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Abstract: Monitoring the dynamic behavior of shorelines is an essential factor for integrated coastal
management (ICM). In this study, satellite-derived shorelines and corresponding eroded and accreted
areas of coastal zones have been calculated and assessed for 15 km along the coasts of Ezbet Elborg,
Nile Delta, Egypt. A developed approach is designed based on Landsat satellite images combined with
GIS to estimate an accurate shoreline changes and study the effect of seawalls on it. Landsat images
for the period from 1985 to 2018 are rectified and classified using Supported Vector Machines (SVMs)
and then processed using ArcGIS to estimate the effectiveness of the seawall that was constructed
in year 2000. Accuracy assessment results show that the SVMs improve images accuracy up to
92.62% and the detected shoreline by the proposed method is highly correlated (0.87) with RTK-GPS
measurements. In addition, the shoreline change analysis presents that a dramatic erosion of 2.1 km2

east of Ezbet Elborg seawall has occurred. Also, the total accretion areas are equal to 4.40 km2 and
10.50 km2 in between 1985-and-2000 and 2000-and-2018, respectively, along the southeast side of the
study area.

Keywords: integrated coastal management; Nile Delta; GIS; Landsat images; supported vector
machines; accuracy assessment; seawall

1. Introduction

Coastal zones are extremely important for countries with highly populated coastal areas.
Consequently, there is a concern about their future, particularly on the state of their natural resources,
which provide life support and opportunities for economic development and tourism [1]. For this
reason, models are developed to support Integrated Coastal Management (ICM) [2].

From this perspective, coastal management retains a crucial importance in order to shape economic
and social objectives, especially for places with large sea resources. To accomplish such objectives,
coastal monitoring surveys have been established to collect data useful for studying beach evolution
and storms responses, identification of suitable sites for construction of harbors, shoreline protection
plan, eco-system conservation, nourishments and dredging activities [3].
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Ezbet Elborg is one of the most pivotal cities on the Egyptian coast, which is located at the
northeast of Nile Delta, called Damietta branch. Fishing is the main socio-economic activity of this
coastal region with about 60% of all Egyptian fishing activities existing in Ezbet Elborg while the
agriculture and animal husbandry contribute to a certain extent [4]. Before Constructing Aswan High
Dam (AHD), the sediments discharge from Damietta branch to the Mediterranean Sea was estimated
to be about 0.6 to 1.8 million m3/year [5], which caused shoreline progression to the sea. After building
AHD, the coast began to dramatically erode as the flow and sediments discharged to the sea became
very negligible. Accordingly, Damietta beach has been suffering, since 1970, from a severe erosion [6].
Therefore, in the year 2000, the Egyptian government, represented by the Shore Protection Authority
(SPA), constructed a 6 km seawall to protect this area from erosion. Also, according to the development
plan of Damietta Governorate, a new fishing port is proposed in this area to provide life support and
opportunities for economic development. For this reason, this study will be helpful for supporting
management and monitoring of coastal area changes at Ezbet Elborg region.

Shoreline monitoring has widely supported ICM plans and policies. For instance, Dibajnia et al. [7]
presented a national shoreline management plan (SMP) to the Ports and Maritime Organization of
Iran that is useful for addressing existing coastal problems and setting policies that show shoreline
management as part of ICM policy dealing with existing and planned development in coastal
areas. Goncalves and Wange [1] evaluated three of the most commonly used GPS-based shoreline
monitoring methods: relative kinematic (RK), real-time kinematic (RTK) and precise point positioning
(PPP) methods. Their results highlighted the issues and important considerations in choosing an
economically viable GPS method for mapping shoreline changes, particularly for supporting ICM
policies. Valentini et al. [3] presented a monitoring system deployed in 2015 in the Apulia region (South
Italy), aimed at supporting management and monitoring activities of coastal areas. Video stations are
installed at two different sites, characterized by different geographic exposition and wave climate.
The shoreline extraction and the data post processing are based on new algorithms automatically
working on Timex images, providing a calculation of shoreline evolution and cross-shore profiles. The
video system employed improves the actual available methodologies for shoreline extraction. Samaras
and Koutitas [8] presented a new shoreline evolution model for quantifying the impact of watershed
management on coastal morphology, using an integrated methodological approach. The approach
is based on the consideration of the watershed and the coast as a spatiotemporal continuum in the
ICM framework by utilizing the capabilities of numerical modeling to simulate the evolution of the
phenomena in both fields and thus quantifying their correlation. On the other hand, for improving
the ICM concepts, better understanding and knowledge of coastal dynamics and shoreline erosion
due to hard structures such as seawalls are required. Many studies have investigated the effect of
seawalls construction on adjacent beaches and coastal dynamics. Ismail and El-Sayed [9] examined
numerically the sea-bottom morphology and cross shore profiles in front of Rosetta seawalls which
constructed in 1990, on the Nile Delta coastline to decelerate coastal erosion of the headland after
the operation of the (AHD) in 1965. The results showed that a significant component of sediment
scour, in front of the seawall, is manifested as an offshore sediment transport current. Thereafter this
offshore current is deflected alongshore contributing to sediment accretion down drift the seawall.
Balaji et al. [10] studied the effects of seawall along the coast of Fansa, India, using a combination of
numerical modelling, theoretical modelling and geo-informatics. They found that the construction of
the seawall resulted in a landward erosion of about 20 m in the down-drift direction of the seawall,
within a year of construction. Also, the beach is further predicted to erode by another 20 m before
attaining the state of equilibrium by the year 2014. This estimation is successfully validated through
remote sensing-based analysis, the results of which confirm that the landward erosion from 2011 to
2014 is approximately 40 m in the northern side of the sea wall.

Long-term monitoring of shorelines changes by comprehensive field surveys is costly,
labor-intensive and time-consuming. Therefore, as per the availability of satellite images at different
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dates for same locations, remote sensing is one of the best solutions for monitoring coastal changes
over a long period as it is a cost-effective method [11–14].

Satellite images features extraction has been studied by several researchers. For instance, the
Normalized Difference Water Index (NDWI) along with the Red, Green and Blue (RGB) system provide
an excellent delimitation of the coastline [15]. Di, et al. [16] presented a semi-automatic method to
extract a shoreline from a commercial Earth observation satellite (IKONOS) image., The method is
based on mean shift segmentation, major water body identification, initial shoreline extraction and
shoreline refinement. Dewidar and Frihy [17] used digital shoreline analysis software (DSAS) to
calculate the annual rate of beach changes for detecting pre and post-beach response to protection
structures constructed north-west the Nile delta. They found that historical Landsat data can be applied
for change detection analysis of rapidly changes highly energetic coastlines. El Banna and Herher [18]
detected temporal coastline changes by analyzing satellite Landsat images for the Mediterranean coast
of northern Sinai for the years 1986 and 2001 for monitoring shorelines changes and their associated
sediment characteristics. Giannini and Parente [19] used Quickbird multispectral images to extract
coastline where, segmentation is performed using all multispectral bands of the satellite dataset. Then,
classification is performed using both segmented images as well as NDVI (Normalized Difference
Vegetation Index) map to discriminate accurately between the water and no water for extraction of
coastlines. Numerous studies for extracting shoreline via remote satellite images have been discussed
by References [20–25]. Also, mapping shorelines was carried out using supervised approaches such
as the machine learning techniques. Zhang et al. [26] presented Support Vector Machine (SVM)
classification algorithm to coastline extraction, they checked different SVM kernel functions such as
Polynomial, Radial basis and Sigmoid and they found that the Sigmoid kernel function outperforms
other functions. Yun and Myung [27] compared the water-index-based method and SVM algorithm
for plotting accurate shorelines using high-resolution satellite images. The results showed that both
techniques accurately identified coastal zones with the SVM outperformed the water–index for coastal
zones with irregular shapes and shaded areas.

The resolution of the satellite images is the main constraint for mapping which governs the
accuracy and precision. However, coastal areas are spatially and optically more complex and require
more frequent spatial and spectral sampling to enhance the monitoring ability and assessing the
dynamics of the coastal processes [28–33]. Despite this, few of these studies checked the accuracy of
the derived shorelines via image classification technique, especially in Egypt.

The aim of this study is to investigate the shoreline changes in the northeast of Nile Delta, Egypt,
which is exposed to obvious changes in the coastline, due to a combination of natural and anthropogenic
factors. Construction of dams across the Nile River, such as AHD, reduce the sediment flux into
the sea. Consequently, coastal erosion is produced in the delta. This erosion has been diminished
due to hard structures such as jetties, detached breakwaters and seawalls at eroded promontories.
This study is implemented in the area of Ezbet Elborg, northeast of Nile Delta, Egypt, for supporting
management and monitoring of coastal area changes. This location was selected because there are
numerous socio-economic activities that are taking place; so, the present study would be helpful for
the design of the proposed fish port in this location. To achieve these objectives, a novel method is
developed to assess the shoreline change based on the combination of SVMs classification for Landsat
images and GIS to improve the accuracy of shoreline estimation. Accordingly, changes of the shorelines
every five years during the period between 1985 to 2018 including seawall effects are evaluated. The
present study is organized as follows. The Introduction starts with the state-of-the-art of the problem.
Then, the study area information and the corresponding coastal processes are presented. The next
section describes the details of the collected Landsat images, a brief description of SVMs technique is
introduced, the methods of accuracy assessment for classified images is presented. Also, the proposed
method for the Shoreline changes detection. Then, the obtained results are presented and compared
with field data.
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2. Study Area

The study was carried out along the shoreline of Ezbet Elborg city located next to the tip of
Damietta promontory on the north-eastern Nile delta coast. The coastline of the study area extends
about 15 km east of Damietta with 6 km long seawall that constructed in year 2000 along the eastern
side of the Nile’s mouth for protecting the shore from erosion as shown in Figure 1. The study area lies
between latitudes 31◦26′00′′ N to 31◦32′00′′ N and longitudes 31◦54′ 00′′ E to 32◦20′00′′ E. The beach of
the area consists of loose quartz sand merged with little amounts of heavy minerals and shell fragments.
Moreover, the southeast of the study area is distinguished by developing sand spits due to longshore
sediment transported directed to the east by the prevailing northwest waves along the Nile Delta
coast; in addition, the quasi-concave shoreline shape helps the evolution of sand spit [34]. Directional
wave measurements for the study area in 2010 showed that recorded maximum wave height during
the storms is almost 6.0 m, while significant wave height is 4.2 m from N. The monthly maximum
peak wave period varies between 7.0 and 13.2 s. The direction of a predominant wave throughout is
from the N-NW (86%) sector for all months (mainly from NNW (49%) direction). The littoral current
movement is generally towards the east with an average velocity about 34 cm/s. Damietta promontory
coast is of micro-tidal semi-diurnal nature with a range of the order 25–30 cm [35].ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 5 of 21 
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3. Materials and Methods

3.1. Satellite Images and Pre-Processing

A series of Landsat images were used in this study every five years between 1985 and 2018, as
presented in Table 1. Eight Landsat images were taken into consideration spanning the time period
between 1985–2018. Those images were downloaded from the U.S. Geological Survey (USGS) Earth
Explorer Web Tool (https://earthexplorer.usgs.gov/). Most of Landsat images are in good quality with
lowest cloud coverage. Also, the time-series satellite dataset must be collected at similar tidal levels to
compare the shorelines at different times as shown in Table 1 [36,37].

Table 1. Details of the satellite dataset used in this study.

Satellite
and Sensors Path/Row Date of

Acquisition
Spatial

Resolution
Acquired Time

(hh:mm:ss)
Tidal

Level (cm)

Landsat 5 (TM) 177/38 19-06-1985 30 m 07:51:28 . . . . . . .
Landsat 5 (TM) 177/38 16-05-1990 30 m 07:37:12 . . . . . . .
Landsat 5 (TM) 177/38 09-02-1995 30 m 07:53:14 . . . . . . .
Landsat 5 (TM) 177/38 30-07-2000 30 m 08:00:38 30.7

Landsat 7 (ETM) 177/38 28-07-2005 30 m 08:07:22 38
Landsat 7 (ETM) 177/38 14-10-2010 30 m 08:13:25 42

Landsat 8 (Oli/TiR) 177/38 24-07-2015 15 m 08:07:18 36
Landsat 8 (Oli/TiR) 177/38 10-10-2018 15 m 08:10:04 32

Geometric distortions are normally introduced to satellite data during acquisition. They result
from several factors including attitude (roll, pitch and yaw) or in other words, the Earth’s rotation
and panoramic distortions. Remotely sensed scene coordinates do not, therefore, coincide with a
standard map projection and the coordinates of fixed point vary from image to image. Hence, geometric
correction (rectification) is needed for removing geometric anomalies and create a faithful representation
of the original scene by correcting pixel location errors and establishing a coincidence between ground
attributes and the incorrect position throughout the image [38]. The geometric correction of each
Landsat image is carried out using standard procedures [38]. First, the data from image coordinates
(i.e., lines and pixels) is transformed to geographic coordinates (i.e., latitude and longitude or UTM,
etc.) by selecting pairs of GCPs—one from the image and the other from a map—for the same location.
This is repeated for several locations across the whole scene till the best transformation fit is established.
This process, named rectification, corrects the distortion in the input image. Then, the rectified image
is resampled as the position of the pixels in the geometrically corrected image differ from those in the
original image, the software follows a pre-defined sampling strategy to determine which source pixels
should be used to define each georeferenced pixel [38].

3.2. Images Classification

Shoreline image classification was made for improving the accuracy of extracted shoreline change.
Image classification techniques relies on many factors, such as the complication of the landscape in the
study area, chosen remotely sensed data, choice of suitable classification methods and assessment of
classification accuracy [39].

In this paper, SVMs were used to extract coastline from remotely sensing images. The SVM
classification algorithm is considered the best method for problems of small sample, nonlinear and high
dimension [40]. SVM has higher performance in terms of training speed and classification accuracy
than other techniques when used for classifying remote sensing images; it does not need to reduce
data dimensionality. It solves the common difficulties of artificial neural networks and other methods,
such as difficulties associated with identifying network structure, over-learning and local minima [26].

Basically, the main idea of SVM is the selection of an optimal hyper plane, which can be used
for linear classification of separable patterns. The optimal hyper plane can be defined as the plane

https://earthexplorer.usgs.gov/
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that maximizes the distance from the hyper plane to the nearest point of each pattern which called a
margin. As shown in Figure 2a, there exist many hyper planes but only one can provide the maximum
margin between the two classes (Figure 2b) called the optimum hyper plane. Support vectors are the
points located on the boundary of margin that define the hyperplane of maximum margin.ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 7 of 21 
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SVM is developed from the optimal classification surface in case of linear separable, for datasets
{xi, yi} (i = 1, . . ., k) where x ε RN in an N-dimensional space and y ε {−1, +1}. Its basic idea is to find
the optimal classification surface (hyperplane) between the two types of datasets. As shown from
Figure 2b, this hyperplane is defined as

w ∗ xi + b = 0, (1)

where, (w) is the weight vector of the classification surface, (x) is a point lying on the hyperplane and
(b) is the bias of the distance of the hyper plane from the origin. For the linearly separable case, a
separating hyperplane can be defined for two classes as:

w ∗ xi + b ≥ 1.for all y = +1 (2)

w ∗ xi + b ≤ 1.for all y = −1. (3)

These inequalities can be combined into a single inequality:

yi(w ∗ xi + b) − 1 ≥ 0. (4)

If the optimal classification surface meets the condition in Equation (4), the phenomenon of
linearly separable classes is executed [41]. Also, the SVM model uses a kernel function to separate
classes which cannot be separated using line or plane. Therefore, a non-linear region is required by the
classifier to separate such classes. This is also known as kernel trick, transformation of the data into
higher dimensional feature space in order to separate it linearly.

By using the Lagrange multipliers, the dual formulation expressed in terms of variables ∝i is
determined (also known as the dual representation of the decision boundary), an optimal desired
weights vector of the regression hyper-plane is represented as:

w∗ =
∑n

i−1

(
∝i − ∝ j

)
K
(
Xi −X j

)
. (5)
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Finally, SVM algorithm can be expressed as:

f (x) =
∑n

i−1

(
∝i − ∝ j

)
K
(
Xi −X j

)
+ b, (6)

where K
(
Xi −X j

)
is the Kernel function which equals the inner product of two vectors Xi and X j in

the feature space φ(Xi) and φ
(
X j

)
that used to compute a non-linearly separable function and then

transform it into a higher dimension linearly separable function.
Kernel functions are used to change the dimensionality of the input space, in order to perform the

classification task with more confidence. Zhang et al. [26] recommended the Sigmoid kernel function
for optimal classification (Equation (7)), so it is used in the current study.

K
(
Xi.X j

)
= tanh

[
C
(
Xi.X j

)
+ b

]
, (7)

where, C and b are kernel function parameters.

3.3. Accuracy Assessment of Classified Images

Accuracy assessment or validation is a significant step in the processing of remote sensing data.
Accuracy assessment parameters are useful for assessing the model performance regarding a particular
category/class of specific interest for the study. The confusion matrix is the most widely used measure
of image classification accuracy. It is simple cross-tabulation of the mapped class label against the
observed or reference data in the ground for a sample set [42]. Several measures of classification
accuracy can be obtained from a confusion matrix, in this study, both Overall Accuracy (OA) and
KAPPA (Equation (9)) are used for accuracy assessment. The OA is obtained by dividing the total
number of correctly classified pixels (n) by the total number of pixels (N), as follows:

OA =
n( Total number o f corrected pixel)

N(Total number o f pixel o f raw image)
. (8)

KAPPA analysis is a discrete multivariate technique used for assessing the accuracy of image
classification [42,43]. It is generally a measure of agreement between the classified map and the
reference data. According to Reference [43], the KAPPA statistic is computed as follows:

KAPPA(K) =
N

∑r
i=1 Xii −

∑r
i=1(Xi+ ∗X+i )

N2 −
∑r

i=1(Xi+ ∗ X+i)
, (9)

where; r = number of rows and columns in error matrix, N = total number of observations (pixels),
Xii = observation in row i and column i, Xi+ = marginal total of row i and X+i = marginal total of
column i.

Many schemes describing the strength of agreement of classification are based on the KAPPA
coefficient. The categorization of KAPPA is reproduced by Rwanga and Ndambuki [42] as shown in
Table 2.

Table 2. Rating criteria of KAPPA.

Category No KAPPA Statistics Strength of Agreement

1 <0.00 Poor
2 0.00–0.20 Slight
3 0.21–0.40 Fair
4 0.41–0.60 Moderate
5 0.61–0.80 Substantial
6 0.81–1.00 Almost perfect



ISPRS Int. J. Geo-Inf. 2020, 9, 199 8 of 19

3.4. Comparative Study

To evaluate the extracted shoreline accuracy, differential-real time kinematic (DRTK) global
positioning system (GPS) observations for shoreline were collected. The DRTK-GPS was used to
estimate an accurate shoreline change [1]. The D-RTK GPS data was collected at the same period where
the Landsat image was acquired in 2015 by walking along the shoreline of the study area, carrying
portable DGPS Hemisphere R131 joined with marine laptop model Tetra Note-EX that continuously
record the coordinates of the shore using hydrographic survey software (c-navigator). GPS data sets
are projected in UTM projection with zone 36 north and WGS 84 datum.

3.5. Shoreline Indicators

Shoreline is defined as the line of contact between land and a body of water. It is easy to define
but difficult to capture, since the water level is always changing [44]. Mapping shoreline changes as
an input data is important for coastal hazard assessment such as tidal flooding, sea level rise, land
subsidence and erosion-sedimentation. Multi-year shoreline mapping is a valuable task for coastal
monitoring and assessment [44]. Due to the dynamic behavior of the idealized shoreline boundary
and practical considerations, Boak and Turner [45] classified two groups of shoreline indicators from
45 examples. Classifications in the first group are based on a visually discernible coastal feature. The
other ones are datum-based shoreline indicators that are determined by the intersection of the coastal
profile with a specified vertical elevation defined by tidal constituents of a particular area, such as
mean high level (MHL) or mean sea level (MSL). The amount of tidal correction can be large or small
depending on the tidal range, the maximum correction amount can be a few meters in cases of large
tidal range [20,46]. As the tidal change in the study area is very small, its impact on the shoreline
change due to tide variation is very small. Therefore, this paper investigates the shoreline change
and beach evolution of Ezbet Elborg using Landsat satellite images. The shoreline position extracted
from a satellite image is a waterline or a wet/dry line that describes the instantaneous land-water
boundary at the time of imaging similar to the first kind of shoreline indicator as used before in many
studies [20,47]. Moreover, for minimizing the error, the Landsat images with similar tidal phases are
considered in the present study as shown in Table 1.

3.6. Proposed Method for the Shoreline Changes Detection

In this research, a post-classification comparison is applied for Ezbet Elborg shoreline changes
detection, classified images are converted to vector layers by using Raster to Vector module using GIS
software (ArcGIS 10.4.1). All shorelines extracted from classified images were overlaid and operated in
a geodetic base in ArcGIS 10.4.1 software for detection change of shoreline. The process used in this
study is presented in Figure 3 and described as follows:

• Image to Image registration process is implemented for all satellite images. The Satellite map
from Google earth software was used as a base map to georeferenced the Landsat image acquired
in 1985 through image to map referencing. Then, the Landsat image was considered as the
master image that was utilized to register other images through image-to-image registration. To
accurately register each image, a total of at least 35 ground control points (GCP) was examined and
matched with all images. These points include: road intersections, prominent geomorphologic
features and river channels as shown in Figure 1. After rectification, the root mean square error
(RMSE) for the deviations between the GCP and GP location is determined and kept smaller
than 0.45 pixels to ensure a good geo-referencing of the images. The images of the study area are
extracted by clipping it from the registered satellite images based on GIS solution.

• Image classification is done using SVMs. The SVM algorithm is designed using MATLAB software.
By this classification, two classes are created and called “Water” and “Other-Fields.”

• Image classification accuracy is determined as presented before in the “image classification”
section. KAPPA coefficients are then calculated and evaluated.
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• The classified image is converted to vector layers using ArcGIS to extract shorelines.
• Additional verification is done by comparing the extracted shorelines using the proposed approach

with the GPS land survey to evaluate its applicability to monitor shoreline changes.
• Finally, change detection of coastal areas is studied using the generated vector maps by the ArcGIS.
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Figure 3. Flowchart of the proposed approach for shoreline change detection.

4. Results and Discussion

Figure 4 illustrates the original satellite image of the study area which clipped from registered
images of years 1985, 2000 and 2018. The actual shoreline position is determined using the SVM
classifier with sigmoid Kernel function to categorize the trained samples into two classes named “Water”
and “Other-Fields” from Landsat images, as shown in Figure 5. Also, the classification accuracies of
the classified images are calculated (Table 3). From Table 3, the final accuracy assessment revealed that
the average OA of the classification accuracy is 92.625% and the average KAPPA agreement coefficient
is 0.8. Accordingly, the classification is rated as substantial based on the KAPPA agreement coefficient
and hence the classified images can be used for detecting shoreline changes. Then, each classified
image is converted to vector layers using Raster to Vector module to convert the pixels representing
the seaside into vector layer to get the actual position of shoreline as shown in Figure 6. It is noted that
the blue areas noticed in the left part of the picture (Figure 6) are fish farms.
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To extract the shoreline, the distance between the shoreline positions produced from the current
analysis and fixed polygon is measured to provide a reliable record for monitoring the changes of
the shoreline positions over the 33-year time frame. For validation, the extracted shoreline from
the Landsat images is compared with the shoreline identified by the ground survey performed by
the Coastal Research Institute (CORI) in 2015 as shown in Figure 7. It is found that the correlation
coefficient between the Landsat images and field data is 0.87, which reflects the validity of Landsat
images to detect shoreline changes.
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Table 3. Overall Accuracy (OA) and KAPPA statistics of the images.

Date of Satellite Image OA KAPPA Statistics

19-06-1985 86.0% 0.74
16-05-1990 89.0% 0.76
09-02-1995 90.0% 0.77
30-07-2000 92.0% 0.79
28-07-2005 94.0% 0.79
14-10-2010 95.0% 0.84
24-07-2015 97.0% 0.86
10-10-2018 98.0% 0.86
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All shorelines extracted from the classified images (Figure 6) are overlaid and operated in a
geodatabase using the GIS software as seen in Figure 8. From Figure 8, it is seen that the shoreline
behavior is dramatically changed during the monitoring time. The shoreline length is increased by
7.52% and 31.31% during the years 2000 and 2018, respectively, relative to the shoreline length in 1985.
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Figure 9 and Table 4 demonstrate the changes of the coastal area for the years 2000 and 2018
according to the base map. Along the area of erosion/accretion, an overview of the historical coastal
dynamic can assist in better explanation of other features of the morphological phenomena occurred.
Erosion at the eastern side of Damietta Promontory had begun after the construction of the AHD and
continued until the construction of the 6 km seawall at year 2000 as shown in Figure 1. The erosion
rate was 53 m/year during the period 1990 to 1999 [48]. The seawall successfully stopped the erosion at
proposed area and the shoreline is relatively stable (Figure 9A; Zone I) but the erosion was shifted to
the leeside of the seawall with high rates 59 m/year as seen clearly in Figure 9B; Zone I and Table 5.
Also, the maximum shoreline progress (1950 m) during the period (2000–2018) was recorded for the
southeast of the study area with maximum accretion 124 m/year that causes the increase of spit area
from 4.4 km2 to 10.38 km2, approximately (6 km2) net area, pre and post the construction of the seawall
(Zone II) due to the movement of littoral drift of sand at the seawall lee after its construction with the
seasonal NE wave action. El-Banna and Frihy [49] indicated that Damietta spit arms were formed
from sediments discharged due to predominant waves coming from N, NNW, NE which generate a
unidirectional longshore current toward the SE with no westward current reversals. The prevailing SE
longshore current along this sector is responsible for creating the sandy spit (Figure 9).

In a separate effort, from the analysis of shoreline changes and after the construction of the seawall.
For zone (I) in Figure 9B, it was found that the average shoreline retreat (1060 m) at the seawall lee
side area during the period (2000–2018). In comparison with different remote sensing techniques from
previous studies for the same area, the established trend of shoreline change extracted using the SVM
method was found to be closely consistent with the previous results for the area beside the seawall.
This is clear by comparing the results of the applied approach with the results of the previous studies
as shown in Table 5.



ISPRS Int. J. Geo-Inf. 2020, 9, 199 15 of 19
ISPRS Int. J. Geo-Inf. 2020, 9, x FOR PEER REVIEW 16 of 21 

 

 

Figure 9. Change detection maps for years 2000 and 2018 relative to year 1985. 

 

 

 

 

 

             

     

Figure 9. Change detection maps for years 2000 and 2018 relative to year 1985.

Table 4. Coastal areas change of the study area.

Date
Area (m2) Rate of Change (m2/year)

Erosion Accretion Erosion Accretion

(1985–2000) 1,126,699 4,442,038 75,113 296,135
(1985–2018) 2,150,332 10,386,625 65,161 314,746
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Table 5. Comparison between previous studies and the present study.

Research Time Period Average Annual Retreat (m/year) The Used Technique

Esmail et al. [48]
1990–1999 54 • Iso cluster technique,

• Threshold method,
• On screen digitizing method.

1999–2003 61.5
2003–2015 54.5

El-Asmar et al. [50] 2003–2011 61.45
• On screen digitizing method

Present Study 2000–2018 59 • Digitizing as line feature
based on SVM Classifier.

5. Conclusions

An integrated approach of remotely sensed images has been developed and presented in the
current study, which aimed at the coastal monitoring of Ezbet Elborg city, Egypt, as a case study. This
shoreline extends roughly 15 km eastward from the mouth of the Damietta Nile branch. Landsat
images of the period between 1985 and 2018 were classified using SVMs for monitoring the changes in
the shoreline of the study area. In addition, the accuracy of image classification was assessed using
overall accuracy and KAPPA Coefficient. The GPS land survey measurements are used to validate the
proposed method.

Studying the accuracy of the proposed model for images classification shows that the classified
images had an overall classification accuracy of 92.625% and KAPPA coefficient of agreement of 0.8.
accordingly, the classified images are found to be suitable for use in monitoring of shoreline changes.

In addition, the validation of the proposed model by using GPS land survey data shows that a
good agreement between extracted shoreline by the GPS and the proposed model (with correlation
coefficient = 0.87). Such agreement reveals the high accuracy of the proposed model and its ability to
accurately estimate the shoreline changes. Finally, the results of the shoreline change in the present
study shows that massive erosion rates northwest of the study area due to the construction of the
6 km long seawall by 2.15 km2 associated with an increase by 6 km2 of spit area. It is important to
understand the mechanism of the effect of hard structures on beach changes. Although the construction
of the seawall allows for property protection by controlling the beach, negative effects presented
in the resulted erosion at the down-drift end of the seawall should be taken into consideration
when constructing similar seawalls. This research also highlights the need to examine the hard
structures–beach interaction before installing a hard structure to control shoreline erosion by studding
different scenarios and choose the suitable one.

This research did not study the influences of water currents, wave actions, wind patterns, other
climate variables and irregularity of shorelines due to coastal morphological features such as spits,
estuaries and heads. However, they should be taken into account for better results. The information
of shoreline changes in this area is an important aid to stakeholders such as coastal engineers and
coastal planners who are engaged in coastal zone management. Such information allows them to take
appropriate precautions related to disaster risk reduction by making strategies, such as constructing of
coastal defenses structures to stabilize shoreline areas.
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