
Machine Learning Techniques for Automated
Software Fault Detection via Dynamic Execution

Data: Empirical Evaluation Study
Rafig Almaghairbe∗, Marc Roper† and Tahani Almabruk∗

∗Dept. Computer Sciences
University of Omar Al-Mukhtar, Derna - Bayda, Libya
Email: rafig.almaghairbe,tahani.almabruk@omu.edu.ly

†Dept. Computer and Information Sciences
University of Strathclyde, Glasgow, UK

Email: marc.roper@strath.ac.uk

Abstract—The biggest obstacle of automated software testing
is the construction of test oracles. Today, it is possible to generate
enormous amount of test cases for an arbitrary system that reach
a remarkably high level of coverage, but the effectiveness of
test cases is limited by the availability of test oracles that can
distinguish failing executions. Previous work by the authors has
explored the use of unsupervised and semi-supervised learning
techniques to develop test oracles so that the correctness of
software outputs and behaviours on new test cases can be
predicated [1], [2], [3], and experimental results demonstrate the
promise of this approach. In this paper, we present an evaluation
study for test oracles based on machine-learning approaches via
dynamic execution data (firstly, input/output pairs and secondly,
amalgamations of input/output pairs and execution traces) by
comparing their effectiveness with existing techniques from the
specification mining domain (the data invariant detector Daikon
[4]). The two approaches are evaluated on a range of mid-sized
systems and compared in terms of their fault detection ability
and false positive rate. The empirical study also discuss the
major limitations and the most important properties related to
the application of machine learning techniques as test oracles in
practice. The study also gives a road map for further research
direction in order to tackle some of discussed limitations such
as accuracy and scalability. The results show that in most cases
semi-supervised learning techniques performed far better as an
automated test classifier than Daikon (especially in the case that
input/output pairs were augmented with their execution traces).
However, there is one system for which our strategy struggles
and Daikon performed far better. Furthermore, unsupervised
learning techniques performed on a par when compared with
Daikon in several cases particularly when input/output pairs were
used together with execution traces.

I. INTRODUCTION

Software testing is a well-established approach for ensuring
software quality and reliability but it is also an expensive and
time consuming process. Software developers and testers have
claimed that software testing activities take more than 50% of
software development time [5], [6]. To reduce testing costs,
researchers have devoted considerable effort to developing
automated tools to generate input data for an arbitrary system
and achieve a high level of code coverage (e.g. EvoSuite [7]).
However, a formal specification is not always available for the

system under test and test outputs hence have to be checked
manually to determine its correctness or otherwise. As a result,
lots of human effort is needed if there is a large set of test
cases. Therefore, some other strategy for building an oracle
(an automated mechanism for judging the (in)correctness of
an output associated with an input) needs to be developed to
cut down cost and save time.

Previous work by the authors has explored the use of
machine learning techniques to support the automatic classifi-
cation of test outcomes as either passing or failing, and thereby
providing a form of test oracle [1], [2], [3], but their relative
performance, strengths and weaknesses have not been statisti-
cally analysed and compared with existing techniques. The aim
of this study is to investigate and extensively evaluate these
approaches to test oracle construction in terms of effectiveness
when they are applied to medium-sized subject systems. The
empirical evaluation in this paper can be summarised as
follows: (1) statistical verification is implemented into two
different sets of experimental results (in the first experiment,
the input to the machine learning techniques consisted of just
the test case inputs along with their associated outputs, and the
second experiment extended this by adding to the input/output
pairs their corresponding execution traces); (2) new results
are presented that evaluate the effectiveness of our machine
learning techniques by calculating the accuracy, recall, and
the false positive rate; (3) a comparison between existing
techniques from the specification mining domain (the data
invariant detector Daikon [4]) and machine learning techniques
is reported (Daikon was selected because it was the most
effective oracle from a set of dynamic analysis techniques
explored in a previous study [8]). The study is useful for testers
because they need to be able to assess the features offered
by these oracles, and also for the developers of oracle-based
approaches to further understand the strengths and weaknesses
of these different techniques and how they can be developed.
In addition, as such approaches are developed, more work is
needed on the measurement of oracles and their properties, and
also it has been suggested that it is important for the software



metrics community to consider the concept of ”oracle metrics”
[9].

The remainder of this paper is organized as follows: Section
II describes test oracle creation using machine learning tech-
niques. Section III presents the main research question and
explains the process of the empirical evaluation study design.
Section IV demonstrates results and answer the main research
question. Section V defines the main properties for test oracles
based on machine learning techniques. Section VI discusses
the threats to validity for this study. The authors conclude this
paper with a summary and future work in Section VII.

II. TEST ORACLE CREATION USING MACHINE LEARNING
TECHNIQUES

A. Test Oracle Based on Unsupervised Learning Techniques
(Clustering)

Test oracles based on unsupervised learning techniques
(clustering) do not require training data, and thus are most
widely applicable. They make the implicit assumption that
normal instances are far more frequent than anomalies in the
test data. In other words, test oracles in this category assume
that normal data instances (passing test results) belong to
large and dense clusters, while anomalies (failing test results)
either belong to small or sparse clusters. The inputs and
outputs to the subject systems were used alone as inputs to
an Agglomerative Hierarchical clustering algorithm in the first
study, and then amalgamations of input/output pairs with the
execution traces were used as inputs to clustering algorithm
in the second study. In addition, Euclidean Distance and
Linkage metrics were used with the clustering algorithm as the
measure of (dis)similarity between two objects. The clustering
algorithm used requires the tester to specify the number of
cluster counts, and these are specified based on a percentage
of the number of subject system test cases. Furthermore, the
input data (input/output pairs along with execution traces)
were encoded to make them more amenable to processing by
machine learning algorithms. The final stage of this process is
a manual one: the test case outputs need to be checked to see
if they have passed or failed. This is done in cluster size order
(starting with the smallest) and only considers clusters of less
than average size. For further details on the experiments and
methodology the reader is referred to our earlier paper [2].

B. Test Oracle Based on Semi-supervised Learning Techniques

Test oracles based on semi-supervised learning techniques
assume that the training data available and has labelled in-
stances for both failing and passing tests, or alternatively just
passing tests alone. In other words, A small proportion of the
test data (initially just input/output pairs and then input/output
pairs with their corresponding execution traces) is labelled by
the developers as passing or failing and the learning algorithms
use this to build a classifier which is then used to label each
remaining element (i.e. classify it as being either a passing
or failing test). Self-training and co-training approaches were
used in this paper. For further details on the experiments and
methodology the reader is referred to an earlier paper [1].

C. Test Oracle Based on a Combination of
Unsupervised/Semi-Supervised Learning Techniques

Unsupervised and semi-supervised learning strategies can
be combined together to construct test oracles by using the
outcomes of applying unsupervised learning techniques as
input to the semi-supervised learning techniques. The test
classification strategy consists of two phases: Firstly, unsuper-
vised learning (clustering) is used with the aim of creating
a grouping of tests where the smallest clusters contain a
greater proportion of failures. Manual checking of tests then
focuses on these smallest clusters first as they are more likely
to contain failing test. Secondly, having checked a small
proportion of the test outcomes, semi-supervised learning is
then employed to use this information to label an initial small
set of data and derive an automatic pass/fail classification for
the remainder of tests [3]. The combined effect of these is
to create a far more efficient process than just checking the
outcome of every test in order: clustering creates a small subset
of tests in which failures are more prevalent, and using semi-
supervised learning allows the tester to focus next on those
outputs considered to be failures.

Figure 1 shows the principles of using machine learning
techniques to automatically cluster or classify (it depends on
employed machine learning strategy) passing/failing outputs.
The program under test is run on a set of inputs which will
generate outputs and optional traces, and may encounter bugs
in the program (the *’s). The pass/fail status of the outputs
is unknown and the aim is to automatically distinguish these
using machine learning techniques.

III. EXPERIMENTAL EVALUATION

In this section, we describe the design of the empirical
evaluation used to assess and evaluate the effectiveness of the
automated test oracles generated by machine learning tech-
niques (unsupervised and semi-supervised learning strategies)
on a set of medium C/Java subject systems. This study aims
to investigate one primary research question:

• Which of the automated oracle approaches is most effec-
tive in revealing new faults?

Effectiveness in this case considers various components: ac-
curacy, recall, and the false positive rate. In addition, we in-
vestigate the statistical significance of the experimental results
obtained.

As a basis for this evaluation study, the key components
from experiments carried out in earlier studies [1], [2] were
employed. The same subject systems from the Software Infras-
tructure Repository (SIR)1, tools 2 , configuration, parameters
and environment were used. The main components of the
experiments are: a set of programs with known failures (these
are seeded faults but are pre-defined as part of the system
distribution so are outside the control of the study authors),

1(https://sir.csc.ncsu.edu/portal/index.php)
2A collective classification package release 2015.2.27

(https://github.com/fracpete/collective-classification-weka-package/releases)
for semi-supervised learning in WEKA release 3-6-12
(http://www.cs.waikato.ac.nz/ml/weka/downloading.html)



Fig. 1: Overview of Test Oracle Based on Machine Learning Strategy.

TABLE I: Characteristics of subject systems used in the study

Name Language Size Test Size Fault Types Failure Rate Description
NanoXML version 1 Java 7646 LOC 214 7 Seeded faults 37% XML parser system
NanoXML version 2 Java 7646 LOC 214 7 Seeded faults 33% XML parser system
NanoXML version 3 Java 7646 LOC 216 7 Seeded faults 31% XML parser system
NanoXML version 5 Java 7646 LOC 216 8 Seeded faults 39% XML parser system
Seina version 2 Java 6035 LOC 567 1 Seeded faults 17% An event notification system
Sed version 5 C 11148 LOC 370 4 Seeded faults 18% A stream editor

a set of test inputs for each subject system (these are also
already defined and come bundled with the system), a way to
determine whether an execution of each test was successful or
not (pass/fail), and a mechanism for recording the execution
trace taken through the subject system by each test. Details of
the systems used on this study are summarised in Table I.

A. Statistical Test for Test Oracles Based on Unsupervised
Learning Techniques (Clustering)

The experimental hypothesis for test oracles based on
unsupervised learning techniques can be formulated in the
following way: ”Normal data instances belong to large and
dense clusters, while anomalies either belong to small or
sparse cluster” [10]. The hypothesis test will be employed on
several experimental data for all subject programs used in this
paper to test and see the impact of clustering approach. Note
that, if the clustering approach has no impact then the failures
will be evenly distributed throughout the clusters irrespective
of their size. A null hypothesis, alternative hypothesis and
significance level are stated as follows:

• The Null hypothesis (H0) P <= (FN/TZ) (The pro-
portion of failures found in small clusters is less than or
equal to FN/TZ). Where FN is all the failures in test
suite, and TZ is the size of the test suite.

• The Alternative hypothesis (H1) P > (FN/TZ) (The
proportion of failures found in small cluster is more than
FN/TZ).

• The significance level is 0.05, and Z-Test method with a
right one-tailed test is selected (the relatively large sample
size makes the Z-Test an appropriate choice in this case),
as defined by the following equation:

Z = (P − P0)/
√
P0(1− P0)/N (1)

Where P is the proportion of failures found in small
clusters, and P0 is the proportion of all failures in the test
suite.

B. Statistical Test for Test Oracles Based Semi-supervised
Learning Techniques

The experimental hypothesis for test oracles based on semi-
supervised learning techniques can be formulated in the fol-
lowing way: ”Test oracles based on semi-supervised learning
techniques are able to accurately classify a significant majority
of unlabelled (or unseen) data”. The binomial test will be
used to test the hypothesis on the experimental results for
all subject programs used in this paper. A null hypothesis,
alternative hypothesis, equation parameters and significance
level are stated as follows:

• The Null hypothesis (H0) P <= 0.5. Where P is
the classification probability compared against random
chance classification probability obtained by (0.5). In
other words, it is compared against a random oracle where
a random oracle is a classifier which classifies data by
random chance.

• The Alternative hypothesis (H1) P > 0.5.
• N is the number of errors for the classifier (FP+FN) under

a particular labelled data size, K is the number of tests
which represent the number of unlabelled data that the
classifier attempts to classify.

• The significance level is 0.05, and Z-Test method with a
right one tailed test is used, as defined by the following
equation:

Z = ((K −NP )0.5)/
√
NPq (2)

Where q is the classification accuracy of random oracle
which is equal to 0.5.

C. Comparison with Daikon

To try and provide some meaningful comparison regarding
the effectiveness of the approach presented in this paper, a
comparison with Daikon [4] is also presented. Daikon is a
popular tool in the specification mining area that can also be
used as an automated test oracle. Daikon is dynamic analyser



that is able to infer likely program invariants from the synthesis
of program properties (e.g. key variables and relationships)
observed over several program traces. An invariant is a prop-
erty that holds at a certain point or points in a program;
these are often used in assert statements, documentation and
formal specifications. Daikon instruments and runs a program,
observes the values that the program computes, and then
reports properties that were true over the observed executions.

To build the initial set of assertions Daikon was run on the
non-faulty version of each system using the same supplied set
of test cases. Following this, Daikon was run on the various
versions of the program containing the seeded faults (again
using the supplied test cases) and used to establish whether
there were any violations of the initially established assertions.
To confirm that Daikon detects a seeded fault (true positive),
we manually inspected the output reports produced by Daikon
to find if there is any direct link between the reports (the
violated invariants) and the seeded faults (information about
the seeded faults can be found for each subject program in
SIR). A true positive is noted if the trained oracle (Daikon
assertions) reports an alarm that is verified to point to a
corresponding faults. A false positive is recorded if the trained
oracle reports an alarm which does not relate to any of the
corresponding faults. If the trained oracle does not report any
alarm in relation to a seeded fault then this can be considered
as false negative.

It must be stressed that Daikon assumes that the system
under test has fault-free version on which to train the oracle -
something which is difficult to obtain in the reality. In contrast
our approach makes no such assumption about a fault-free
version.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Test Oracle Creation Using Unsupervised Learning Tech-
niques

1) Study 1: Unsupervised Learning Techniques (Clustering
Input/Output Pairs) Versus Daikon: In this comparative study,
we replicate the best results achieved in our earlier paper
[2] for test oracles based on the Agglomerative Hierarchical
clustering algorithm with the same parameters (such as the
number of clusters), and just using input/output pairs of subject
programs. The results of this are summarised in Table II which
shows in column 1 (“Test Oracles”) either the type of Linkage
metric used with the Agglomerative Hierarchical clustering
algorithm (Single, Average, or Complete) or if the result comes
from the Daikon study, in column 2 the number of clusters
specified as parameter by the developer – CC (expressed as
a percentage of number of subject program test cases) and
the average size of small (less than average size) clusters –
CS (again expressed as a percentage of number of subject
program test cases)3, in column 3 details of confusion matrix
(CM), and finally in column 4 the evaluation metrics (FPR:

3So for the first entry in the table, NanoXML has 214 tests which means
that for the Single Linkage case there were 32 clusters (15% of 214) and the
average size of the small clusters was 6 (3% of 214)

false positive rate, REC: recall rate, ACC: Accuracy rate).
The confusion matrix is expressed in term of true positives
(TP: a failing test result that appears in a small cluster), true
negative (TN: a passing test result that appears in large cluster),
false positive (FP: a passing test result that appears in small
cluster) and false negative (FN: a failing test result that appears
in a large cluster). The false positive rate is defined as the
ratio of incorrectly detected failures to the number of all non-
failures. Recall is the ratio of correctly detected failures to the
number of true failures. Accuracy is defined as the ratio of
all correct classifications to the number of all classifications
that have been performed – in simple terms, how well the
clustering algorithm is doing at separating the failing tests
into the smaller clusters and the passing ones into the larger
clusters. The best results in terms of these last three metrics
are highlighted in the table in bold.

The experimental results for NanoXML version 1 and 5
show that Agglomerative Hierarchical clustering algorithm
with Single and Average linkage metrics performed better
than Daikon. The false positive rate (FPR) was between 0.16
to 0.20 and the failure detection rate (REC) was between
56% to 61%, and the accuracy rate (ACC) reflects this ob-
servation. However, for NanoXML version 2 and 3 Daikon
slightly performed better than the Agglomerative Hierarchical
clustering algorithm with all linkage metrics. In addition, the
clustering algorithm with all linkage metrics was not able to
outperformed Daikon for Siena and Sed, although for Siena it
achieved a higher failure detection rate but slightly lower accu-
racy rate. It’s worth remembering that the information used to
construct the test oracle for Daikon (execution traces) contains
more details compared to the information used to build a
test oracle for the clustering algorithm (only input/output
pairs). In general, the overall performance of Agglomerative
Hierarchical clustering as a test oracle is acceptable compared
to Daikon (the average false positive rate is 19% on all systems
and 17% for Daikon, and the average failure detection rate is
61% on all systems and 64% for Daikon).

2) Study 2: Unsupervised Learning Techniques (Clustering
Input/Output Pairs and Execution Traces) Versus Daikon: In
this comparative study, we replicate the best results achieved
in our earlier paper [2] for test oracles based on the Agglomer-
ative Hierarchical clustering algorithm using input/output pairs
with their corresponding execution trace of subject programs,
and again with the same parameters (such as the number of
clusters). The results of this are summarised in Table III.
The tables columns contain the same type of information as
Table II

The results for Nanoxml versions 1, 2 and 5 show that
Agglomerative Hierarchical clustering with various Linkage
metrics outperformed Daikon. The false positive rate (FPR)
was between 0 to 0.10 and the failure detection (REC) was
between 64% to 78%, and this also can be observed in
the accuracy rate (ACC). Only for Nanoxml version 3 did
Daikon perform slightly better. For Siena the results show that
Agglomerative Hierarchical clustering with Complete metric
outperformed Daikon with similar false positive rate but higher



TABLE II: Unsupervised Learning Techniques (Clustering In-
put/Output Pairs) Versus Daikon

Nanoxml Version 1
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 3%) (46, 21, 35, 105) (0.16, 0.56, 0.72)
Average (5%, 10%) (46, 26, 35, 100) (0.20, 0.56, 0.70)
Complete (15%, 3.12%) (48, 41, 33, 85) (0.32, 0.59, 0.64)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

Nanoxml Version 2
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (10%, 3.5%) (45, 10, 26, 126) (0.07, 0.63, 0.82)
Average (5%, 10%) (45, 26, 26, 110) (0.19, 0.63, 0.74)
Complete (25%, 2.25%) (46, 45, 25, 91) (0.33, 0.64, 0.66)
Daikon // (45, 11, 15, 78) (0.12, 0.75, 0.82)

Nanoxml Version 3
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (20%, 2.5%) (51, 14, 19, 122) (0.10, 0.72, 0.83)
Average (15%, 3.25%) (58, 15, 12, 122) (0.02, 0.82, 0.86)
Complete (15%, 3.12%) (59, 15, 11, 122) (0.10, 0.84, 0.87)
Daikon // (63, 14, 6, 86) (0.14, 0.91, 0.88)

Nanoxml Version 5
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 3%) (40, 28, 25, 114) (0.19, 0.61, 0.74)
Average (10%, 6.25%) (40, 29, 25, 113) (0.20, 0.61, 0.74)
Complete (15%, 3.12%) (36, 61, 29, 81) (0.42, 0.55, 0.56)
Daikon // (35, 20, 30, 74) (0.21, 0.53, 0.68)

Siena Version 2
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (20%, 0.79%) (61, 42, 23, 368) (0.10, 0.72, 0.86)
Average (25%, 0.60%) (63, 55, 21, 355) (0.13, 0.75, 0.84)
Complete (20%, 0.79%) (61, 18, 23, 392) (0.10, 0.72, 0.86)
Daikon // (60, 20, 24, 390) (0.04, 0.71, 0.91)

Sed Version 5
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (25%, 1%) (26, 95, 46, 195) (0.32, 0.36, 0.61)
Average (25%, 0.8%) (21, 65, 51, 225) (0.22, 0.29, 0.67)
Complete (25%, 1%) (30, 85, 42, 205) (0.29, 0.41, 0.64)
Daikon // (40, 20, 26, 276) (0.06, 0.60, 0.87)

failure detection rate and accuracy rate. In contrast Daikon
substantially outperformed the clustering algorithm approach
for the Sed subject system.

After comparing the experimental results in Table II and
Table III, it can be noticed that a test oracle based on clustering
using input/output pairs with execution traces performed better
than a test oracle based on clustering using input/output pairs
only.

As part of the evaluation in this paper, a statistical test
is applied to the experimental results. The results of this
are summarised in Table IV which shows the selected test
number for a specific system and its version (Test 1 to Test 6
are selected from Table II as a sample for both studies), the
oracle type, failures found - proportion of failures found on
the smallest clusters, population size - the size of all test data
on the smallest clusters (true positive and false positive), z-test
score, and p-value score.

The null hypothesis (see section III-A) is rejected in all
cases. It can be observed that the experimental results are
statistically significant in all cases where p − value is lower
than the significance level (0.05). This indicates that the
clustering of failures into the smaller clusters is a consequence
of the technique applied and better than random.

TABLE III: Unsupervised Learning Techniques (Clustering In-
put/Output Pairs and Execution Traces) Versus Daikon

Nanoxml Version 1
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 4.47%) (45, 8, 25, 71) (0.10, 0.64, 0.77)
Average (15%, 3.43%) (45, 8, 25, 71) (0.10, 0.64, 0.77)
Complete (25%, 3%) (41, 31, 29, 48) (0.39, 0.58, 0.59)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

Nanoxml Version 2
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 5.78%) (47, 9, 13, 80) (0.10, 0.78, 0.85)
Average (15%, 4.43%) (47, 9, 13, 80) (0.10, 0.78, 0.85)
Complete (25%, 3%) (42, 31, 18, 58) (0.34, 0.70, 0.67)
Daikon // (45, 11, 15, 78) (0.12, 0.75, 0.82)

Nanoxml Version 3
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 4.37%) (57, 9, 12, 91) (0.09, 0.82, 0.87)
Average (20%, 3%) (52, 26, 17, 74) (0.04, 0.75, 0.74)
Complete (15%, 3.92%) (59, 6, 10, 94) (0.06, 0.85, 0.90)
Daikon // (63, 14, 6, 86) (0.14, 0.91, 0.88)

Nanoxml Version 5
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (15%, 4.37%) (39, 20, 26, 74) (0.21, 0.60, 0.71)
Average (15%, 4.41%) (39, 24, 26, 70) (0.25, 0.60, 0.71)
Complete (10%, 6.50%) (46, 0, 19, 94) (0, 0.70, 0.88)
Daikon // (35, 20, 30, 74) (0.21, 0.53, 0.68)

Siena Version 2
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (20%, 0.79%) (63, 42, 21, 368) (0.10, 0.75, 0.87)
Average (10%, 1.98%) (63, 45, 21, 365) (0.10, 0.75, 0.86)
Complete (5%, 4.04%) (84, 18, 0, 392) (0.04, 1, 0.96)
Daikon // (60, 20, 24, 390) (0.04, 0.71, 0.91)

Sed Version 5
Test Oracles CC, CS CM (TP,FP,FN,TN) FPR, REC, ACC
Single (20%, 1.20%) (23, 71, 43, 225) (0.23, 0.34, 0.56)
Average (25%, 1%) (26, 104, 40, 192) (0.35, 0.39, 0.60)
Complete (25%, 1%) (25, 105, 41, 191) (0.35, 0.37, 0.59)
Daikon // (40, 20, 26, 276) (0.06, 0.60, 0.87)

B. Test Oracle Creation Using Semi-Supervised Learning
Techniques

1) Study 1: Semi-Supervised Learning Techniques (Classi-
fying Input/Output Pairs) Versus Daikon: Test oracles based
on semi-supervised learning techniques can be constructed in
two different scenarios. In the first scenario, classifiers were
trained on a small set of labelled instances of the normal
behaviour class (in this case, passing executions) and a few
instances of the abnormal behaviour class (failing executions).
The rest of data were unlabelled instances of input/output pairs
which the classifiers iteratively categorised during the learning
process. In the second scenario, classifiers were trained on
a small set of labelled instances for normal behaviour class
(passing executions) alone, with the remaining data being
unlabelled instances (as unknown class for the classifier during
the training process).

In this comparative study, we replicate the best results
achieved in [1] for test oracles based on self-training (using
Naı̈ve Bayes classifier with Expectation-Maximisation cluster-
ing algorithm) and co-training (using Naı̈ve Bayes classifier)
with the same parameters such as the size of labelled data (the
same labelled data were also selected), and using one set of
features (input/output pairs) to build the classifiers. The results



TABLE IV: Statistical Test Results for Test Oracles Based on Unsupervised Learning Techniques

Test Number Test Oracles Failures Found Population Size z-test p-value
Test 1 for NanoXML version 1 Single 56% 67 2.4419 < 0.00734
Test 2 for NanoXML version 2 Single 63% 55 3.9008 0.00005
Test 3 for NanoXML version 3 Average 82% 73 4.6684 0.00001
Test 4 for NanoXML version 5 Average 61% 69 4.2723 0.00001
Test 5 for Seina version 2 Complete 72% 79 10.5417 < 0.00001
Test 6 for Sed version 5 Complete 41% 121 4.885 < 0.00001

of this are summarised in Table V. The tables columns contain
the same type of information as Table II and Table III with
the exception of the second column (LS) which indicates the
size of labelled data set (based on a percentage of the number
of subject program test cases).

The experimental results for semi-supervised learning tech-
niques using input/output pairs under scenario 1 (a proportion
of both normal and abnormal data are labelled) for NanoXML
show that self-training outperformed Daikon on version 1 and
5. The false positive rate (FPR) was 0.12 and failure detection
rate (REC) was between 0.76 to 0.80 on both version. On the
other hand, Daikon performed slightly better on NanoXML
versions 2 and 3 where the failure detection rate is slightly
higher (13% higher on average for both versions), however,
self-training classifier has lower false positive rate (7% lower
on average for both version). The experimental results for
Siena and Sed show that Daikon outperformed all semi-
supervised learning methods (a test oracle based on Daikon
achieved a lower false positive rate and higher failure detection
rate for both systems).

The results for semi-supervised learning techniques using
input/output pairs under scenario 2 (labelling subsets of only
normal data) are omitted because none of the approaches
performed well enough. The majority of the time the trained
oracles (classifiers) were only able to classify all passing
(normal) execution data correctly but misclassified all failing
(abnormal) execution data, labelling it as normal data instead.

2) Study 2: Semi-Supervised Learning Techniques (Clas-
sifying Input/Output Pairs and Execution Traces) Versus
Daikon: In this comparative study, we replicate the best results
achieved in [1] for test oracles based on self-training (using
Naı̈ve Bayes classifier with Expectation-Maximisation cluster-
ing algorithm) and co-training (using Naı̈ve Bayes classifier)
with the same parameters such as the size of labelled data (the
same labelled data were also selected), and using two sets of
features (input/output pairs and execution traces) to build the
classifiers. The results of this are summarised in Table VI
and Table VII. The tables columns contain the same type of
information as Table V.

Table VI presents the results of using semi-supervised
learning techniques on input/output pairs augmented with their
execution traces for all versions of subject systems under
scenario 1 (both normal and abnormal data are labelled). Again
the best performing results are indicated in bold. From the
experimental results, it can be observed that practically all the
semi-supervised learning approaches outperformed Daikon for

TABLE V: Semi-supervised Learning Techniques (Classifying In-
put/Output Pairs) Versus Daikon - Scenario 1

Nanoxml Version 1
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 40% (65, 16, 16, 110) (0.12, 0.80, 0.84)
Co-Naive 40% (13, 0, 68, 126) (0, 0.16, 0.67)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

Nanoxml Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 30% (45, 9, 26, 127) (0.06, 0.63, 0.83)
Co-Naive 10% (13, 7, 58, 129) (0.05, 0.18, 0.68)
Daikon // (45, 11, 15, 78) (0.12, 0.75, 0.82)

Nanoxml Version 3
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 40% (55, 9, 15, 128) (0.06, 0.78, 0.88)
Co-Naive 10% (12, 7, 58, 130) (0.05, 0.17, 0.68)
Daikon // (63, 14, 6, 86) (0.14, 0.91, 0.88)

Nanoxml Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 50% (50, 18, 15, 124) (0.12, 0.76, 0.84)
Co-Naive 10% (14, 0, 51, 142) (0, 0.21, 0.75)
Daikon // (35, 20, 30, 74) (0.21, 0.53, 0.68)

Siena Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (51, 209, 33, 201) (0.50, 0.60, 0.51)
Co-Naive 10% (13, 98, 71, 312) (0.23, 0.15, 0.23)
Daikon // (60, 20, 24, 390) (0.04, 0.71, 0.91)

Sed Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 40% (24, 4, 42, 292) (0.01, 0.36, 0.87)
Co-Naive 40% (24, 4, 42, 292) (0.01, 0.36, 0.87)
Daikon // (40, 20, 26, 276) (0.06, 0.60, 0.87)

all versions of Nanoxml and the Siena subject systems. The
false positive rate (FPR) was between 0 to 0.05 and the failures
detection (REC) was between 94% to 100%, and this also
can be observed in the accuracy rate (ACC). This is quite
a remarkable result: for some of the systems it is possible
to build a completely accuracte classifier after training it on
just 10% of the samples - i.e just over 20 test cases. On
the other hand, semi-supervised learning techniques for Sed
subject system did not perform well in comparison to Daikon
as they have a high false positive rate and lower accuracy
rate although more failures (true positives) are detected. The
test data (input/output pairs and execution traces) for the
Sed subject system were examined and it was observed that
Sed has the most fragmented input-output combination which
combined with its 295 distinct traces gives a 341 distinct
input-output-trace combinations (in comparison to 120 for
NanoXML and 104 for Siena). For cases such as this it is
clear either that other information needs to be introduced to
the classifier algorithms such as execution time or summary



information relating to traces (e.g. number of unique methods,
nesting pattern etc.), or that the volume of data observations
needs to be increased to give the machine learning algorithms
a greater chance of identifying patterns (as it stands there is
on average just over one test case per unique trace).

Table VII shows the results of using input/output pairs
augmented with their execution traces along with scenario 2
(labelling a proportion of the normal test results only). Semi-
supervised learning techniques again outperformed Daikon
in all versions for Nanoxml and Siena except version 1 of
NanoXML where they performed on a par (for Nanoxml
version 1 Daikon has a high false positive rate and a low
accuracy rate but a higher failure detection rate). Again these
results are worth noting, especially as the models in this case
had not seen any examples of failing test cases. However,
the results for Sed show that Daikon beat the semi-supervised
learning techniques (although the failure detection rate - the
TP values - for self-training is slightly higher compared to
Daikon).

Overall the semi-supervised learning techniques performed
well in comparison to Daikon (regardless of whether the
training used both normal and abnormal data labels or solely
normal labels) on both the NanoXML and Siena systems. The
relatively weaker performance of Daikon may be attributable
to the size of the test suites - it may have been that the suites
were all too small to adequately train the oracle. However,
the same data sets were used for training the semi-supervised
learning approaches which may be an advantage for these
techniques if they are able to perform well even with a small
test suite size.

For Sed by contrast our machine learning approach failed to
achieve anything close to the performance obtained on other
systems and was Daikon consistently performed better. Re-
member that Daikon has the advantage of a ”clean” version of
the system to use to build the assertions, but still outperformed
our semi-supervised learning approach. This inconsistency of
performance is something we observed in previous studies
and is something we are working on to address by exploring
different trace information, data encoding (of inputs, outputs
and traces), distance measures and algorithms.

To evaluate the performance of semi-supervised learning
techniques as test oracles, statistical tests are applied to the
experimental results. The results of this are summarised in
Table VIII which shows the selected test number for specific
system and its version (Test 1 to Test 6 are selected from Table
V as sample for both studies), the oracle type, the classifier
accuracy, the number of errors - (N = FP+FN ), the number
of tests - (K) is the number of tests which represent the number
of unlabelled data that the classifier attempts to classify, z-test
score, and p-value score.

The null hypothesis (see section III-B) is rejected in all
cases. It is observed that the results are statistically significant
in all cases where p-value lower than the significance level
(0.05). This again demonstrates that the impact of the classifier
is far greater than could be achived by chance.

TABLE VI: Semi-supervised Learning Techniques (Classifying In-
put/Output Pairs with Execution Traces) Versus Daikon - Scenario
1

Nanoxml Version 1
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 50% (66, 4, 4, 75) (0.05, 0.94, 0.94)
Co-Naive 10% (28, 28, 42, 51) (0.35, 0.40, 0.53)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

Nanoxml Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (60, 0, 0, 89) (0, 1, 1)
Co-Naive 10% (60, 0, 0, 89) (0, 1, 1)
Daikon // (45, 11, 15, 78) (0.12, 0.75, 0.82)

Nanoxml Version 3
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (69, 0, 0, 100) (0, 1, 1)
Co-Naive 10% (69, 0, 0, 100) (0, 1, 1)
Daikon // (63, 4, 6, 86) (0.04, 0.91, 0.93)

Nanoxml Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (65, 0, 0, 94) (0, 1, 1)
Co-Naive 10% (65, 0, 0, 94) (0, 1, 1)
Daikon // (35, 20, 30, 74) (0.21, 0.53, 0.68)

Siena Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (84, 0, 0, 410) (0, 1, 1)
Co-Naive 10% (84, 0, 0, 410) (0, 1, 1)
Daikon // (60, 20, 24, 390) (0.04, 0.71, 0.91)

Sed Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 30% (57, 86, 9, 210) (0.29, 0.86, 0.73)
Co-Naive 40% (56, 86, 10, 210) (0.29, 0.84, 0.73)
Daikon // (40, 20, 26, 276) (0.06, 0.60, 0.87)

C. Combining Unsupervised/Semi-Supervised/Supervised
Learning Techniques Versus Daikon

In this approach to building test oracles, developers can
use the results obtained from unsupervised learning techniques
(clustering) as input to a supervised learning algorithm in order
to reduce the search space of required labelled training data set
(labelled training data set is not always available). Developers
manually check the test results on small clusters and labelled
them as a passed or failed test, and then use this labelled data
to train a supervised learning algorithm and to classify the
remaining test results data.

In this study, we select the results obtained from apply-
ing Agglomerative Hierarchical clustering algorithm with the
Single Linkage metric for Nanoxml subject system version
1 as input to Naı̈ve Bayes classifier (Table IX), and this
could be considered as a case study for this approach. After
examining and labelling the small clusters (where small sized
clusters equate to 4.47% of the test data - i.e. 7 instances
or less) a low classification accuracy of 23% is obtained.
However, the classifier successfully detects all failures (recall
is higher than Daikon) but the fault detection capability comes
at the price of high false positive rate (Daikon has 50% false
positive rate lower). This is caused by using an imbalanced
labelled training data set to train the classifier (the training
data set has 45 failing tests and just 8 passing tests) which
appears to be causing passing tests to be wrongly classified
as failing. This imbalance is a consequence of the success



TABLE VII: Semi-supervised Learning Techniques (Classifying In-
put/Output Pairs with Execution Traces) Versus Daikon - Scenario
2

Nanoxml Version 1
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 50% (17, 2, 53, 77) (0.02, 0.24, 0.63)
Co-Naive 50% (0, 0, 70, 79) (0, 0, 0.53)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

Nanoxml Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 40% (60, 0, 0, 89) (0, 1, 1)
Co-Naive 10% (58, 0, 2, 89) (0, 0.96, 0.98)
Daikon // (45, 11, 15, 78) (0.12, 0.75, 0.82)

Nanoxml Version 3
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 20% (67, 0, 2, 100) (0, 0.97, 0.98)
Co-Naive 10% (69, 0, 0, 100) (0, 1, 1)
Daikon // (63, 4, 6, 86) (0.04, 0.91, 0.93)

Nanoxml Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 50% (65, 0, 0, 94) (0, 1, 1)
Co-Naive 40% (42, 0, 23, 94) (0, 0.64, 0.85)
Daikon // (35, 20, 30, 74) (0.21, 0.53, 0.68)

Siena Version 2
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 10% (84, 0, 0, 410) (0, 1, 1)
Co-Naive 20% (84, 0, 0, 410) (0, 1, 1)
Daikon // (60, 20, 24, 390) (0.04, 0.71, 0.91)

Sed Version 5
Test Oracles LS CM (TP,FP,FN,TN) FPR, REC, ACC
Self 50% (45, 63, 21, 233) (0.21, 0.68, 0.76)
Co-Naive 50% (32, 44, 34, 252) (0.14, 0.48, 0.78)
Daikon // (40, 20, 26, 276) (0.06, 0.60, 0.87)

of the unsupervised learning and is something that could be
addressed by re-balancing techniques (e.g. randomly sampling
from large clusters on the assumption that they are unlikely
to contain failures) and is also something that we need to
investigate further.

We also studied the use of clustering algorithm results
as input to a semi-supervised learning classifier where the
labelled test results are combined with unlabelled test results
(unknown test results) in the training phase. This could be
a solution for the imbalanced training data set problem (the
classifier is trained iteratively and training data set is also
updated iteratively). The results for this (Table X) show that
a low false positive rate is achieved but also that a lower fault
detection ability is obtained which makes the balance between
false positive rate and failure detection rate a challenging task
for the development of automated test oracles.

V. TEST ORACLES VIA MACHINE LEARNING TECHNIQUES
AND THEIR PROPERTIES

In terms of the application of machine learning techniques
as test oracles in practice, the most important properties that
test oracles need to demonstrate are scalability, fault detection
ability, false positive rate and cost effectiveness. Each of those
properties is explained further below:

• Scalability means the ability of any technique to handle
any size of software (with corresponding increases in the
volume of data). In other words, a technique has to be
potentially usable at an industrial level.

• Fault detection ability refers to the effectiveness which
new (unseen) faults occurring in running application are
identified.

• False positive rate is the rate of false alarms reported by
test oracles. This can be considered as the biggest issue
with automated oracles. When such a rate is intolerably
high, any problem reported by automated oracles will be
deemed unreliable and ignored by developers.

• Cost effectiveness takes into consideration the effort and
resources required to create an oracle in relation to its
ability to reveal subtle semantic failures.

Generally, all those properties are complementary to each
other and can affect the usability of any test oracle in practice.
The ultimate goal of the software testing community is to find
a test oracle that can be used to test any system, and is able to
find all failures with a low false positive rate at an acceptable
cost.

Test oracles based on unsupervised learning techniques do
not require the availability of labelled data or a fault free
version of the system under test to construct test oracles
which make them more scalable in comparison to test oracles
based on supervised/semi-supervised learning techniques and
test oracles based on invariant detection in terms of the
provision of labelled data (other scalability issues may arise
in the application of the algorithms but these a likely to be
equally applicable to all approaches). In addition, the presented
approaches (unsupervised learning techniques) in this paper
are less expensive to obtain in comparison to test oracles based
on supervised/semi-supervised learning techniques (again as
no data labelling is necessary), but can be less accurate for
the same reason.

Test oracles based on semi-supervised learning techniques
are more less expensive in comparison to those based on
supervised learning techniques as they require a smaller set
of labelled training data (as opposed to the large data set
required by supervised techniques or the fault-free version
employed by invariant detectors). However, oracles based on
semi-supervised learning techniques have a lower accuracy in
comparison to those based on supervised learning techniques
(they have slightly higher false positive rate, and also slightly
lower fault detection ability) which is to be expected as the
training of the algorithms uses far less labelled data. Semi-
supervised approaches are a classic demonstration of the cost-
benefit trade-off: a larger set of labelled data is likely to
yield a more accurate classifier, and while these techniques
are significantly more cost-effective (and practicable) than
supervised approaches, there is still work to be done in
establishing the ideal ratio of labelled to unlabelled data.

VI. THREATS TO VALIDITY

The clear issue concerning the external validity of this study
is the generalizability of our results: the findings so far are
limited to three subject programs which cannot be said to
form a representative set, even though they are non-trivial
real-world Java and C systems of a reasonable size containing
real faults. The failure rates for all systems may also not be



TABLE VIII: Statistical Test Results for Test Oracles Based on Semi-supervised Learning Techniques

Test Number Test Oracles Accuracy (K) (N) z-test p-value
Test 1 for NanoXML version 1 Self 0.84 123 32 37.653436 < 0.00001
Test 2 for NanoXML version 2 Self 0.83 145 35 42.933836 < 0.00001
Test 3 for NanoXML version 3 Self 0.88 124 24 45.519684 < 0.00001
Test 4 for NanoXML version 5 Self 0.84 104 33 30.289512 < 0.00001
Test 5 for Siena version 2 Self 0.51 444 242 1.850858 < 0.032099
Test 6 for Sed version 5 Self 0.87 212 46 -8.172954 < 0.00001

TABLE IX: Unsupervised/Supervised Learning Techniques Versus Daikon for NanoXML

Nanoxml Version 1
Test Oracles (CC,CS,LS) CM (TP,FP,FN,TN) FPR, REC, ACC
Single-Naı̈ve Bayes 15%, 4.47%, 35% (23, 73, 0, 0) (1, 1, 0.23)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

TABLE X: Unsupervised/Semi-supervised Learning Techniques Versus Daikon for NanoXML

Nanoxml Version 1
Test Oracles (CC,CS,LS) CM (TP,FP,FN,TN) FPR, REC, ACC
Single-Naı̈ve Bayes 15%, 4.47%, 35% (12, 0, 11, 73) (0, 0.52, 0.88)
Daikon // (26, 39, 44, 40) (0.49, 0.37, 0.44)

representative, as may be the test cases (although these were
created independently via collaboration between the SIR and
the subject systems’ developers).

A potential construct validity for this study lies on our use of
the coding scheme for both input/output pairs and execution
traces. However, for the input/output pairs, this was created
by examining a subset of inputs and outputs in ignorance of
whether they are passing or failing pairs, and then applied
automatically in the reminder of the data set. The coding
scheme for execution traces was the same algorithm used
by [8] and also has no information about whether a trace is
associated with a passing or failing execution.

VII. CONCLUSION AND FUTURE WORK

In this paper we present an empirical evaluation study,
which investigates the effectiveness of automated test ora-
cles based on unsupervised/semi-supervised machine learning
techniques and dynamic analysis techniques (i.e. Daikon). We
perform three studies; each study examines possible practical
scenarios to construct automated test oracles based on machine
learning techniques with two different sets of dynamic exe-
cution data (input/output pairs only or input/output pairs aug-
mented with execution traces) as follows: (1) For unsupervised
learning scenario, testers have test data but they do not have
advance knowledge about passing and failing outcomes; (2)
For semi-supervised learning scenario, testers have test data
and they are able to label both normal (passing) and abnormal
(failing) tests, or label normal (passing) tests alone; (3) Testers
use the cheap results of unsupervised learning techniques as
input to semi-supervised/supervised learning techniques in the
case of no label tests available.

Results for the first empirical investigation (input/output
pairs only used as input to algorithms) demonstrate that
Daikon as test oracle has the highest fault detection rate
compare to test oracles based on unsupervised and semi-
supervised learning techniques (the fault detection rate is

approximately 64% for Daikon, 61% for unsupervised learning
techniques and 43% for semi-supervised learning techniques
on average for all systems). However, test oracles based on
machine learning techniques have slightly lower false positive
rate compare to Daikon (the false positive rate for machine
learning techniques is 3% lower on average for all systems).
In addition, the results for the second empirical investigation
(input/output pairs and execution traces used together as input
to algorithms) show that automated test oracles based on semi-
supervised learning techniques have the lowest false positive
rate compare to unsupervised learning techniques and Daikon
(approximately 11% on average for all systems), and also the
highest fault detection ability (approximately 82% on average
for all systems). Furthermore, automated test oracles based
on unsupervised learning techniques have slightly higher fault
detection ability compared to Daikon (the fault detection rate
is roughly 66% for unsupervised learning techniques and 64%
for Daikon on average for all systems), but a similar false
positive rate (approximately 16% on average for all systems).
However, there is some considerable variability between sys-
tems and a significant part of our future work in this are will
focus on reducing this to make the approach practically viable.

Despite of the initial achievements of test oracles based on
machine learning techniques, there are number of barriers for
the approaches to become practically usable which fall into
the categories of scalability and accuracy. Both barriers is
explained further below:

A. Improving Accuracy

Accuracy in this context means the ability of the presented
approaches to identify failing and passing test results as
correctly as possible (high true positive rate and low false
positive/false negative rates). The accuracy of semi-supervised
and unsupervised learning techniques may be improved by
augmenting the data sets (input/output pairs and execution
traces) with more relevant information from the program



execution (e.g. state information, execution time and code
coverage etc.) to build more effective/accurate test oracles.

Adding more execution data to the data sets can help to
reduce the size of labelled data used to train the learning
algorithms in semi-supervised learning. This also relates to
scalability but to make the approach practical the size of
labelled data needs to be as low as possible which means
improving the accuracy as well. The other point related to
the size of labelled and then accuracy is that the predictions
of semi-supervised learning approaches should come with an
estimate of confidence, possibly associated with the proportion
of labelled data used.

The accuracy of unsupervised learning approaches can be
improved by selecting the most appropriate similarity mea-
sures for clustering algorithms. In addition, the number of
specified clusters for clustering algorithms is important and the
accuracy can be improved by specifying the optimal number
of cluster counts. Note that, the accuracy of unsupervised
learning techniques (clustering algorithms) in this paper means
the separation between failing and passing test results. In other
words, the failing test results should be grouped in small
clusters with high failure density compared to large clusters
which should have more passing test results. The definition
of ’small’ and ’large’ is quite coarse in this context. Finding
the appropriate definition of ’small’ and ’large’ clusters can
help to improve accuracy in practice, as well as providing
some guidelines to the tester on the point where is not worth
exploring further clusters.

B. Increasing Scalability

The test data transformation for the software under test is
a very important issue which affects the scalability of the
presented approaches in this paper. This clearly impacts on
the volume of data that has to be processed but also has
implications for accuracy too, so must be done in a way that
does not compromise this. To be practically applicable it is
necessary to find a generic automated approach for each type
of test data. For instance, the input/output pairs for tested
systems in this paper were string/text type and it turned out
that tokenization procedure worked reasonably well with the
presented approaches but this may not be generally applicable
for all input and output types.

Generally, further research is needed to overcome those
barriers by conducting further empirical investigation of the ef-

fectiveness of presented approaches to corroborate the findings
and to increase their external validity, particularly by exploring
a wider range of programs, faults and coding schemes for
dynamic execution data (input/output pairs and execution
traces etc.). In summary, the fundamental principle to the
successful automated test oracles is the capability to build
oracles that demonstrate a substantially lower false positive
rate and higher fault detection capability, as compared to the
available, state of the art tools. Our future research will be also
devoted to further development and empirical investigation of
the effectiveness of several automated test oracles, to evaluate
the features offered by different alternative oracles.

REFERENCES

[1] R. Almaghairbe and M. Roper, “Automatically classifying test results
by semi-supervised learning,” in 27th IEEE International Symposium
on Software Reliability Engineering, ISSRE 2016, Ottawa, ON,
Canada, October 23-27, 2016, 2016, pp. 116–126. [Online]. Available:
https://doi.org/10.1109/ISSRE.2016.22

[2] ——, “Separating passing and failing test executions by clustering
anomalies,” Software Quality Journal, vol. 25, no. 3, pp. 803–840,
2017. [Online]. Available: https://doi.org/10.1007/s11219-016-9339-1

[3] M. Roper, “Using machine learning to classify test outcomes,” in
IEEE International Conference On Artificial Intelligence Testing, AITest
2019, Newark, CA, USA, April 4-9, 2019, 2019, pp. 99–100. [Online].
Available: https://doi.org/10.1109/AITest.2019.00009

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45,
Dec. 2007. [Online]. Available: http://dx.doi.org/10.1016/j.scico.2007.
01.015

[5] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing,
3rd ed. Wiley Publishing, 2011.

[6] R. Oliveira, U. Kanewala, and P. Nardi, Automated Test Oracles: State
of the Art, Taxonomies and Trends, 10 2014, vol. 95, pp. 113–199.

[7] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ser. ESEC/FSE ’11. New York, NY, USA:
ACM, 2011, pp. 416–419. [Online]. Available: http://doi.acm.org/10.
1145/2025113.2025179

[8] C. D. Nguyen, A. Marchetto, and P. Tonella, “Automated oracles:
An empirical study on cost and effectiveness,” in Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2013. New York, NY, USA: ACM, 2013, pp. 136–146.
[Online]. Available: http://doi.acm.org/10.1145/2491411.2491434

[9] E. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The oracle
problem in software testing: A survey,” Software Engineering, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882


