IMPLEMENTATION OF AN ULTRASONIC TOTAL FOCUSING METHOD FOR INSPECTION OF UNMACHINED WIRE+ARC ADDITIVE MANUFACTURING COMPONENTS THROUGH MULTIPLE INTERFACES

Rastislav Zimermann¹, Ehsan Mohseni¹, Randika K. W. Vithanage¹, David Lines¹, Charles N¹, Stephen G. Pierce¹, Anthony Gachagan¹, Stewart Williams², Jialou Ding², Martinelli Gianrocco²

¹ Centre for Ultrasonic Engineering, University of Strathclyde Glasgow, UK
² Welding Engineering and Laser Processing Centre, University of Cranfield Cranfield, UK
Outline

• Introduction into Additive Manufacture & Wire + Arc Additive manufacturing (WAAM) & NDE of WAAM
• In-process NDE of WAAM
 o Challenges with In-Process NDE of WAAM
 o High Temperature ultrasound Roller-Probe concept
 o Adaptation of UT TFM Imaging Algorithms for Roller-Probe inspection of WAAM
• Inspection of Calibration Mock WAAM Aluminum sample
• Inspection of Titanium as-built WAAM wall
• Conclusion and Future Work
What is Wire+Arc Additive Manufacturing (WAAM) ?

• WAAM is a large-scale AM technology that employs an arc welding process to produce metal parts additively

How Does it work?

• WAAM works by melting a metal wire using an electric arc/laser as the heat source.
• Melted wire is then extruded in form of beats on the substrate plates to form a part

Key Benefits

• Significant reduction in material needed to produce a part is achieved, therefore a cost is reduced
• Ability to deposit many otherwise expensive materials such as Titanium or stainless steel

Limitations when using WAAM

- Similarly to any arc welding process, defects affecting serviceability of the component can occur.
- Commonly, defects are caused by the lack of fusion, entrapped particles or due to poor deposition parameters and contaminated environment.
- Therefore, Non-Destructive Evaluation must be performed to assess the serviceability of the components.
Ultrasonic Inspection of WAAM components

- Currently, the components are tested either in immersion tanks or after surface machining because of the curved and the rough nature of the WAAM surface.
- Surface machining can significantly add to the process time and cost, while immersion tests may not be practical for very large components.
In-Process Inspection of WAAM components

What it is?
- Method merging manufacturing and NDE into a single process
- Improvement in cost-effectiveness is achieved by detecting defects as they are happening
- Associated with Robotic delivery of NDE

Challenges with in-process NDE of WAAM
- The Inspection equipment needs to be deployed on components with complex geometry and at elevated temperatures
High temperature ultrasound Roller-Probe concept for automated in-process NDE

Developed and built in-house at the University of Strathclyde

The Roller-Probe design consists of:

- UT phased array Transducer mounted on the top of high temperature resistant solid core (Delay Line)
- Rotary, conformable and high temperature resistant rubber wheel
- Suitable for automated NDE
Full Matrix Capture (FMC) & Total Focusing Method (TFM)

Captures Data from every transmit-receive combination in form of 3D Metrix

Key Advantages:
No pre-knowledge of the Sample is required

TFM Image is constructed by summing up signal from each Transmit-receive combination in each pixel based on the calculated Time of Flight (ToF).

$$I(P) = \sum_{i=1}^{N} S_{Tx,Rx} \left(T_{Tx(x,y)} + T_{Rx(x,y)} \right)$$

Advantages:
- Ability to detect smaller defects
- Imaging through multiple Media
Implementation of TFM for Roller-Probe inspection

- The algorithm must consider **3 different velocities**
- The Refraction at 1 flat and 1 curved interface must be considered and Snell’s law justified

\[
\frac{\sin(\theta_i)}{v_1} = \frac{\sin(\theta_r)}{v_2}
\]

- **Ray tracing** is performed using a search algorithm developed, where the point on the 1st interface is chosen and path through is calculated to the depth of the targeted pixel.
- Based on the obtained error between the pixel and incoming ray, the position of the point on the 1st interface is adjusted until maximal accepted error is achieved
Ultrasonic Surface reconstruction

- Dual-Medium algorithm based on Synthetic Aperture Focusing Technique (SAFT) is adapted to reconstruct Rubber Tire/Sample interface.
- The contributing elements to each pixel are limited by predetermined angle
- Amplitude based thresholding is, then, used to automatically select points corresponding to the surface of WAAM. Therefore, reconstructing the surface curvature and measure the compression of the rubber tire.

$$I_{rubber}(P) = \sum_{i=1}^{N} \sum_{j=\alpha}^{\beta} S_{TX,Rx}(T_{TX(x,y)} + T_{RX(x,y)})$$
TFM Inspection of Aluminum Mock WAAM Sample

Results

Auto-reconstructed vs CAD surface profile

1) 1.0 mm Flat Bottom Holes (FBH) reaching 4 mm below the surface

5) 1mm FBH

9) The sample is imaged from 2mm below the surface to the depth of the back

Inspection Setup

- LTPA Array Controller (Peak NDT)
- 5 MHz, 64 element, 0.5 mm Pitch PA Transducer
- 30N Force applied by KUKA Robotic Arm
- FMC data acquired using: 60V, 60dB Gain

Artificial defects: 1.0 mm Flat Bottom Holes (FBH) reaching 4 mm below the surface
Inspection of as-built Titanium WAAM component

Inspection Setup

- Titanium WAAM Wall deposited using oscillation strategy
- Artificial defects produced as 1mm and 2mm bottom drilled holes
- LTPA Array Controller (Peak NDT)
- 5 MHz, 64 element, 0.5 mm Pitch, PA Transducer
- 30N Force applied by KUKA Robotic Arm
- FMC data acquired using: 200V, 60dB Gain

Results

The sample is imaged from 5 mm below the surface to the depth of the back wall
Conclusion and Future work

Conclusion:
• Implementation of 3-Layer TFM algorithm for inspection using a dry-coupled Phased Array Roller-Probe
• SAFT based surface finding algorithm was implemented into the imaging algorithm to detect WAAM curvature
• Artificial defects (1mm FBH) on both Aluminum Mock sample and (1 and 2mm BDH) Titanium WAAM wall successfully detected with minimum 15dB SNR

Future works include:
• Deployment of an alternative signal transmission and reception strategies to enhance SNR of challenging as-built WAAM Components
• Development of automated defect-recognition and auto-calibration algorithms
• Deployment within the WAAM Manufacturing Process
Thank you