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Abstract 18 

Bayesian Networks support the probabilistic failure analysis of complex systems, e.g. dams and 19 

bridges, needed for a better understanding of the system reliability and for taking mitigation 20 

actions. In particular, they are useful in representing graphically the interactions among system 21 

components, while the quantitative strength of the interrelationships between the variables is 22 

measured using conditional probabilities. However, due to a lack of objective data it often becomes 23 

necessary to rely on expert judgment to provide subjective probabilities to quantify the model. 24 

This paper proposes an elicitation process that can be used to support the collection of valid and 25 

reliable data with the specific aim of quantifying a Bayesian Network, while minimizing the 26 

adverse impact of biases to which judgment is commonly subjected. To illustrate how this 27 

framework works, it is applied to a real-life case study regarding the safety of the Mountain Chute 28 

Dam and Generating Station, which is located on the Madawaska River in Ontario, Canada. This 29 

contribution provides a demonstration of the usefulness of eliciting engineering expertise with 30 

regard to system reliability analysis.  31 

Keywords 32 

Dam safety, Bayesian network, statistical inference, elicitation, expert knowledge, expert 33 

judgment. 34 

1.    Introduction 35 

Dams fail due to a combination of more frequent load and reduced resistance to the load 36 

exceeding the facility’s capacity, design problems, unexpected flood events or inappropriate 37 

decisions in managing dams. Such failures, including breaches, may lead to catastrophic events 38 

which affect both properties and lives of people. Maintaining dams is challenging, as resources 39 
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such as labor and capital are limited, facilities are remote and usage profiles are uncertain. Global 40 

weather patterns have been changing, causing periods of flooding, which have resulted in an 41 

increase in operating the dams. Understanding and anticipating the environment in which the dams 42 

will operate is vital for maintaining the availability of the asset. Effectively maintaining the asset 43 

requires a mathematical model to explicate the relationship between environment, usage, hazards 44 

and management decisions, and to support the optimal long-term productivity of the asset. 45 

 While several examples of mathematical and probabilistic approaches used to evaluate the 46 

safety of dams can be found in the literature (Yanmaz & Gunindi, 2008) (Li, et al., 2011) 47 

(Goodarzi, et al., 2012) (Su, et al., 2015), in this contribution we decide to use the Bayesian 48 

Network (BN) since it has many advantages and it is an increasingly popular method for reasoning 49 

under uncertainty and modelling uncertain domains. For instance, in comparison with two most 50 

commonly used approaches, i.e. the Event Tree Analysis (ETA) and the Fault Tree Analysis 51 

(FTA), BNs can more succinctly represent the dependency relationship between a large number of 52 

variables, permit variables to be described in multiple states not just binary, i.e. true or false, 53 

describe and represent multiple initiating events, and explicitly integrate different types of data, 54 

e.g. technical, environmental and social, in a single unified representation. Comparisons between 55 

BN and ETA or FTA in safety analysis can be found in (Khakzad, et al., 2011) (Jong & Leu, 2013) 56 

(Zerrouki & Tamrabet, 2015a) (Zerrouki & Tamrabet, 2015b). 57 

BNs provide a powerful framework for reasoning under uncertainty, and consequently have 58 

been recently applied to various engineering problems, e.g. earthquake risk management 59 

(Bayraktarli, et al., 2005) (Bensi, et al., 2011) (Liu & Nadim, 2013), avalanche risk assessment 60 

(Gret-Regamey & Straub, 2006), landslide hazard mitigation (Medina-Cetina & Nadim, 2008), 61 

reliability analysis (Langsetha & Portinaleb, 2007), climate change assessment (Peter, et al., 2009), 62 

risk assessment in maritime engineering (Kelangath, et al., 2011), environmental modelling and 63 
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management (Aguilera, et al., 2011), risk assessment for fatigue damage (Sankararaman, et al., 64 

2011) (Ling & Mahadevan, 2012), scour management (Maroni, et al., 2019). In addition, as regards 65 

the topic of this paper, in the literature we can find many papers in which BNs are used to develop 66 

dam safety analysis, among the many we recommend (Smith, 2006) (Xu, et al., 2011) (Zhang, et 67 

al., 2011) (Miroslaw-Swiatek, et al., 2012) (Peng & Zhang, 2013) (Ahmadi, et al., 2015) (Gang, 68 

et al., 2016) (Eldosouky, et al., 2017) (Liu, et al., 2017) (Briseno-Ramiro, et al., 2019) 69 

(Dassanavake & Mousa, 2020). 70 

Specifically, BNs are probabilistic graphical models that use directed acyclic graph to represent 71 

a set of uncertain variables and their conditional dependencies (Charniak, 1991) (Ben Gal, 2007) 72 

(Jensen & Nielsen, 2007). In detail, nodes represent the collection of random variables, while 73 

edges represent the interrelationship between these variables. While the topology of the BN 74 

provides the causal structuring of the problem under study, the quantitative strength of the 75 

interrelationships among variables is measured using conditional probability distributions, which 76 

can be updated when new data become available. Typically, the quantification of the probabilities 77 

may be obtained from statistical and historical data, existing physical or empirical models and 78 

logic inference. However, these quantification sources and methodologies are often not easy to be 79 

conducted and not sufficient to quantify the entire BN, due to the lack of sufficient models that 80 

interpret the interrelationships among system variables and due to the lack of data and information. 81 

Consequently, it becomes necessary to rely on expert judgments to quantify these dependencies: 82 

engineering knowledge and experience can be an important data source for estimating these 83 

probabilities (Dias, et al., 2018). 84 

Eliciting expert judgment in the form of subjective probabilities is a socio-technical activity. 85 

As such it requires a structured and facilitated process to extract meaningful judgments because 86 

people, even experts, are unable to provide accurate and reliable data simply on request (Ferrell, 87 
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1994) (Vick, 2002). An example about discrepancies between experts in risk assessment can be 88 

found in (Rizak & Hrudey, 2005). In addition, since the work of Tversky and Kahneman in the 89 

early 1970s (Tversky & Kahneman, 1974), there has been awareness of the biases and heuristics 90 

people apply in decision-making under uncertainty that can result in poor probability assessments. 91 

Elicitation processes are designed to minimize the influence of these biases (Quigley & Walls, 92 

2020). In the literature, there are a variety of existing processes for eliciting expert knowledge with 93 

engineering applications, see for instance (Bubniz, et al., 1998), (Hodge, et al., 2001) and 94 

(Astfalck, et al., 2018). Textbooks such as (Cooke, 1991), (Meyer & Booker, 1991) and (Dias, et 95 

al., 2018) are references for general aspects of elicitation. However, very little has been reported 96 

about elicitation processes aimed specifically at quantifying BNs using expert judgment 97 

(Sigurdsson, et al., 2001) (Norrington, et al., 2008) (Christophersen, et al., 2018), especially for 98 

civil engineering applications, where we require experts to assess a variety of dependent variables, 99 

each of which is in one of several possible states. In particular, a methodology to support the 100 

collection of valid and reliable data in order to quantify the BN is not available. 101 

In this paper, the aim is to develop a methodology for eliciting expert knowledge in the specific 102 

case where the model is described by a BN. We start with an introduction of the fundamentals of 103 

BNs in section 2. In section 3, a four-stage structured elicitation process is developed generically 104 

so that it can be applied to many civil engineering structures, e.g. dams and bridges. Section 4 105 

presents an implementation of this methodology, with its application to a real-life case study 106 

regarding the safety of the Mountain Chute Dam and Generating Station, which is situated on the 107 

Madawaska River in Ontario, Canada. Concluding remarks, along with the explanation of the 108 

lessons learnt from the application, are presented at the end of the paper.  109 
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2.   Bayesian Networks 110 

Bayesian Networks (BNs), also known as Bayes networks, belief networks or decision 111 

networks, are probabilistic graphical models used to represent knowledge about an uncertain 112 

domain using a combination of principles from graph theory, probability theory, computer science, 113 

and statistics (Charniak, 1991) (Ben Gal, 2007) (Jensen & Nielsen, 2007). In the graph, nodes 114 

represent the collection of random variables, while edges represent the interrelationship between 115 

these variables. In addition, each node is associated with conditional probability values that model 116 

the uncertain relationship between the node and its parents; they compose the so-called node 117 

probability table (NPT). BNs can model the quantitative strength of the interrelationships among 118 

variables, i.e. the nodes, allowing their probabilities to be updated using any new available data 119 

and information. They are mathematically rigorous, understandable, and efficient in computing 120 

joint probability distribution over a set of random variables, and consequently very useful in 121 

supporting risk analysis of complex systems. 122 

BNs are probabilistic graphical models that use directed acyclic graph (DAG): this means that 123 

a set of directed edges are used to connect the set of nodes, where these edges represent direct 124 

statistical dependencies among variables, with the constraint of not having any directed cycles. Let 125 

X = (X1, …, Xi, …, Xn) represent the set of nodes, i.e. the uncertain variables. A node Xj is called 126 

parent of a child node Xi if there is a directed edge from node Xj to node Xi, meaning that Xi 127 

depends on Xj. Each node can have many parents nodes, while nodes with no parent are called root 128 

nodes and nodes with no child are called leaf nodes. In addition, each root node is associated with 129 

a basic probability table (BPT), while each child node with a conditional probability table (CPT). 130 

The joint probability function of random variables in a BN can be expressed as follows: 131 
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P(X) = ∏ P[Xᵢ | Pa(Xᵢ)]

n

i = 1

, (1) 132 

where P(X) is the joint probability and Pa(Xi) is the parent set of node Xi. If Xi has no parents, i.e. 133 

it is a root node, then the function reduces to the unconditional probability of P(Xi). A simple 134 

example of BN with three variables as regards dam safety analysis is shown in Figure 1: both the 135 

severity of the flood and a high-water pressure can cause the presence of seepage in the dam; in 136 

addition, the flood severity has a direct effect on the level of water pressure. The table related to 137 

the flood severity, that is a root node, represent an example of BPT, while the tables of the other 138 

two child nodes are examples of CPT. 139 

Figure 1. An example of BN with three variables. 140 

 141 

Generically, in BNs there are two main types of reasoning: predictive reasoning, i.e. top-down 142 
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or forward reasoning, in which evidence nodes are connected through parent nodes (cause to 143 

effect), and diagnostic reasoning, i.e. bottom-up or backward reasoning, in which evidence nodes 144 

are connected through child nodes (effect to cause). 145 

Finally, we can summarize how to build and use a BN with three steps: structuring the problem, 146 

defining the conditional probabilities, and making the final inference. The first step aims to define 147 

the topology of the BN: first, the relevant variables of the problem are identified and expressed as 148 

statistical variables, discrete or continuous; then, the network is created by joining the variables 149 

according to their dependency. The second step is about quantifying the interrelationship among 150 

connected nodes, i.e. defining the CPTs, as well as the BPTs in the case of root nodes. They may 151 

be obtained from statistical and historical data, existing physical or empirical models, logic 152 

inference or they may be elicited from experts. Lastly, the inference step concerns entering the 153 

evidence in the BN, updating the probabilities, and interpreting the final results. 154 

3.   Elicitation Process for Bayesian Networks 155 

In this paper, the aim is to support the collection of valid and reliable data in order to quantify 156 

a BN, by developing a methodology for the specific case where the topology of the BN has already 157 

been defined, i.e. with the problem already structured. In this case, the elicitation process is then 158 

required to extract and quantify the subjective judgments about the uncertain quantities, which are 159 

the conditional probabilities that represent the interrelationships among connected nodes. 160 

There are various protocols for probability elicitation (Morgan, et al., 1990), for a recent review 161 

see (Quigley & Walls, 2020). The methodology proposed in this contribution is adapted from the 162 

Stanford Research Institute (SRI) model (Ferrell, 1985) (Spetzler & Stael Von Holstein, 1985) 163 

(Merkhofer, 1987). Accordingly, the process for eliciting expert judgment is based on seven 164 

possible stages: motivating the experts with the aims of the elicitation process, structuring the 165 
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uncertain quantities in an unambiguous way, conditioning the expert’s judgement to avoid 166 

cognitive biases, encoding the probability distributions, verifying the consistency of the elicited 167 

distributions, aggregating probabilities from different experts and discretizing continuous 168 

probability distributions. Moreover, to conduct an elicitation process at least two characters are 169 

necessary: a subject, i.e. the expert, and an analyst, i.e. the interviewer. The first one provides 170 

expertise, i.e. he/she is “a person with substantive knowledge about the events whose uncertainty 171 

is to be assessed” (Ferrell, 1985), while the second one has responsibility for designing, developing 172 

and executing the process as well as evaluating the procedures. For the rule of analyst, also called 173 

facilitator, it is common to have at least one person who is very knowledgeable in elicitation 174 

practice and can manage the process, and another one with wide expertise in the area of the design 175 

project. 176 

Starting from the SRI protocol and according to the specific requirements of a BN, we develop 177 

a four-stage structured methodology to support the elicitation meaningfully. In the next subsection 178 

each stage is extensively presented by defining each phase of the process, presenting the roles of 179 

the key personnel and highlighting all the potential biases that may influence the process, while 180 

proposing appropriate actions in order to minimize the risk of a biased judgment. 181 

3.1 The four-stage structured elicitation process 182 

In the following, each stage of the process is presented in detail; the flowchart in Figure 2 shows 183 

the proposed elicitation process. 184 

Stage 1: Selecting. To start, the analysts have to study carefully the project and the proposed 185 

BN, to understand which kind of expertise is required: it is fundamental to ensure coverage of all 186 

the different aspects of the problem, so more than one expert is usually necessary. This is even 187 

more important in civil engineering applications, because in this field experts are usually very 188 
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specialized. Therefore, the analysts should identify the essential and desired characteristic of 189 

experts and build up profiles of experts who may be able to answer questions concerning the 190 

quantities of interest, i.e. the values required to be quantified in the BN. Constructing a profile 191 

matrix can be useful (Bolger, 2018), which matches the knowledge requirements with the expert 192 

roles: it supports the identification of expertise needed as well as justification for the choice of 193 

experts. The number of required experts depends then on the variability of expertise per domain. 194 

Adding as many experts as possible seems beneficial, however, practically it may be difficult to 195 

manage many experts and there will be a diminishing return on adding more experts. In addition, 196 

we have to be aware that in real-world it is not so easy to have the availability of many experts. 197 

Once the experts have been selected, the analysts have to arrange meetings to conduct interviews. 198 

Prior to the meetings, it is recommended to give to the experts an outline about the project and 199 

where their knowledge will be useful, so that they have the opportunity to reflect upon the events. 200 

Stage 2: Structuring. Individual interviews between the analysts and the selected experts are 201 

conducted. The initial part of the interview has two purposes: to introduce the expert to the 202 

encoding task as well as identifying and addressing motivational biases (Fischhoff, 1989), such as 203 

management bias and expert bias. Management bias occurs when experts provide goals rather than 204 

judgments, e.g. “the dam will not fail”, while expert bias comes when experts become overly 205 

confident because they have been labelled as “experts”. During this initial part of the interview, 206 

the BN should be explained, indicating the uncertainty variables that will be elicited and explaining 207 

how this process can be useful as regards the resolution of the overall problem. The second part of 208 

this stage is concerned with structuring the variables: each quantity of interest that will be 209 

quantified needs to be specified so that a measurement scale can be determined. Even if the 210 

topology of the BN has already been defined, it is fundamental to review with the experts the 211 

definitions of the variables and their states, in order to structure the uncertain quantities in an 212 
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unambiguous and meaningful way, before starting with the encoding phase. Each variable must 213 

have a clear definition that will be understood without any possibility of misunderstanding by the 214 

expert. In addition, the states of every variable have to be determined in order to make 215 

unambiguous the final estimation of the expert. It is common for a BN to represent the nodes with 216 

discrete states: we suggest keeping them binary if possible, to minimize the number of variables 217 

to quantify. Depending on the experience and mental models of the experts, it may be appropriate 218 

to disaggregate the variable into more elemental variables. This can be very useful in the case of 219 

the BN, because each node might depend on several aspects and it can be easier for the experts to 220 

evaluate these secondary probabilities. This technique also allows the analysts to combat the 221 

motivational biases introduced at the beginning of this stage, i.e. the so-called management bias 222 

and expert bias, and also some cognitive biases, e.g. the conjunctive bias, by increasing the level 223 

of detail. The conjunctive bias is one of the biases associated to the anchoring heuristic (Tversky 224 

& Kahneman, 1974), which states that the overall probability is overestimated in conjunctive 225 

problems and underestimated in disjunctive problems. 226 

Stage 3: Encoding. This stage is concerned with encoding the expert’s uncertainty on the 227 

quantity of interest as a probability. Prior to eliciting these quantities training experts on probability 228 

and providing relevant information for discussion should be conducted to minimize the presence 229 

of potential biases (Tversky & Kahneman, 1974) (Armstrong, et al., 1975). In particular, this can 230 

address biases such as anchoring (Tversky & Kahneman, 1974), i.e. when the evaluation is 231 

conditioned by an initial assessment, and availability (Kahneman & Tversky, 1973), i.e. when the 232 

evaluation is based on the ease with which relevant instances come to mind. Probability training 233 

should be provided to calibrate the experts: a brief review of basic probability concepts may be 234 

helpful, along with some training questions which can help the experts to become familiar with 235 

the elicitation process itself. Experts should be trained on problems relevant to the questions on 236 
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which they will be providing judgement. When the training is completed, the encoding stage 237 

commences. There are many available approaches to elicit probabilities, including direct 238 

assessments of probabilities; for a review of methods we refer the Reader to (O'Hagan, et al., 2006). 239 

A popular encoding procedure for distributions is the fractile method (Cooke 1991), where the expert 240 

assesses the median value of their subjective probability distribution along with the (25th,75th) and the 241 

(5th, 95th) percentiles. Once the initial values have been elicited a parametric distribution can be 242 

investigated and assessed for fit with the elicited values. The order in which these quantities are 243 

elicited should start with the extreme values first and progress towards the central values, in order to 244 

avoid the so-called central bias, i.e. the tendency to give an answer that is closer to the center of 245 

opinions, and to not give an extreme answer. If the expert is uncomfortable with percentiles, 246 

questions can be rephrased using qualitative bands, such as “highly likely” or “highly unlikely”, 247 

but the percentiles associated with these qualitative terms must be discussed and understood by 248 

both expert and analysts. Alternately, graphical techniques (Chaloner, et al., 1993) may be useful 249 

to improve the quality of the results. We recommend using the technique which makes the expert 250 

more comfortable. In the case that there are a lot of probabilities to be elicited for the same node, 251 

we suggest that the expert first ranks the factors from the most to the least influential and 252 

subsequently quantifying the relationship, for instance following the swing weight method to 253 

elicitation used with multi-attribute decision analysis (Belton & Steward, 2001). Moreover, 254 

sometimes it is not possible to elicit data for all the BN components, especially when it is composed 255 

by a huge number of nodes or due to a limited time available. In this case, we recommend 256 

identifying the quantities of interest that make the most significant contribution to the assessment 257 

of the structure, for example through a sensitivity analysis (Li & Mahadevan, 2018). Finally, 258 

during the encoding phase, asking the same question in several ways can be a useful way of 259 
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identifying potential inconsistencies with expert assessments. If this occur the expert should be 260 

confronted and encouraged to reflect and respond on the assessments. 261 

Stage 4: Verifying. This final stage starts by verifying the consistency of the elicited 262 

probabilities. First of all, the analysts should verify that each expert has provided a reflection of 263 

their true beliefs. Moreover, it is important to check for trends across the elicited probabilities to 264 

determine if there are any indicators of anchoring bias or availability bias. If the results are not 265 

satisfactory or biased, the previous stage should be repeated. In the case that the same conditional 266 

probabilities have been elicited from different experts, the analysts should then develop an 267 

aggregation technique to obtain one single final result; see (Quigley, et al., 2018) for a 268 

performance-based approach or, if a consensus amongst experts is desired, see (Gosling, 2018) for 269 

a behavioral based approach. Since the proposed methodology is based on discrete states, the final 270 

stage of the SRI model, i.e. discretizing continuous probability distributions, is not needed. Once 271 

each elicited probability has been verified and, if necessary, aggregated, the analysts should solve 272 

the overall BN to achieve the final results. We suggest discussing with the experts also these final 273 

outcomes in order to have a further validation of the developed process. After that, the interview 274 

ends and the process can be considered concluded.   275 
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Figure 2. Flowchart of the proposed elicitation process. 276 

 277 

4.   The Mountain Chute Dam and GS case study 278 

The case study motivating our research is the Mountain Chute Dam and Generating Station 279 

(GS), which is operated by Ontario Power Generation (OPG). Mountain Chute Dam and GS, 280 

presented in Figure 3, is located in Greater Madawaska Township in Renfrew County (Ontario, 281 

Canada): it has an electric power generation capacity of 170 megawatts of clean, renewable 282 

electricity. It is situated on the Madawaska River, 64 km upstream from its confluence with the 283 

Ottawa River, and it is in the upstream of four other hydroelectric facilities on the Madawaska 284 

River: Barrett Chute GS, Calabogie GS, Stewartville GS and Arnprior GS. The construction started 285 

in 1965 and was completed in December 1967. Three dams are located at the Mountain Chute GS: 286 

one main concrete dam and two earthen block dams, i.e. the north block dam and the whitefish 287 

draw dam. The main dam, shown in Figure 3(a), consists of the north and the south concrete gravity 288 

https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/barrett-chute-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/calabogie-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/stewartville-station.aspx
https://www.opg.com/generating-power/hydro/ottawa-st-lawrence/Pages/arnprior-station.aspx
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walls, the sluiceway and the headworks. It is 436 m long and 55 m above the rock foundations at 289 

the deepest section; the elevation of the top of the concrete structure is 249.9 m. The north block 290 

dam, which is an embankment structure constructed across a shallow depression about 300 m north 291 

east of the north abutment of the main dam north, is about 125 m long and has a maximum height 292 

of 12 m. Finally, the whitefish draw dam is a block dam preventing the reservoir from flowing out 293 

via a side valley, it is located about 2.5 km north of the main dam, it is 204 m long and it has a 294 

maximum height of 18 m. More details about Mountain Chute GS and its case study are provided 295 

in (El-Awady, et al., 2019) and (Verzobio, et al., 2019). 296 

Figure 3. Mountain Chute Dam and GS: a) the main dam and the sluice gates; b) the downstream 297 

of the dam; c) the upstream of the dam with the reservoir. 298 

 299 

The main scope of this project is about the general safety of Mountain Chute, with the final aim 300 

to estimate the probability of failure of the dams, intended as failure to perform at least one of the 301 

required operations, according to the interrelated dam components. In the next subsections, we 302 

describe the developed BN and successively the application of the proposed elicitation process, 303 

which allows for improving the estimation of the failure probability of the dams, thanks to the 304 

acquisition of valid and reliable data from expert knowledge. 305 
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4.1 Bayesian Network of Mountain Chute Dam and GS 306 

Mountain Chute station includes different kinds of system components. For the purpose of 307 

analyzing the failure of this system, all system components should be defined, explained and 308 

analyzed. Specifically, components such as rain precipitation, ice loading, earthquake and seismic 309 

actions, water pressure, geology and rock type, flood severity, adequacy of discharge capacity, 310 

sluice gate, drainage, vegetation control and other secondary components have to be considered. 311 

A BN was constructed based on these components and based on the factors that can lead to the 312 

failure of the dams, e.g. overtopping, seepage, sliding, stability issues and any operational failure, 313 

such as problems related to the head gates or to the electromechanical equipment. The resultant 314 

BN is presented in Figure 4. 315 

Figure 4. Bayesian Network of Mountain Chute Dam and GS showing all the primary variables. 316 

 317 

The main purpose of the developed BN, which is represented by 24 different nodes, i.e. the 318 

yellow ovals in Figure 4, is predicting the probability of failure of the main dam from overtopping, 319 

seepage, sliding or any operational failures. Moreover, it estimates the probability of failure of the 320 

earthen block dams resulting from the threats of seepage and sliding. In the following, we analyze 321 
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in detail the BN. 322 

The basic events are rain precipitation, ice loading limits, earthquakes, geological and rock 323 

stability, vegetation control and control of animal burrows. It can be seen from the BN that the 324 

amount of rain affects the inflow to Mountain Chute dam; this inflow is considered a flood if it 325 

exceeds a certain limit. If a flood takes place, it may be normal or severe. Flood severity is also 326 

affected by seismic actions and earthquakes. The inflow rate and the severity level of the flood are 327 

controlled by the Mackie Creek weir. Controlling the inflow is about preventing severe floods 328 

from reaching the dam reservoir. The weir may be efficient or not, depending on the flood severity. 329 

After passing the weir, the water in the reservoir, blocked by two earthen block dams and the main 330 

concrete dam, is ready to be controlled by the dam head gates; this means that there is water 331 

pressure behind the dams that may affect their stability. The geological and rock stability for the 332 

structure of the three dams have been considered as it affects the sliding of the dam; sliding is one 333 

of the causes of dam breach failure. 334 

In addition, ice loading, water pressure and flood severity are connected to the 335 

electromechanical equipment, including turbines; for instance, ice loading affects the failure of the 336 

mechanical equipment and at the time of a severe flood and high-water pressure could result in 337 

dam failure from maloperations of gates. As regards the electric power generation, the head gates 338 

are opened to let the water flow through the penstock to generate electricity from hydropower 339 

turbines. If the head gates fail to open, this is considered a failure of the main dam, especially if 340 

the water pressure is high in the upstream side of the dam; this may affect the dam stability and 341 

also the amount of power generated by the turbines. 342 

Moreover, the flood severity, the weir efficiency in controlling the inflow to the reservoir and 343 

the water pressure are all affecting the probability to have spill in the main dam; the spill is the 344 

amount of water that exceeds the reservoir maximum capacity limit after considering various 345 
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controlled outflows. This amount should be released from the upstream side to the downstream 346 

side through the spillway (sluiceway) gates or an overtopping failure could take place. The amount 347 

of water spill is also related to the capacity of sluiceway, which may not be adequate for that 348 

amount of water to be discharged, and to the condition of the sluice gate, i.e. open or failed to open 349 

due to electromechanical failure. If the water spill is not released from behind the main dam 350 

because of the inadequate capacity of the sluiceway, or because the sluice gate fails to open, there 351 

is an increasing probability, i.e. risk, of overtopping failure. 352 

As concerns the main dam, severe floods with increased water pressure increases the possibility 353 

to have seepage in the body of the main dam. If the seepage is not completely controlled and 354 

monitored through a drain system which may include drain inspection tunnel, this would result in 355 

an increasing risk that reduces the remaining lifetime of the dam. Finally, as regards the earthen 356 

dams in Mountain Chute GS, seepage may take place because of uncontrolled vegetation and due 357 

to animal burrows and holes in the vicinity of the dams. Seepage in the earthen block dams is then 358 

an increasing risk for seepage piping and dam breach failure. 359 

After the development of the topology of the BN with all its variables, the corresponding states 360 

have been defined. It was clear that defining more than two states for every component of the BN 361 

would have turned the system into a more complex network. On the other hand, more states would 362 

have allowed to get more accurate results. Following the proposed methodology of the elicitation 363 

process, due to the considerable number of nodes, it has been decided to keep the states of the 364 

nodes binary, e.g. fail/no fail, safe/not safe, controlled/not controlled, efficient/not efficient. Table 365 

1 presents the defined states for each node. In addition, each state has been associated with a 366 

detailed definition or a numerical value, so as to make them quantifiable. As an example, according 367 

to the available data, the threshold according to which the rain precipitation passes from the state 368 

low to the state high is when the rain depth reaches 60 mm. 369 
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Table 1. States of the BN variables. 370 

Variable States 

Rain precipitation Low High 
Earthquakes seismic events Normal Severe 

Ice loading limit Safe Not safe 

Geology & rock type Stable Unstable 

Discharge capacity adequacy Adequate Not adequate 

Head gates main dam Open Close/Fail to open 

Holes and animal burrows Controlled Not controlled 

Vegetation control Controlled Not controlled 

Inflow flood Low High 

Flood severity Normal Severe 

Mackie Creek weir efficiency Efficient Not efficient 

Water pressure Normal High 

Spill Yes No 

Electromechanical equipment main dam Efficient Not efficient 

Sluice gates main dam Open Close/Fail to open 

Electric generation output Low High 

Overtopping Yes No 

Drainage main dam seepage Leakage No leakage 

Main dam stability sliding Stable Unstable 

Main dam failure Fail No fail 

North dam stability Stable Unstable 

White fish drawn dam stability Stable Unstable 

Seepage Exist Not exist 

Earthen dams failure Fail No fail 

Once the BN structure is completely defined, the conditional probability distributions were 371 

determined based on logical inference and limited historical data; these probabilities are defined 372 

to represent 100 years of operation for the Mountain Chute Dam and GS. Nevertheless, the 373 

available data were not enough, and they did not allow to cover all the nodes of the BN. Then, it 374 

was necessary to rely on expert judgment to provide subjective probabilities in order to populate 375 

completely the model. 376 

4.2 Elicitation Process 377 

By following the methodology proposed in section 3, we implemented each stage of the process 378 
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as follows. 379 

Stage 1: Selecting. There were two analysts: one with knowledge in elicitation practice and 380 

another with experience in the specific engineering area of failure analysis. After studying the 381 

project and the defined model, we identified three areas of expertise from which we sought to elicit 382 

expert judgment: structural stability expertise, environmental expertise and system design 383 

expertise. While finding one expert per each area was desirable, due to availability constraints we 384 

were given access to only one expert, who had a reasonable expertise in all the three areas: he was 385 

an engineer of the Ontario Power Generation who was responsible for monitoring the operations 386 

of this specific GS. We were aware about the possible difficulty in finding available experts, but 387 

managed to satisfy an essential coverage of expertise in all relevant area. A meeting was then 388 

arranged at the site of the dam, in order to develop the interview. In preparation, the expert was 389 

informed by email about the project and the specific aims of the interview. 390 

Stage 2: Structuring. At the beginning of the interview the expert was motivated by explaining 391 

the importance of the project, his fundamental rule and how the results will be used. Moreover, 392 

the possible presence of motivational biases was investigated, especially the expert bias: it was 393 

carefully pointed out to the expert that the goal is not to measure his personal expertise, but to 394 

measure his knowledge about the events. Successively, we moved to the second part of this stage: 395 

we reviewed the topology of the BN and the states of the variables together with the expert, to 396 

ensure that there was no misunderstanding about their definition before moving to the encoding 397 

phase. The expert therefore had the opportunity to review the topology of the BN but he decided 398 

not to modify it, probably because we arrived at the meeting with a too refined model; he also 399 

agreed with the proposed variables, refusing the possibility to disaggregate some nodes too. In 400 

addition, we spent more time explaining meticulously to the expert the meaning of each variable 401 
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and the corresponding states: after this discussion, and based on his opinions, we agreed to change 402 

the definition as well as the threshold of some states. 403 

Stage 3: Encoding. The encoding phase started by conditioning the expert’s judgment in order 404 

to avoid the possible presence of some cognitive biases. In particular, we focused mainly on the 405 

anchoring, which is of particular concern with BNs given the large number of variables being 406 

quantified: after the first assessment of the initial quantity of interest, the expert must avoid linking 407 

the subsequent assessment with the previous one, as it would result in a biased adjustment. 408 

Following this discussion, a probability training was carried out: we reviewed some probability 409 

concepts and trained the expert with some specific questions similar to those that we would be 410 

asked in the encoding phase, trying for instance to clarify the difference between a frequent event 411 

and a very rare event. In addition, the probability scale illustrated in Figure 5 was introduced, that 412 

we had established in order to help the expert during this stage of the process. This led to the 413 

encoding phase, which was the most important and the longest, i.e. around 1 hour. It was developed 414 

by asking questions in several ways, e.g. direct assessment of probabilities but also rephrasing the 415 

questions using qualitative bands, to find potential inconsistencies in the answers and also to 416 

reduce the influence of the explained biases. We chose these types of questions because we had 417 

noticed that the expert was not completely comfortable using the percentiles. For example, we 418 

asked the following questions: “What is the probability of a high inflow if the state of the rain 419 

precipitation is low?”; “How frequently does it occur that the head gates of the main dam fail to 420 

open?”; “How many days per year is it highly likely to have an inadequate capacity of sluiceway?” 421 

During this phase it is important that the questions are very clear: for instance, we had to pay 422 

attention to the reference time of each question in order to avoid misunderstanding with 423 

interpreting the expert data, for example caused by the difference between the design time of a 424 

dam and the real-life time of the dam.  425 



22 

 

Stage 4: Verifying. Finally, a verification of the individual elicited probabilities was developed: 426 

the results were satisfactory because the numerical outcomes seemed to coincide appropriately 427 

with the true beliefs of the expert. Since we had the availability of just one expert, no aggregation 428 

technique was necessary. Due to a limited time available the interview ended without the time to 429 

solve the overall BN and to discuss the resulting outcomes, which would have been useful also as 430 

an additional verification. In the end the interview lasted approximately two hours. 431 

Figure 5. Probability scale used during the elicitation process. 432 

 433 

4.3 Case study results 434 

In conclusion, after updating the probability distributions with data inferred from expert 435 

engineering judgment as presented in the previous subsection, the overall BN was solved in order 436 

to estimate the failure probabilities, which we remember are intended as failure to perform at least 437 

one of the required operations. Figure 6 shows the results, achieved using the software Hugin: the 438 

Bayesian inference results in a failure probability pF = 0.0135 for the main dam and pF = 0.0133 439 

for the earthen block dams, both evaluated over the lifetime of the dams, i.e. 100 years. It is evident 440 

that adding expert engineering judgments helps in reducing the uncertainties in the network, and 441 

gives better estimates for the operation of the dam in comparison with those obtained using only 442 

the limited available data and logical inference (El-Awady, et al., 2019). These final results about 443 

the failure probability are satisfactory as they are close to those expected when considering these 444 
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kind of systems design components: it provides approximately a failure of 1 in 10000 at any year 445 

or equivalent to designing a dam for failure due to the so-called ten thousand years flood. 446 

In addition, a BN is useful because explicates the cause-effect relationship, that is essential for 447 

a better understanding of the dam safety. For instance, it is possible to understand the main 448 

contributors to the failure of the main dam. Figure 7 shows the conditional probabilities of each 449 

node given the main dam has failed. The most influential variables and the associated probabilities 450 

are: seepage, i.e. 0.4551 leakage, electromechanical equipment, i.e. 0.2469 fail, sliding stability, 451 

i.e. 0.2364 unstable, head gates, i.e. 0.2256 failed to open. On the other hand, overtopping has just 452 

a probability of the 0.0795.  453 

Figure 6. The quantified BN of Mountain Chute Dam and GS (note that the numerical values are 454 

percentage). 455 

  456 
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Figure 7. BN of Mountain Chute Dam and GS given the evidence that the main dam fails (note 457 

that the numerical values are percentage). 458 

 459 

4.4 Evaluation of the process 460 

After discussing the implementation of the planned elicitation process to this specific 461 

engineering case study and the consequent results, in this section we propose a critical discussion 462 

about the main steps of the process, based on what happened during its application, in order to 463 

understand how to improve the process and to give practical guidelines that can be used for similar 464 

application in the future.  465 

- The selection of the experts is fundamental and should not be underestimated.  In particular, 466 

working in a field where experts have narrow areas of expertise rather than generalists 467 

requires more experts to be involved in the elicitation to ensure sufficient coverage of the 468 

relevant issues. It is worthwhile reflecting on expertise that is desirable for the study or 469 

essential. In our case, even if we had the availability of only one expert, we managed to 470 

satisfy an essential coverage of expertise in all relevant area. For larger projects, expert 471 
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profile matrices can be useful at structuring this reflection (European Food Safety 472 

Authority, 2014) (Bolger, 2018). 473 

- As regards the number of analysts, the choice of two analysts with different competences 474 

seemed appropriate: it is essential to have at least one facilitator with the expertise in the 475 

elicitation practice that have to lead all the process, and at least another one with engineering 476 

knowledge that have to make his contribution regarding the technical aspects of the specific 477 

design project. 478 

- The interview was conducted at the dam site: this choice has proved to be suitable because 479 

it allowed us also to understand better some practical aspects of the dam operation. As 480 

regards the available time for the interview, we had scheduled a two-hour meeting but in the 481 

end we realised that it was not enough to properly complete all the planned elicitation 482 

process. During the scheduling phase we had probably underestimated some aspects of the 483 

interview that can lead to a delay, so we suggest detailed planning of the interview to identify 484 

an appropriate time. 485 

- As concerns the structuring phase, we started with a very refined model, which can have 486 

some disadvantages, as it was evident that the expert did not propose many changes to the 487 

structure and agreed almost completely with our proposal; if the model had been less refined 488 

then the expert would have been more empowered to create a different model. Since this 489 

phase is fundamental in order to achieve accurate results during the encoding, we 490 

recommend involving the experts in the creation of the model and its variables. 491 

- The training phase is fundamental to get accurate and reliable data from the experts. 492 

Unfortunately, the time that we spent on training was too little, both because of the limited 493 

available time and because the expert did not seem too convinced about the importance of 494 

this phase. Consequently, we suggest adding a motivational phase at the beginning of this 495 
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stage, i.e. encoding, in the same way as in the structuring stage, with the aim to explain to 496 

the expert why it is necessary its development in order to calibrate him before encoding. 497 

- There is a trade-off between the level of detail in a model and the time required to populate 498 

with probabilities. The model structure needs to be flexible and adapt during the encoding, 499 

as experts may not be comfortable expressing uncertainties on variables and require an 500 

elaboration of the node.  501 

- As concerns the encoding techniques, the choice to ask the questions with direct assessment 502 

of probabilities and rephrasing the question using qualitative bands was made according to 503 

the specific features of our expert: it was clear to us for instance that he was not comfortable 504 

with the use of the percentiles. A good idea is then to prepare the questions in different ways 505 

before the meeting, and to choose which ones to use only during the interview, so as to make 506 

the expert as comfortable as possible. 507 

- As regards the verifying stage, the limited available time did not let us to carry out it 508 

completely. This is a problem that we have already highlighted and should be considered 509 

properly during the scheduling phase. In particular, it would have been important to have 510 

more time available in order to verify with the expert also the final resolution of the BN, 511 

based on the elicited variables. 512 

- Finally, during the implementation of all the stages we have paid close attention to the 513 

possible presence of heuristics and biases, by following the appropriate actions suggested in 514 

the methodology in order to minimize the risk of biased judgments. The achieved results 515 

allow us to confirm the suitability of our four-stage elicitation process. 516 
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5.   Conclusions 517 

BNs allow for analyzing complex systems like dams in order to develop a safety analysis based 518 

on probabilistic estimates of failure. Due to the lack of data, in this paper we proposed a 519 

methodology for an elicitation process aimed specifically at quantifying BNs, with the final goal 520 

of collecting reliable data from engineering knowledge. The elicitation exercise we carried out for 521 

this specific case study regarding the safety of the Mountain Chute Dam and GS, even if developed 522 

in a simplified way, demonstrated the potential and the usefulness of the engineering expertise, 523 

and allowed us to learn many lessons that are useful for improving the methodology, which we 524 

intend to address in future for similar applications. In summary, we can conclude as follows: 525 

- While the elicitation process has been applied in many fields, in civil engineering there is 526 

little experience of applying formal elicitation processes to quantify models. This paper 527 

demonstrates that engineering knowledge and experience can be very useful to solve 528 

appropriately also this type of analysis. 529 

- It is undeniable that the elicitation requires a structured and facilitated process in order to 530 

achieve accurate and reliable data, by avoiding the adverse impact of biases. However, there 531 

is no perfect elicitation process: it has to be planned according to the particular context and 532 

to the specific aims. Consequently, we proposed a detailed methodology for the precise aim 533 

to quantify a BN. 534 

- Our four-stage structured elicitation process works properly according to the results achieved 535 

in the case study. However, this has been just our first experience in implementing an 536 

elicitation process and instead, during the application, we have noticed some aspects that 537 

need to be improved in order to make the process even more successful and reliable. 538 
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- As regards to future work, we aim to improve this structured methodology based on what 539 

we have learnt from this first application, and to apply it to other civil engineering structures, 540 

e.g. bridges. 541 
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Tables 703 

Table 1. States of the BN variables. 704 

Variable States 

Rain precipitation Low High 
Earthquakes seismic events Normal Severe 

Ice loading limit Safe Not safe 

Geology & rock type Stable Unstable 

Discharge capacity adequacy Adequate Not adequate 

Head gates main dam Open Close/Fail to open 

Holes and animal burrows Controlled Not controlled 

Vegetation control Controlled Not controlled 

Inflow flood Low High 

Flood severity Normal Severe 

Mackie Creek weir efficiency Efficient Not efficient 

Water pressure Normal High 

Spill Yes No 

Electromechanical equipment main dam Efficient Not efficient 

Sluice gates main dam Open Close/Fail to open 

Electric generation output Low High 

Overtopping Yes No 

Drainage main dam seepage Leakage No leakage 

Main dam stability sliding Stable Unstable 

Main dam failure Fail No fail 

North dam stability Stable Unstable 

White fish drawn dam stability Stable Unstable 

Seepage Exist Not exist 

Earthen dams failure Fail No fail 
  705 
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Figure 1. An example of BN with three variables. 707 

Figure 2. Flowchart of the proposed elicitation process. 708 

Figure 3. Mountain Chute Dam and GS: a) the main dam and the sluice gates; b) the downstream 709 

of the dam; c) the upstream of the dam with the reservoir. 710 

Figure 4. Bayesian Network of Mountain Chute Dam and GS showing all the primary variables. 711 

Figure 5. Probability scale used during the elicitation process. 712 

Figure 6. The quantified BN of Mountain Chute Dam and GS (note that the numerical values are 713 

percentage). 714 

Figure 7. BN of Mountain Chute Dam and GS given the evidence that the main dam fails (note 715 

that the numerical values are percentage). 716 


