proach.

sources give coherent or contradictory information
and whether the proposed set of ellipses are close or
far from the HBR: i) Geo. 1, ellipses overlapping and
both overlapping HBR, ii) Geo. 2, ellipses overlap-
ping and none overlapping HBR, iii) Geo 3. ellipses
not overlapping and only one overlapping HBR, iv)
Geo. 4, ellipses not overlapping and none overlapping
HBR, v) Geo. 5, ellipses not overlapping and both
overlapping HBR. The samples have been associated
with different times to the TCA so that they repre-
sent immediate (t < T7), mid-term (77 < t < T») or
long term (¢ > T») encounters. Three different bpa
assignment to the sources have been made: equally
reliable (bpa; = bpay = 0.5), Source 1 more reliable
(bpa; = 0.9,bpas = 0.1) and Source 2 more reliable
(bpa; = 0.1,bpas = 0.9). More details can be found
in Sanchez and Vasile.*

3.2 Intelligent Classification System

The performances of an Intelligent Classification
System based on the previous evidence-based classi-
fication criterion are presented in this section.

This Intelligent Classification System (ICS) was
first presented in Sanchez and Vasile.* More details
on the databases used for training, the ML tech-
niques comparison analysis and the best model hyper-
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Table 4:
performances.

Intelligent Classification System

Accuracy Training Validation

time [s]  time [s]
Overall 93.3 7.5443 0.555
Recall Precision
Class 1 98.7 88.4
Class 2 97.4 83.5
Class 3 7.7 82.9
Class 4 92.4 99.2
Class 5 92.4 99.2

parameters can be found in there.

The ICS takes as inputs the time to the TCA, the
interval bounds of the uncertain variables on the B
plane ([, pi¢l, [o¢, o¢]) for each source of information
and the bpa associated with the sources, which makes
a total of 19 inputs, in the case two sources of infor-
mation are considered. As output, the system pro-
vides the class according to the evidence-based classi-
fication criterion and thus, the suggested action to be
taken by the STM operators. The system uses Ran-
dom Forest (RF)® as the surrogate ML-based model
since it presented the highest level of accuracy and
the shortest training time among the techniques stud-
ied in Sanchez and Vasile.*

The main advantage of this intelligent system is
that it allows to autonomously predict the risk asso-
ciated with an event and suggest the best action given
an uncertain close encounter geometry. In addition
to that, it takes into account epistemic uncertainty
and speeds up the process since it allows to skip the
explicit computation of Pl and Bel, which can be
time-consuming if several sources of information are
considered.

Table 4 presents the performances of the Intelli-
gence Classification System over the 5,760 samples
on the ”Validation Set”, having been trained with the
"Training Set”, both detailed in Sanchez and Vasile.*
The accuracy (the percentage of samples correctly
predicted over all the samples) has been calculated
over all the samples in the database, while the pre-
cision (the percentage of the samples correctly pre-
dicted from a certain class over the total number of
samples predicted on this class) and recall (the per-
centage of samples correctly predicted on a certain
class over the total number of samples in that class)
have been computed by classes. The training and val-
idation times over the whole sets can be also found
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in Table 4.

4. COLLISION AVOIDANCE MANOEUVRE

According to the evidence-based classification cri-
terion, the risk associated with an event can give as
an output of the Intelligent Classification System that
a CAM is required. Understood under the perspec-
tive of a global Intelligent Agent that support STM
operators in all the Collision Risk Assessment pro-
cess, the output of the ICS can lead to a blank space
where the Collision Avoidance Manoeuvre should be
computed (Fig. 5).

In this section, the computation of the optimal
CAM under epistemic uncertainty in order to fill that
space is presented.

4.1 CAM Linear Model

This section introduces the Linear Model for com-
puting an optimal impulse given its magnitude for
avoiding a space close encounter.

Following Vasile and Colombo,” the instan-
taneous variation of orbital elements J0x =
[6a, be, 6,682, 6w, 5 My, |7 due to a variation of veloc-
ity vector 6v = [dvy, dv,,, dvp]T along the tangential,
normal and out-of plane directions, <7, N, H>, can
be computed with the linear transformation:

ox = Gov [13]
where the matrix G is defined in Eq. (14).

The subscript ”,,” refers to the manoeuvre po-
sition, b is the semi-minor axis b = av1—¢€2, p
the semi-latus rectum p = b?/a, h the specific an-
gular momentum h = nab, n is the mean motion
n = +/pn/a®, and r,, and v, are the unperturbed po-
sition and velocity of the satellite at manoeuvre. The
variation in position of the satellite (expressed in the
<R,T,H>) at encounter time t., or Time of Clos-
est Approach (TCA), after deviation with respect to
the unperturbed orbit can be approximated with the
linear model:*

or = At(SX [15]

where the matrix Ay is defined in Eq. (16), being
At = t. — t,, the elapsed time between the manoeu-
vre and the TCA. The subscript ”.” refers to the
encounter position. Note that the variation in mean
anomaly, M, is made of two terms:
OM = oM, + M, [17]

where the first term comes from the change on mean
anomaly due to the manoeuvre and it is included on

TAC-20-A6,2,12,x58045

(5th = — b

eavm

[2 (1 + %) Sin G, 60+ "
+7m cos Qm&)n]

and the second term refers to the delay at TCA due
to the change in the semi-major axis:

e

This second term, JM,, is included in A after
approximate it as:

[19]

OM,, = dnAt = —g \/ﬁAtéa [20]

az2
Being G the matrix mapping the év to the vari-
ation of the parameters and A the matrix mapping
the variation of the parameters into the variation of
the position vector, dr, from this deflection the im-
pact parameter B at the encounter time can be com-
puted. The deflection vector dx; in the B-plane co-
ordinates can be expressed as:

dxy = [6¢ on 6T = [E 7 Z]Tcsr: Bir [21]

where:

U
77_ Ud’

A Vse NT] [ PN
{=71—— ¢=&AT [22]
[Vse AT

and Uy is the relative velocity at impact time (vy —
va) and vge = v is the velocity of the incoming satel-
lite at encounter time, both expressed in the same
reference frame. The impact parameter B is then

defined as:

B =&+ = /(& +0)? + (Co + 6)°

and provides an estimation of the miss-distance.

Calling B the matrix mapping the variation of the
position vector to the B-plane. Then for a pure Ke-
plerian motion we have:

[23]

dxp = BA{Gév [24]

and in compact form:
0xp = Tév [25]

Considering the centre of the uncertain ellipse pro-
jected on the B-plane before the impulse is given by
re = [£0,0,¢o]T. A CAM can be implemented so that
the distance to the centre of the ellipse is maximised
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Fig. 5: Intelligent Agent to support STM with no block computing the optimal CAM.
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0 Te 0
im0 5
v s (L+ecosbn) 0 ]
(max B parameter problem) or so that the Probabil- with determinant A = agag — U?C and inverse:
ity of Collision is minimised (min Pc problem). The )
assumption is that in the limit of the linear model s-1_ 1 [ g¢ _ZUEC } 27]
the ellipsoid of uncertainty translates rigidly without A —og of

deforming or rotating. This is not true in general
and represents an approximation introduced by our
method. In the following, the magnitude of the im-
pulse, dvg, is assumed to be known and constant only
optimising the direction of the manoeuvre and only
the optimisation of the Po will be explained.

4.1.1 Minimisation of the Probability of Collision

In this problem the CAM is selected so that the
Probability of Collision, P¢g, of the event is min-
imised. The short-encounter assumptions hold'® and
Eq. (1) is used to compute the Pg.

According to that equation, for minimising P¢ one
needs to maximise the exponent inside the integral.
Let us consider the uncertainty ellipse on the B-plane
with covariance:

> = [ o%F O } [26]

2
gg¢ UC
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Thus assuming that the centre of the coordinates is
in the centre of the ellipse then we want to maximise
the following quadratic form under the assumption
that the manoeuvre will rigidly translate the ellipse:

maxgy (5VTTTE_1T6V)
s.t.
re - Tév >0

[28]

Thus, the minimisation problem can be solved by
finding the vector, dvops, parallel to the eigenvector
s1 conjugated to the maximum eigenvalue of the ma-
trix TTS 1T with magnitude dvy:

6vopt = 6’0051 [29]

4.2 Optimal manoeuvre under epistemic uncertainty

As indicated in Section 2, the uncertainty on the
satellite position has an epistemic component, which
affects the computation of the optimal CAM.
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Under the assumptions of the Dempster-Shafer
Theory of Evidence (DSt) introduced above, it is
possible to account for the epistemic uncertainty
when computing the optimal CAM. Assuming the
encounter geometry is known and affected by uncer-
tainty, the same approach used for the risk assessment
can be followed here. In the remainder of the paper
the uncertain variables are assumed to be given by
the sources of information in the form of intervals
including the true value but with no further assump-
tions on the distribution within the interval. The
uncertain space can be the same as for the classifi-
cation criterion, although it can be easily extended
to a more generic case. Thus, the uncertain vector
considered in the following will be composed by the
miss distance, [u,1, u.eta], and the covariance terms
on the B plane, [ag, ag,agg].

The uncertainty in the position of an object is
translated in an uncertainty in the orbital parame-
ters at the time of execution of the CAM and then
propagated and projected onto the B plane using ma-
trix BAg, obtaining the corresponding bound limits
of the set of uncertain variables on the B plane. A
set of values for the uncertain variables corresponds
to families of uncertainty ellipses on the B plane.

This implies that one has to minimise the P¢ that
corresponds to the worst ellipse. Thus one needs to
solve a min-max problem to find the optimal impulse
that minimises the Probability of Collision for the
worst-case scenario within each Focal Element (FE).
The worst-case scenario is the value of the uncertain
variables within the bound of the FE that yields the
highest Probability of Collision. The algorithm pre-
sented in Vasile,'® extended by Filippi,'* is used for
solving the following min-max optimisation problem:

minsy maxueq, Fo
s.t.
re-0v >0

[30]

where P¢ is computed using Eq. (1).

As shown previously, the minimisation of Py is
equivalent to find the eigenvector associated with the
maximum eigenvalue of the matrix TTX~!T in Eq.
(28). Thus, the minimisation step in the min-max
algorithm has been performed analytically. During
the iteration (see Algorithm in Vasile!® for more de-
tails), the matrix TTX7!T has been replaced by
TTAT, where A is the sum of the inverse covari-
ance matrices of the worst-case ellipses found so far:
A=3"+3+ .

The maximisation step to find the worst-case el-
lipse given the dvopt from the minimisation step has

TAC-20-A6,2,12,x58045

been carried out using a numerical optimiser applied
directly to the function (1). Given the nature of the
linear model and the fact that the manoeuvre does
not change the shape of the uncertainty region on the
B-plane but simply translates it in the same plane,
the convergence is quite fast and require only a hand-
ful of iterations.

4.3 Propagation of the uncertainty

Assuming that the initial mean and covariance are
given in orbital elements at a time ty. Then we can
use the matrices B and Ay to propagate them to the
TCA. A pure Keplerian motion is considered.

4.3.1 Propagation of the mean

The mean value can be propagated using the ma-
trix B and A assuming close motion respect to a
nominal value. A nominal value is considered a ref-
erence orbit used for detecting close approaches. In a
pure aleatory uncertainty scenario, mean and nomi-
nal value coincide. If accounting for epistemic uncer-
tainty being quantified in the form of intervals, the
mean value of each uncertain ellipsoid will be differ-
ent, in general, than the nominal value.

Thus, if we have the mean orbital elements at time
to expressed as intervals we need to compute (for each
value in a FE) the corresponding mean value on the B
plane by using the BA¢ matrix. Since the differences
in Keplerian element are not due to a change on ve-
locity but due to the uncertainty itself, the matrix G
is not needed for uncertainty propagation. Let’s call
pe(to) € 7y, the mean value of the orbital elements at
time ¢y and 7, the corresponding FE, then from the
matrix BAy one gets the variation of position on B
plane coordinates:

ore, = BA (pte(to) — qlto)) 31]

where q(tg) are the nominal Keplerian elements at
initial time.

The miss distance in B plane associated with the
mean can be obtained by:
[32]

Te, = To + 0Te,

4.3.2 Propagation of the covariance matriz

From D(ty), the covariance of the orbital param-
eters at time tg and assumed diagonal, one has to
compute the covariance 3 of the relative position on
the B plane that defines the projected uncertain el-
lipse.

Again, if the covariance is only diagonal and each
component o, € v, belongs to a FE, for each value
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Table 5: Nominal orbital elements at time 4438.2 s Table 6: Uncertain orbital parameters interval
before the TCA. bounds.
Nominal 1 Nominal 2 Mean Dodiagonal

SMA (a) 7006.79 6295.53 a 7006.3 7007.5 4.5132-107% 5.962.10~2
ecc. (e) 5.5107* 6.684-107" e 5.499-107* 5.501-107*  5.298-107'° 5.907-10~®
inc. (i) 1.332 2.029 i 1.331 1.332 0.0 0.0

RAAN (Q) 0.154 6.121 Q  0.153 0.154 3.273-10° 5.644-107
Arg. Per. (w) 5.710-107%  3.408 w  5.709-1072 5.710-1072  4.511-107® 3.326-1077
True Anom. (6) 5.810 2.422 6  5.809 5.810 4.802-107% 4.746-10~7

within the FE we have a value of the components
of D(ty). For each of those values, we then need to
use again the transformation BA; to compute the
corresponding values on the B-plane. Similarly to
the propagation of the mean, one can compute the
variation on the B plane for each value with respect
to the mean within each FE:
0re, = BA¢ (0e(to) — pe(to)) [33]
The actual miss distance on the B plane can be
computed as:
Te, = Te, + 0Te, [34]

4.4 Validation of Linear Model

On the following, a numerical example to illus-
trate the CAM min-max optimisation using the Lin-
ear Model is presented. Table 5 includes the initial
nominal orbital parameters of the two satellites at the
initial time ¢q = 4438.2 s before the TCA. The initial
orbital parameters are affected by both, aleatory and
epistemic uncertainty (Table 6). The aleatory uncer-
tainty is modelled by a 6D-Normal Distribution with
a diagonal covariance matrix Dg. The epistemic un-
certainty is quantified by intervals of the mean and
covariance of the initial orbital elements. The matrix
BA; has been used to propagate the uncertainty to
the B plane and 20 ellipsoids have been withdrawn
for the initial set of ellipsoids to obtain the interval
bounds of the uncertain variables at the B plane. The
optimal CAM has been computed for three orbits be-
fore the TCA at 4 points per orbit, measured as angu-
lar position in the true anomaly, Af. The magnitude
of the impulse is assumed to be constant and equal
to dvg = 10 cm/s. Only one source of information is
considered, and thus, only one FE.

Fig. 6a includes some of the uncertain ellipses pro-
jected on the B plane. It illustrates the situation
before computing the CAM. Since there is not only
one, but a set of them, it is necessary to find the
impulse that optimises the worst-case ellipse at each

TAC-20-A6,2,12,x58045

manoeuvre position. Fig. 6b includes the worst-case
scenario parameters (dash blue) as a function of Af
and the FE bounds (solid green and yellow). It can be
seen that some parameters are almost constant while
others change with A#, indicating a change on the
worst-case ellipse depending on the execution instant
of the manoeuvre. In Fig. 6c¢, the unitary vector
parallel to the optimal impulse that minimises the
worst-case scenario at each Af is included (top: dvy,
middle: v, bottom: 5Avh). Finally, Fig. 6d shows
the Po evolution as a function of the Af at which the
manoeuvre is applied. The solid lines represent the
P associated with the ellipses in Fig. 6a, while the
dashed line indicated the Ps evolution of the worst-
case scenario. As expected, the worst-case scenario
poses a higher risk at any A6.

4.5 ML for CAM

After obtaining the results of the min-max opti-
misation of the optimal impulse and having in mind
the Intelligent Classification System, the path for the
design of a ML-based system able to predict the op-
timal CAM accounting for epistemic uncertainty is
indicated in this last section.

Such a system should predict the three compo-
nents of the optimal impulse for the worst-case sce-
nario given the uncertain state and the time to the
TCA. Thus, it will have the same inputs of the In-
telligent Classification System: the interval bounds
of the uncertain variables of the encounter geometry
and the bpa of the source (11 inputs per source) plus
the time to the TCA, or any other analogue mea-
surement, like the angular distance to the encounter
in True Anomaly, Af or in Mean Anomaly, AM.

With this system along with those ML-based mod-
els proposed in previous works by the authors,*® it
could be possible to build an Intelligent Agent able
to completely support the STM operators from the
detection of close encounter when uncertain position
measurements are received, to the risky classification
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Fig. 6: Min-max CAM optimisation using Linear Model. (a) Uncertain ellipses on B plane
affected by epistemic uncertainty. (b) Worst-case scenario uncertain variables (dash blue) and FE
interval bounds (solid green and yellow). Top-left: ue, top-centre: ¢, top-right: ag, bottom-left:
O'g , bottom-centre: o¢¢. (c) Optimum impulse unitary parallel vector, 5v: Top: 5Avt, middle: 5})7“
bottom: dvp. (d) Pc evolution after applying the optimal impulse: (solid lines) ellipses in Fig. 6a,
(dash line) worst-case scenario ellipse.
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of them, the computation of the optimal CAM when
they pose high risk and the closure of the loop re-
computing potential close encounters along the new
modified orbit (Fig. 7). The development of this last
block of the Intelligent Agent will be presented in fu-
ture works.

5. CONCLUSIONS

In this paper, we introduced a simple calculation
of an optimal CAM to be included in an Intelligent
Classification System (ICS) that automatically pre-
dicts the collision risky and suggest CAM executions.
This system, based on Random Forests, presents high
accuracy (above 90%) and very low run times (below
1s).

Both the ICS and the CAM calculation method
accounts for epistemic uncertainty in the calculation
of the probability of collision and manoeuvre execu-
tion. This uncertainty has been quantified, under the
Dempster-Shafer Theory of Evidence, in the form of
intervals with associated basic probability mass but
with no assumptions on the probability distribution
within each interval.

The CAM computation method solves a min-max
problem to find the optimal manoeuvre for the worst-
case uncertain ellipse.

In further works, we will present a ML-based CAM
definition system in order to close the loop between
collision prediction and CAM execution.
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