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This paper proposed a Deep Reinforcement learning (DRL) approach for Combined Heat and Power (CHP) system 

economic dispatch which is suitable for different operating scenarios and can significantly decrease the computational 

complexity without affecting accuracy. In the respect of problem description, a vast of Combined Heat and Power (CHP) 

economic dispatch problems are modeled as a high-dimensional and non-smooth objective function with a large number 

of non-linear constraints for which powerful optimization algorithms and considerable time are required to solve it. In 

order to reduce the solution time, most engineering applications choose to linearize the optimization target and devices 

model. To avoid complicated linearization process, this paper models CHP economic dispatch problems as Markov 

Decision Process (MDP) that making the model highly encapsulated to preserve the input and output characteristics of 

various devices. Furthermore, we improve an advanced deep reinforcement learning algorithm: distributed proximal 

policy optimization (DPPO), to make it applicable to CHP economic dispatch problem. Based on this algorithm, the agent 

will be trained to explore optimal dispatch strategies for different operation scenarios and respond to system emergencies 

efficiently. In the utility phase, the trained agent will generate optimal control strategy in real time based on current 

system state. Compared with existing optimization methods, the advantages of the proposed DRL methods are mainly 

reflected in the following three aspects: 1) Adaptability: under the premise of the same network topology, the trained 

agent can handle the economic scheduling problem in various operating scenarios without recalculation. 2) High 

encapsulation: The user only needs to input the operating state to get the control strategy, while the optimization algorithm 

needs to re-write the constraints and other formulas for different situations. 3) Time scale flexibility: It can be applied to 

both the day-ahead optimized scheduling and the real-time control. At the same time, we give a rigorous proof that the 

DRL method can converge to the optimal solution. To evaluate the performance of proposed economic dispatch algorithm, 

comprehensive numerical analysis is conducted. The result shows that the training time of our improved algorithm is 201 

seconds and 318 seconds less than other two advanced DRL algorithm. And the difference on economic performance 

between this method and optimization methods is only 0.029%. If the wind power of the system is 0, the trained system 

can still find optimal dispatch strategy without re-training. 
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1. NOMENCLATURE 

𝒮 State of CHP system 

𝒜 Action for devices. 

𝐼 Indicator function 

𝑐 Equipment operating status vector 

𝑑 Power mismatch vector 

𝑟 Random variables. 

𝑅𝜋  Reward function 

𝑉𝜋(𝑠𝑡)  Value function 

𝐴𝜋:       Advantage function. 

𝜂(𝜋̃)  Expected return 

t The t-th time slot. 

𝑃𝑔𝑡  The electricity output of GT 

𝑃𝑤𝑖𝑛𝑑  Wind power 

𝑃𝑔𝑟𝑖𝑑  Trading electricity with grid 

𝑃𝑙 , Electricity load  

𝑄𝑙 ,  Thermal load  

𝑄𝑔𝑡  The heat output of GT 

𝑄𝑔𝑏   The heat output of GB 

α Thermoelectric conversion efficiency of the GT 

𝑐𝑔𝑎𝑠/𝑐𝑔𝑟𝑖𝑑  Natural gas cost /The grid interaction cost 

ρ𝑔𝑎𝑠/ρ𝑔𝑟𝑖𝑑  unit price of natural gas/buy/sell electricity 

respectively 

𝜗  Reasonable operating capacity 

𝜃 Network parameter 

 𝑧𝑡(𝜃) Probability ratio of updating parameter 

 𝜖  𝐶𝑙𝑖𝑝 hyperparamert 

𝛾  Discounting factor 

𝑃𝑔𝑡
𝑚𝑎𝑥    Maximum output of GT 

𝑃𝑔𝑡
𝑚𝑖𝑛   Minimum output of GT 

𝑃𝑔𝑏
𝑚𝑎𝑥    Maximum output of GB 

𝑃𝑔𝑡
𝑚𝑖𝑛   Minimum output of GT 

𝑞𝑐ℎ𝑎𝑟
𝑡𝑠𝑡    Charging rate of TST 

𝑞𝑑𝑖𝑠
𝑡𝑠𝑡    Discharging rate of TST 

𝜋𝜃(𝑎|𝑠)  Parameterized policies  

r  Reward 

𝔼𝑎𝑡,𝑠𝑡+1,⋯[∙]   actions are sampled 𝑎𝑡~𝜋̃(∙ |𝑠𝑡) 
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2. Introduction 

Co-generation units plays an increasingly important role in 

the latest power system for their high energy efficiency, 

excellent environmental-friendly performance and high 

flexibility. Considering the mutual conversion among various 

energies, there is an plenty headroom for us to optimize the 

current conventional CHP system, despite some widespread 

concerns over the way to improve the economy of the CHP 

operation [1][2]. 

The combined heat and power economic dispatch (CHPED) 

is a significant brunch in CHP researches, which aims at 

minimizing the total production cost or maximizing the 

operating income while keeping all constraints satisfied. 

CHPED problem is generally descripted as optimization 

problem with one or more optimizing objectives and a set of 

highly nonlinear and non-smooth constraints including 

energy supply-demand balance, capacity limits and other 

constraints. 

The researches on CHPED mainly concentrate on two 

aspect: models and solutions. Several works have already 

been done in the CHP economic dispatch models domain. A 

thermal-electrolytic coupling method was proposed in [3], in 

which the CHP economic dispatch problem was decomposed 

into two heat and electricity sub-problems. Paper [4] and [5] 

proposed the CHP dispatch models which considered the 

detailed heat transfer process of the heat storage device and 

the cogeneration unit respectively. [6] established a two-stage 

dispatch model based on quantity adjustment and presented 

an iterative solution algorithm. An integrated response 

method for electro-thermal demand was proposed in [7] to 

improve the economy of CHP systems. An operational and 

structural Model based on efficiency matrices was proposed 

in [8][9], which was used for the dispatch of multi-energy 

system [10]. All economic dispatch problems are ultimately 

mathematically transformed into optimization problems, and 

the operation region of CHP systems can be modelled either 

convex or non-convex. Convex operation region is modelled 

by convex combination of electricity and heat extreme points 

[11][12] while non-convex operation region is usually 

modelled as mixed-integer model [13]. 

Some classical numerical methods have been successfully 

applied to CHPED including two-layer Lagrangian relaxation 

technique [3], Efficient Branch and Bound algorithm [14], 

dual and quadratic programming [15], etc. However, these 

methods have been criticized for their inability to cope with 

complex optimization problems which have highly nonlinear 

objective function and constraints. On the contrary, genetic 

algorithms, simulated annealing and evolutional algorithms 

could solve non-linear, non-smooth and non-convex 

optimization problem efficiently. Evolution programming-

based algorithm was adopted in [16], in which the mutation 

search range could be controlled and the neighborhood of the 

best individual in a population could be searched. [17] 

presented multi-player harmony search algorithm for large-

scale CHPED problem and obtained better convergence 

performance. Cuckoo optimization algorithm was powered 

by penalty function in [18]. This algorithm could yield better 

evolution and constraints handling methods. [19] improved 

basic genetic algorithm from avoiding excessive losses, 

excavating the information of parents and improving crossed 

offspring’s quality three aspects. 

These pioneering researches laid the foundation for the 

optimal dispatch of CHP system. However, it is worth noting 

that the solutions proposed by the existing research depend 

upon strict description of the CHP system. When the 

operating state changes, the strategy generated according to 

the original optimization problem is no longer the optimal 

strategy. In addition, conventional optimization methods do 

not achieve good encapsulation in engineering applications 

because the user needs to adjust the optimization target and 

constraint equation according to the operating state of the 

system. 

We aim to address both of the two challenges by modeling 

CHP system as MDP problem and solving it by deep 

reinforcement learning (DRL) method. MDP is a discrete 

time stochastic control process and provides a mathematical 

framework for modeling decision making in situations where 

outcomes are partly random and partly under the control of a 

decision maker [20]. At each time step, the process is in some 

CHP operating state, and the decision maker may choose any 

control action that is available for the current state. The 

process will return a corresponding reward to evaluate the 

quality of this question. By solving MDP, the decision maker 

could learn to choose optimal action for the current state to 

achieve maximum cumulative reward. By this model, the user 

only needs to consider the input of the system and the 

corresponding output, without having to consider the 

complex mathematical description of the system while 

retaining strict constraints. 

Reinforcement learning based methods have so far 

attracted a number of researchers to apply them to power 

system optimization. [21] combined the artificial neural 

network and the Q-learning algorithms to achieve the optimal 

management of operation and maintenance of power grids. 

[22] applied the fuzzy reinforcement learning to energy 

trading process to improve the users’ economy. [23] 

presented two variants of RL algorithms to solve economic 

problem and tested their performance on the IEEE 30 bus 

system. In this paper, a variant of Distributed Proximal Policy 

Optimization (DPPO) algorithm [24] for CHP economic 

dispatch problem has been introduced to our research. This 

algorithm is capable of handling different operation 

conditions without sacrificing stability or accuracy. When the 

system parameters change, the dispatch strategy can be 

directly given without long-term calculation by the chosen 

optimization methods. The Asynchronous Advantage Actor-

Critic (A3C) [25] based agents and the Clipped Surrogate 

Objective [26] are adopted to improve the learning efficiency 

and stability. A comparison has been performed between the 

performance of this algorithm and two other common 

benchmark algorithms in CHP dispatch problem. 

Furthermore, the algorithm has been applied to day-ahead 

dispatch and real-time dispatch in our research, and the result 

has been compared with that from the mathematical 

optimization method. The contribution of this paper could be 

summarized as the following: 

1) The CHP economic dispatch problem is modeled as 

Markov Decision Process (MDP). We have strict treatment of 

constraints and objective functions which ensures that the 
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results obtained by MDP are still the optimal solution in the 

feasible domain. 

2) A variant DPPO algorithm for economic dispatch 

problem has been developed to improve algorithm exploring 

ability, which ensures that the result is the global optimal 

solution rather than a local optimal solution. The paper gives 

detailed proof of the most optimality and convergence of the 

algorithm. 

3) The proposed method can be reused under a variety of 

operating scenarios without re-calculation, which improves 

the adaptability and provides more convenience for users. 

When the operating states change or emergency happen, users 

only need to input the current status to get an optimal control 

strategy instantly, instead of rewriting the constraint equation. 

4) The proposed method has time scale flexibility. It can 

be applied to both day-ahead economic dispatch and real-time 

control. 

This paper begins in Section II by describing the CHP 

system and the MDP model. Section III details the 

completion of the DPPO algorithm and the proof of its 

stability. Case studies are presented in Section IV and Section 

V gives the conclusions. 

3. Problem Statements 

In this section, the CHP operational environments and 

learning scene will be described. 

A. System Structure 

grid

gas

Wind 

Turbine

Electricity load 

Heat 

load
Heat 

exchanger

GT

TST

GB

Electricity Heat gas

 
Fig. 1. Structure of the integrated energy system 

A CHP system with four random variables (electricity 

load, heat load, wind and energy price) and four control 

variables (gas turbine output, gas boiler output, electricity 

traded with the grid and heat storage or heat release of thermal 

storage tank), which consequently increase the randomness 

and the complexity of calculation, is considered in this 

research. Fig. 1 illustrates the structure of the adopted system, 

consisting of a 5MWh gas turbine (GT), a 5MW gas boiler 

(GB), a wind turbine with the capacity of 1.5MW and a 

thermal storage tank (TST) with the capacity of 5MWh. 

Electricity load and heat load are connected to the end. This 

system could be divided into electric and thermal parts, and 

the GT realizes the coupling of the two parts. In the electric 

power system, the GT and the wind turbine are the sources of 

electricity supply. Meanwhile, the system is entitled to trade 

(buy or sell) electricity freely with the grid within constraints. 

In the thermal system, the GT and the GB convert gas into 

heat, and the TST is used to store any excess heat and to feed 

the stored heat back when there is a heat load after passing 

through the heat exchanger. 

The proposed CHP system has four decision variables, 

including the output of the GT and that of the GB, the 

charge/discharge state of the heat storage tank (TST) and the 

trading volume with the grid. The variables are regulatable 

and are the main factors affecting the generation of electricity 

and heat. Apart from these controllable variables, the output 

of the wind turbine, the electricity load, the heat load and the 

time-of-use electricity price are randomly generated within 

the feasible range of real data in each iteration in order to 

guarantee the robustness of the algorithm in a stochastic 

environment. Operating parameters and limits for each device 

are listed in TABLE 6 in the Appendix. 

B. Problem Modelling 

The CHP economic dispatch problem is to determine the 

minimized unit cost of generating heat and power on the 

foundation that the heat and power loads along with other 

constraints are all met. To achieve the first-rate control 

strategy, optimal methods are publicly applied in CHP 

economic dispatch area, where the problem is described as a 

series of constraints and one or more objective functions [27]. 

Varieties of optimization algorithms [1] could be used to find 

optimal solution in feasible operation region. 

 
Fig. 2. Illustration of MDP process 

MDP model is chosen in this research for its simplicity and 

computational efficiency, in which an agent interacts with 

environment over a number of time steps. At each time step 

𝑡 , the agent receives a state 𝒮  and selects an action 𝒜 

according to its policy 𝜋. After performing the selected action 

𝒜, the agent, in return, receives the next state and receive a 

scalar reward 𝑟. The goal of the agent is to maximize the 

expected return from each state. So the economic dispatch of 

the CHP system is modeled as an infinite-horizon discounted 

Markov Decision Process (MDP), defined by the tuple 

(𝒮, 𝒜, 𝒫, 𝑟, 𝜌0, 𝛾) , where 𝒮  is an array of states, 𝒜  is the 

array of actions,  𝑃: 𝒮 × 𝒜 × 𝒮 → ℝ  is the transition 

probability distribution,  𝑟: 𝑆 → ℝ  is the reward 

function, 𝜌0: 𝒮 → ℝ is the distribution of the initial state 𝑠0, 
and 𝛾 ∈ (0,1) is the discount factor. The relationship can be 

described as the following: 

 𝒮 = (𝐼, 𝑐, 𝑑, 𝑟), (1) 

 𝒜 = (∆𝑝𝑔𝑡 , ∆𝑝𝑔𝑏 , ∆𝑞𝑡𝑠𝑡 , ∆𝑝𝑔𝑟𝑖𝑑), (2) 

𝐼 is an indicator function. In a training episode, 𝐼 equals to 

1 if power mismatch is lower than the limit 𝜀 for more than 

𝑁  consecutive time steps, otherwise 𝐼  equals to 0. The 

stability of the strategy is improved by 𝐼. 
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𝑐 = [𝑝𝑔𝑡 , 𝑞𝑔𝑡 , 𝑝𝑔𝑏 , 𝑞𝑡𝑠𝑡 , 𝑝𝑔𝑟𝑖𝑑 , 𝑝𝑤𝑖𝑛𝑑]  is the equipment 

operating status vector. 

𝑑 = [(𝑝𝑙 − 𝑝𝑠), (𝑞𝑙 − 𝑞𝑠), 𝑝𝑙 , 𝑞𝑙)]  is the power mismatch 

vector and indicates the difference between the energy 

production and the load demand, where 𝑝𝑙  is the electricity 

load, 𝑝𝑠 is the electricity supplied, and 𝑞𝑙 is the heat load and 

𝑞𝑠 is the heat supplied. 

𝑟 = [𝑡𝑠𝑡𝑖 , 𝑟𝑡𝑝]  denotes the value of random variables, 

where 𝑡𝑠𝑡𝑖 is the initial state of the TST and 𝑟𝑡𝑝 is time-of-

use price. 

𝒜 suggests an action set for the decision variables which 

denotes the change amount of the decision variables in every 

single time step.  

Let 𝜋  denote a stochastic policy, and the following are 

standard definitions of the reward function 𝑅𝜋 , the value 

function 𝑉𝜋, and the advantage function 𝐴𝜋: 

 𝑅𝜋(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑠𝑡+1,𝑎𝑡+1,⋯[∑ 𝛾𝑙𝑟(𝑠𝑡 , 𝑎𝑡)𝑡+𝑙
𝑡 ], (3) 

 𝑉𝜋(𝑠𝑡) = 𝔼𝑎𝑡,𝑠𝑡+1,⋯[∑ 𝛾𝑙𝑟(𝑠𝑡)𝑡+𝑙
𝑡 ], (4) 

 𝐴𝜋(𝑠, 𝑎) = 𝑅𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠), (5) 

The following useful identity expresses the expected return 

of another policy 𝜋̃  in terms of the advantage over 𝜋 , 

accumulated over time steps (see [28] for proof): 

 𝜂(𝜋̃) = 𝜂(𝜋) + 𝔼𝑎𝑡,𝑠𝑡+1,⋯[∑ 𝐴𝜋(𝑠, 𝑎)∞
𝑡=0 ], (6) 

where the notation 𝔼𝑎𝑡,𝑠𝑡+1,⋯[∙] indicates that actions are 

sampled 𝑎𝑡~𝜋̃(∙ |𝑠𝑡). This equation implies that any policy 

update 𝜋 ← 𝜋̃ that has a nonnegative expected advantage at 

every state 𝑠  ( ∑ 𝜋̃(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑡 ≥ 0  is guaranteed to 

increase the policy performance 𝜂, or leave it constant in the 

case that the expected advantage is zero everywhere). This 

implies the classic result that the update performed by exact 

policy iteration, which uses the deterministic policy 𝜋̃(𝑠) =
𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝜋(𝑠, 𝑎), improves the policy if there is at least one 

state-action that pairs with a positive advantage value and 

nonzero state visitation probability, otherwise the algorithm 

has converged to the optimal policy. 

 

C. Constraints 

Constraints are very important in the mathematical 

optimization problem. The premise of the optimal solutions 

is to set the allowable range for the constraints. To simulate 

the real operation of the CHP system, the strict constraints are 

set in state transition of MDP. In this section, we will 

demonstrate how we handle constrain in MDP model. For 

example, if the GT output has reached the maximum in 

current state S and the action choose by decision maker is still 

increasing the output of GT, the output of the GT in next state 

is still maximum to meet equipment operation limit. 

Power demands: Electric and thermal power need to reach 

a supply and demand balance. The followings are the publicly 

used formulas: 

 𝑝𝑔𝑡 + 𝑝𝑤𝑖𝑛𝑑 + 𝑝𝑔𝑟𝑖𝑑 = 𝑃𝑙 , (7) 

 𝑞𝑔𝑡+𝑞𝑔𝑏 + 𝑞𝑡𝑠𝑡 = 𝑄𝑙 , (8) 

 𝑞𝑔𝑡 = α𝑝𝑔𝑡 , (9) 

where 𝑝𝑔𝑡 , 𝑝𝑤𝑖𝑛𝑑  and 𝑝𝑔𝑟𝑖𝑑  are the electric power of the GT, 

of the WT and traded with the grid, respectively. 

𝑞𝑔𝑡 , 𝑞𝑔𝑏  and 𝑞𝑡𝑠𝑡 are the thermal power of the GT, the GB and 

the TST, respectively.   α  is the thermoelectric conversion 

efficiency of the GT. 𝑃𝑙   and 𝑄𝑙   are the electricity and heat 

loads, respectively. This part of constraints is difficult to 

reflect in state transition 𝑃 , and we convert it into reward 

function in the subsection D. 

Equipment operation limit: Both the GT and the GB 

must meet their upper and lower limits of output. Grid 

interaction power is within the specified range shown in 

case study. 

 𝑃𝑔𝑡
𝑚𝑖𝑛 < 𝑃𝑔𝑡 < 𝑃𝑔𝑡

𝑚𝑎𝑥 (10) 

 𝑃𝑔𝑏
𝑚𝑖𝑛 < 𝑃𝑔𝑏 < 𝑃𝑔𝑏

𝑚𝑎𝑥 (11) 

In MDP, if the 𝑃𝑔𝑡or 𝑃𝑔𝑏  in next state is beyond restriction, 

the probability of moving from the current state to this state 

is 0 which means that the agent would not take action that will 

cause the device to exceed the limit. 

Energy storage device constraint: Energy storage 

device operating constraints are detailed as follow: 

𝑄(𝑡+∆𝑡)
𝑡𝑠𝑡 = {

𝑄𝑡
𝑡𝑠𝑡 + 𝑞𝑐ℎ𝑎𝑟

𝑡𝑠𝑡 ∙ ∆𝑡                  𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑡
𝐵𝑡 − 𝑞𝑑𝑖𝑠

𝑡𝑠𝑡 ∙ ∆𝑡               𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
          (12) 

s.t.  

𝑞𝑑𝑖𝑠
𝑚𝑖𝑛 ≤ 𝑞𝑑𝑖𝑠

𝑡𝑠𝑡 ≤ 𝑞𝑑𝑖𝑠
𝑚𝑎𝑥  

𝑞𝑐ℎ𝑎𝑟
𝑚𝑖𝑛 ≤ 𝑞𝑐ℎ𝑎𝑟

𝑡𝑠𝑡 ≤ 𝑞𝑐ℎ𝑎𝑟
𝑚𝑎𝑥  

𝑄𝑚𝑖𝑛
𝑡𝑠𝑡 ≤ 𝑄𝑡

𝑡𝑠𝑡 ≤ 𝑄𝑚𝑎𝑥
𝑡𝑠𝑡  

Where 𝑄𝑡
𝑡𝑠𝑡 denotes heat storage of the heat storage tank at 

time 𝑡 . 𝑞𝑐ℎ𝑎𝑟
𝑡𝑠𝑡  and 𝑞𝑑𝑖𝑠

𝑡𝑠𝑡  is the charging rate and discharging 

rate of TST respectively. The constraints on charge and 

discharge rate are reflected in the action 𝒜[∆𝑞𝑡𝑠𝑡]  in the 

MDP model: 𝑞𝑑𝑖𝑠/𝑐ℎ𝑎𝑟
𝑚𝑖𝑛 < 𝒜[∆𝑞𝑡𝑠𝑡] < 𝑞𝑑𝑖𝑠/𝑐ℎ𝑎𝑟

𝑚𝑎𝑥 . The treat to 

heat storage capacity limits is same as Equipment operation 

limit. 

 

D. Reward 

In a Reinforcement learning problem, all objective 

function mentioned in optimization problems can be 

described as maximizing the expected cumulative reward 

signal [29].  Reasonable rewards must be set in order to guide 

the algorithm to continuously learn from the target. In this 

research, the rewards for all operational status were kept 

simple and consistent in different environments (i.e. the 

output of WT, the electricity load, the heat load and the time-

of-use price). The reward consists of 3 sub-targets in “(14)”: 

1) total operating costs ( −𝑐𝑔𝑎𝑠̃ − 𝑐𝑔𝑟𝑖𝑑̃) : encouraging the 

agent to reduce the operating cost; 2) power mismatch 

( −0.5 ∗ ‖𝑑‖2 + 5 ∗ 𝐼[‖𝑑‖2 < 𝜀] ): besides the penalty of 

power mismatch, additional rewards were added when the 

system reached a power balance, encouraging the agent to 

minimize the power mismatch; 3) storage tank status 

((𝑠𝑡𝑠𝑡 − 𝜗)2): the penalty for heat storage was added in order 

to guarantee the stored heat is in a safer range, i.e. there 

should be enough storage to deal with unexpected situations 

but not too much storage. 

 𝑐𝑔𝑎𝑠 = ρ𝑔𝑎𝑠(
𝑝𝑔𝑡

𝑡𝑑

𝜂𝑔𝑡
+

𝑄𝑔𝑏

𝑡𝑑

𝜂𝑔𝑏
)∆𝑡𝑑, (13) 

 𝑐𝑔𝑟𝑖𝑑 = ρ𝑔𝑟𝑖𝑑𝑝𝑔𝑡
𝑡𝑑∆𝑡𝑑, (14) 

 𝑑 = (∑ 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑃𝑙 , ∑ 𝑄𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑄𝑙) (15) 

𝑟 = −𝑐𝑔𝑎𝑠̃ − 𝑐𝑔𝑟𝑖𝑑̃ − 0.5 ∗ ‖𝑑‖2 + 5𝐼[‖𝑑‖2 < 𝜀] − 0.1 ∗

(𝑠𝑡𝑠𝑡 − 𝜗)2 (16) 

Where 𝑐𝑔𝑎𝑠 and 𝑐𝑔𝑟𝑖𝑑 represent the natural gas cost and the 

grid interaction cost respectively (superscript ~ means that 

this parameter has been normalized),  ρ𝑔𝑎𝑠  and ρ𝑔𝑟𝑖𝑑 are unit 

price of natural gas and buy/sell electricity respectively, 𝑡𝑑 
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denotes one timestep in economic dispatch, 𝑑 is the power 

mismatch vector, 𝐼[∙]  is the indicator function, 𝜀  is the 

maximum cumulative power mismatch, 𝑠𝑡𝑠𝑡  is the current 

heat storage capacity of the heat storage tank and 𝜗 is the 

reasonable operating capacity. 

E. Random environment setting  

To simulate all possible CHP system operating status, the 

algorithm is trained on different types of courses. We 

collected the real operational data of CHP system from 

https://data.open-power-system-data.org/ and determine the 

upper and lower limits of four variables. In every episode a 

new course is generated within the upper and lower limits. 

Different load, time-of-use price, WT output and initial state 

of TST are considered, which could include the following 

typical types: a) morning: high heat load with very low 

electricity load; b) midday: higher electricity load and lower 

heat load; c) evening: high electricity load and high heat load. 

There are examples in Section IV which consist of a sequence 

of random instantiations of the above environment types 

within user-specified parameter ranges. Both the time-of-use 

price and the WT output are generated randomly within the 

pre-defined range. 

4. DPPO For Economic Dispatch Problem 

Purpose of this algorithm is for economic dispatch problem 

in rich simulated CHP environments with 

continuous/sequential state and action spaces. It is required 

that the algorithms are robust across a wide range of state 

variation and are effective for CHP systems with high 

uncertainty. Finally, the strategy learnt by the algorithm 

should also satisfy all the constraints and ultimately achieve 

the optimal function. It is described in this section how to 

derive a practical algorithm for the CHP system. A DPPO 

setup has been considered to learn the parameterized policies 

𝜋𝜃(𝑎|𝑠) with the parameter vector 𝜃, and a baseline function 

𝑉𝜋. The architecture consists of a set of agents, the repeatedly 

generating trajectories of experience, and one chief learner 

that uses the experiences sent from agents to learn 𝜋  off-

policy. Besides, we will give a proof of convergence and 

optimality of the algorithm. FIGURE 3. Illustrates how to 

train the intelligent agent and how to use it in different 

scenarios. In training process, the generated random variables 

were passed into action network, and the action network will 

generate actions accordingly. Then the value network will 

evaluate the action strategy. Besides, the simulation CHP 

environment will proceed to the next state according to the 

current action and return the reward value. In order to 

simulate as many situations as possible, each state will be 

executed 300 times. Finally, update the action network and 

value network parameters with the goal of maximizing the 

product of the reward and the evaluation value. In other words, 

the action network can be understood as an experience pool 

and accumulate experience about CHP economic dispatch 

during the training process. When the training is completed, 

the user can use the action network in real-time scheduling or 

day-ahead optimization scheduling. 

 
Fig. 3. Training process and how to use 

A. Proximal Policy Optimization with Clipped Surrogate 

Objective 

The accurate way to update the algorithm is mentioned in 

the previous section. Unfortunately, this proposed update is 

not possible in continuous dispatch problem since the 

computation of 𝜋̃(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝜋(𝑠, 𝑎) is excessively time 

consuming. Hence, the accurate update way is inaccessible in 

the approximate setting for the estimation and approximation 

error. As a result, there will be some states 𝑠 for which the 

expected advantages are negative, i.e. ∑ 𝜋̃(𝑎|𝑠)𝐴𝜋(𝑠, 𝑎)𝑎 <
0. The complex dependency of 𝜌𝜋̃(𝑠) on 𝜋̃ makes it difficult 

to converge to the optimal policy.  

Instead, PPO algorithms is introduced to make some 

changes on target value function 𝜂(𝜋̃) . It is implied by 

equation (6) that our approach is guaranteed to improve the 

true objective 𝜂 by performing the following maximization: 

 𝐽 = max
𝜃

𝔼𝑎𝑡,𝑠𝑡+1,⋯[∑ 𝐴𝜋(𝑠, 𝑎)∞
𝑡=0 ]. (17) 

In practice, Clipped Surrogate Objective function has been 

chosen to replace this maximization for the higher robustness 

than updating policies directly as 𝐽 . (Clipped Surrogate 

Objective and Kullback-Leibler divergence (KL) penalty are 

two widely accepted methods for policy update in PPO 

algorithms. John Schuman found that KL penalty performed 

worse than clipped surrogate objective in [26]. Besides, 

several modifications were added to the core algorithm in 

both [24] and [26], which includes the normalization of inputs 

and the accumulation of rewards through timestep with a 

window of length 𝑛  as well as bootstrap from the value 

function after n-steps. Similar augmentations were adopted in 

this paper.)  

Given a parameterized policy 𝜋𝜃 , where 𝜋𝜃(𝑎𝑡|𝑠𝑡)  is a 

differentiable function of parameter vector 𝜃 , our research 

supposed that trajectory (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡)𝑡=𝑘
𝑡=𝑘+𝑛  was generated by 

the agents with the policy 𝜋𝜃 . Let 𝑧𝑡(𝜃)  denote the 

probability ratio 
𝜋𝜃(𝑎𝑡|𝑠𝑡 )

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

, so 𝑧𝑡(𝜃𝑜𝑙𝑑) = 1  means the 

strategy 𝜋𝜃  has not changed. Hence, the n-steps clipped target 

value function 𝐽 could be re-written as: 

𝐽(𝜃) = 𝔼[min(𝑧𝑡(𝜃) 𝐴̂𝑡 , 𝑐𝑙𝑖𝑝(𝑧𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)] (18) 

where 𝜖  is a hyperparameters, the second 𝑐𝑙𝑖𝑝  term 

modifies the surrogate objective function 𝐽(𝜃)  by clipping 

the probability ratio, by which the range of action changes 

were clipped in a reasonable scope. Finally, the minimum 

objective is taken to ensure the objective function is a lower 

bound on the unclipped objective. In that case, the change in 

probability ratio was ignored only when it improves the 

objective, otherwise it was included when it deteriorates the 

https://data.open-power-system-data.org/


6 

 

objective. The key idea of this target value function is that the 

probability ratio (𝑧𝑡(𝜃)  was clipped at 1 − 𝜖  or 1 + 𝜖 

depending on whether the advantages is positive or negative. 

This assures that the policy change would not be too intense 

when the advantage is positive, and the update direction is 

correct when the advantage is negative. As aforementioned, 

given 𝐴𝜋(𝑠, 𝑎)  was estimated in continuous problems, 𝐴̂𝑡 

represents an advantage estimator for n timesteps (where n is 

much less than the episode length) as: 

 𝐴̂𝑡 = ∑ 𝛾𝑡−kk+n−1
t=k (𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡)), (19) 

 
Algorithm I  DPPO-chief 

for iteration=1, 2…M do 

  for actor=1, 2… N do 

    Run policy 𝜋𝜃 for K timesteps, collecting {𝑠𝑡, 𝑎𝑡 , 𝑟𝑡  } 

    Estimate 𝑅𝜋(𝑠𝑡, 𝑎𝑡), 𝑉𝜋(𝑠𝑡) and 𝐴𝜋 

  end for  

  push data to main PPO 

  𝜋𝑜𝑙𝑑 ← 𝜋𝜃 

  Optimize surrogate loss and update global action 𝜋 

and critic network parameters  

end for  

B. Distributed Settings 

To achieve good performance in various randomly 

generated scenes, agents must be guaranteed to explore in as 

many different environments as possible. Therefore, 

distributed setup has been introduced to the PPO algorithm. 

Data was collected in different environments by multiple 

threads simultaneously and all parallel threads share a global 

learner. The chief learner learns and develops through the 

experience collected by different threads. The chief learner 

setting is similar to A3C in [25]. The difference exists where 

in our setting that each thread does not compute nor push the 

gradient of its own policy update to the global PPO net, which 

promotes the efficiency of the multi-threaded data collection.  

A Distributed Proximal Policy Optimization algorithm that 

uses clipped surrogate objective and distributed architecture 

is shown in Algorithm I. In each episode, each of the 𝑁 

(parallel) workers (agents) runs policy 𝜋𝜃  for 𝐾  timesteps, 

collecting data {𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡} and estimating the reward function 

𝑅𝜋(𝑠𝑡 , 𝑎𝑡) , the value function 𝑉𝜋(𝑠𝑡)  and the advantage 

function 𝐴𝜋. Besides, workers are required to push data to the 

chief net. Then the surrogate loss is constructed on 𝑁𝐾 

timesteps of data, and optimized with Adam optimization 

[30][31]. Pseudocode are provided in Algorithm II. 𝑈 is the 

number of sub-iterations with policy update when a batch of 

data was collected.  

 

Algorithm II agents  

for iteration=1, 2... do 

  for actor=1, 2… N do 

    Run policy 𝜋𝜃 for K timesteps, collecting {𝑠𝑡, 𝑎𝑡, 𝑟𝑡 } 

    Estimate 𝑅𝜋(𝑠𝑡, 𝑎𝑡), 𝑉𝜋(𝑠𝑡) and 𝐴𝜋 

  end for  

  push data to main PPO 

  𝜋𝑜𝑙𝑑 ← 𝜋𝜃  

  for 𝑚 ∈ {1, 2, … 𝑈} do 

𝐽𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝜌𝜃𝑜𝑙𝑑
(𝜏)[min(𝑧𝑡(𝜃) 𝐴̂𝑡, 𝑐𝑙𝑖𝑝(𝑧𝑡(𝜃), 1 − 𝜖, 1

+ 𝜖)𝐴̂𝑡)] 
    Send collect data to chief  

    Wait until all agents end this episode 

Chief compute main ∇𝜃𝐽 

Update chief-policy parameters 𝜃 

  end for 

end for  

C. Observations and Network Structure for DPPO 

Algorithm 

When applied in economic dispatch in CHP system, the 

agent receives two sets of observation: 1) A set of states 

information, containing the operating status of the GT, the 

GB, the TST and the Grid. The agents collect this data set in 

every timestep and then push it to the main PPO net. 2) A set 

of uncertain information, including the output of the wind 

turbine, the energy price and the load which are all difficult 

to give accurate values. Hence, these data sets are generated 

stochastically in each iteration, due to the high randomness of 

the wind power, the energy price and the load. Then the action 

network and the value network compute the action set and 

𝑉𝜋(𝑠𝑡), respectively, with the input of observations. The actor 

network architecture of actor network is illustrated in 

FIGURE 4. 

action
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states info: GT/GB/TST/Grid Uncertain info: fan/price/load

 
Fig. 4. Schematic drawing of network architecture 
Since the learner updates on entire batches of trajectories, 

it is able to parallelize most of its computations. We use an 

architecture similar to [31], consisting convolutional layer, 

bi-directional recurrent layer and dense layer. This 

optimization architecture increases the effective batch size to 

thousands and LSTM-based agents also obtain significant 

speedups on the learner by exploiting the network structure 

dependencies and operation fusion [32] 

5. Case Study 

MDP and DPPO algorithm is applied to the optimized 

scheduling of the CHP system in FIGURE. 1. This 

experiment aims to prove that the proposed algorithm is 

applicable to the optimization problems with stochastic 

environments. The performance of the DPPO was compared 

with that of the classical optimization methods. The 

experiment also aims to find out whether this algorithm is 

capable of coping with emergencies such as a WT 
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disconnection. More parameters settings are in the 

supplementary material. For the modelling of the MDP and 

DPPO algorithm, Python is selected as the programming 

language and TENSERFLOW is used as the framework. For 

the benchmark optimization methods, MATLAB is used to 

model the system and Yalmip toolkit and GUROBI are 

chosen as optimization solver. 

A. Case I: Comparison with other DRL algorithms  

The performance of the proposed DPPO algorithm was 

compared with those of the Distributed Deterministic Policy 

Gradient (DDPG) [33] and of the A3C [25] which had already 

been recognized as effective solutions to continuous problem. 

The experiment CHP system was set in random mode with 

diverse load, wind power and energy price. FIGURE. 5 shows 

that all three algorithms applied in learning a stable regulation 

strategy, and DDPO took substantially less training time (402 

seconds) under the same number of iterations than DPPG 

(720 seconds) and A3C (603 seconds). The DPPO and DPPG 

algorithms converge, while the a3c algorithm does not 

converge. (The hyperparameters of the two algorithms was 

shown in TABLE 5 in appendix) 

 
Fig. 5. Comparison of the three algorithms on CHP 

environment, trained for 2500 iterations. The training 
process took 402 seconds for DPPO, 720 seconds for DDPG 
and 603 seconds for A3C, respectively. 

 
Then, the trained DDPG and DPPO algorithms was applied 

to the three aforementioned typical CHP operating conditions 

(detailed parameters were shown in TABLE 7 in appendix). 

Fig. 4 and TABLE I demonstrate the results. The agents of 

both the DPPO and DDPG algorithms learnt to adjust the 

output of each equipment reliably in different operating 

conditions, with only small variations. They learnt that the 

GT, which generating both electricity and heat, was more 

efficient than the GB. Both algorithms succeeded in 

achieving their economic optimums by learning how to adjust 

all devices to cope with changes in the environment. The final 

marginally higher reward of DPPO than that of DDPG, as 

shown in FIGURE. 5, is attributed to the difference in the two 

algorithms, i.e. the DPPO can explore more scenarios and 

ensure that the solution is the optimal solution. 

In economic dispatch realm, economy is the first criterion 

on the basis of meeting operation restrictions. Therefore, the 

DPPO presented with the drastically reduced time cost in this 

paper is the superior candidate for multi-objective 

optimization problems with large scale variables, e.g. the 

economic dispatch problem 

 
Fig. 6. Performance comparison DDPG and DPPO 

algorithms on typical conditions. (Negative output means 
that TST releases heat to the CHP system, and conversely 
stores heat energy) 

 
Table 1 Detailed Results 

 Morning Midday Evening 

Algorithm DPPO DDPG DPPO DDPG DPPO DDPG 
Cost/($) 594.04 633.6 588.28 605.91 810.9 871.73 

Heat error 0.04 0.004 0.036 0.026 0.007 0.0008 
Electric 
error 

0.009 0.001 0.012 0.0098 0.064 0.037 

B. Case II: Details in One Episode 

In this case, we will show how agent work in one episode. 

The specific parameters are set as follows and FIGURE 7 

demonstrate the detailed adjustment process. To meet the 

device operating constraints, action range is [−0.02, 0.02]. 
By comparing TABLE 2 and TABLE 7 in the appendix, it can 

be found that the current situation has a lower electrical load 

level and a higher thermal load level, wind power and time-

of-use electricity price are relatively low. In theory, user 

should increase the output of GB to meet the heat load 

without excessive electrical load. At the same time, due to the 

lower energy price, the heat storage tank should reserve some 

heat.  

Table 2 Case II 

electricity load  

(kW) 
wind (kW) 

heat load  

(kW) 

TOU price 

($/kWh) 

6000 700 9000 0.0627 

 

Figure 7 shows the actual adjustment process of DRL agent. 

It increases the output of GT and GB to meet the user load 

within the feasible domain and sells excess power to the grid 

to reduce operating costs. Furthermore, it finds that the 

energy price is lower at this time, which is suitable for 

charging TST. 

The strategy generated by DRL agent is in line with 

theoretical analysis and take the economy into account. In 

actual operation, the user only needs to input the detailed 

information of the current load, electricity price, etc., to get 

the control strategy which increases the flexibility and ease of 

use. 
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Fig. 7. Operating states 

 

C. Case III: Day-ahead Economic Dispatch Problem 

The performance of the DPPO algorithm was evaluated, 

and the DPPO was then applied to day-ahead generation 

dispatch problem, whose result was subsequently compared 

with that of the optimization method. It was assumed that the 

electricity load had to be matched by the electric power output 

of the CHP system while the heat load had not to be precisely 

matched as long as the users’ acceptable temperature range 

was guaranteed [27]. Operating parameter settings are 

provided in TABLE 7 in appendix. FIGURE 8 shows the 

comparison between the economic dispatch strategies 

generated by the DPPO algorithm and the optimization 

method. Yalmip toolkit and GUROBI solver were adopted, 

as shown in FIGURE 7, b) and d) respectively, to model and 

to solve our CHP system. The result demonstrates the 

following characteristics: 1) The GB output was time period 

dependent. For example, the output of GB was relatively 

higher when the heat load is higher from 0 am to 5 am and 

from 19 pm to 24 pm. 2) The GT undertook most of the 

electricity and heat loads. 3) The TST was used less 

frequently, for only 7 time periods, than other devices in the 

system. load demand reliably, with only acceptable variations 

in heat load across the time. The strategy learnt through DRL 

are similar to that through the optimization method, despite a 

slight numerical gap at every time step.  

FIGURE 8. a) and c) imply that the DPPO succeeded in 

discovering the economical approaches on handling the load 

changes by choosing the GT as the main load bearer for its 

more economical performance and adjusting other decision 

variables based on the environment. However, comparing the 

real heat load with the CHP output, the DPPO results are 

different from the results of the optimization algorithm. This 

is due to the difference in the objective function. In DRL 

method, we aim to minimize the error between load and 

generation. However, in practical applications, we should not 

consider the difference between the heat load and the user's 

comfort. Therefore, in the optimization method, we aim at the 

user's indoor temperature not exceeding the limit which 

results in a large difference between the CHP output thermal 

power and the actual load. In the DRL method, we have not 

completed the conversion between this goal and the reward. 

 

 

 
Fig. 8. Comparisons of dispatch strategies. In the heat 

subplots, the black curves marked with point means ideal 
heat load, the blue curves marked with point shows the heat 
output of CHP. In the electricity subplots, the black curves 
marked with point means ideal electricity load, the blue 
curves marked with point shows the electricity output of 
CHP. Beside the illustration, if the bottom of the histogram 
is less than 0, that part is used to charge the TST. In the 
electricity subplots, the two curves have the same meaning 
with the heat subplots, and if the bottom of the histogram is 
lower than 0, that part means selling the electricity to the 
grid. 

 
In addition to the qualitative analysis, the heat load error 

and the cost are listed in TABLE 3. The heat load error in 

DPPO, as shown in the second column in TABLE 3, was 

successfully kept at a very low level, indicating the user’s 

comfort zone was well preserved, which approves the 

accuracy of the DPPO algorithm. The economic performance, 

i.e. the cost, of the two methods was also compared. The 

DPPO operated at lower costs for the majority time periods 

as the lower costs are highlighted in green in TABLE 3. 

Attributed to the assumption that the heat load does not need 

to be strictly met in real time, the DPPO attempted to maintain 

the temperature merely within the range of the user’s comfort 

zone for economical reason, i.e. declining the output of the 

equipment over a certain period of time and increasing the 

output when the temperature is about to drop out of the user’s 

comfort zone. In contrast, the optimization method simply 

kept the temperature to the optimal value. Judging from the 

total cost of the day, the DPPO has the tiny advantage by 

making a 0.03% saving as costing of the optimization method. 
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Table 3 Heat Load Mismatch and Cost 

 heat load error  Cost/$ 

 DPPO optimization methods DPPO 

0:00 0.0049 674.77 580.74 

1:00 0.00035 592.65 564.15 

2:00 0.002 595.18 557.27 

3:00 0.025 528.56 554.05 

4:00 0.008 529.33 544.08 

5:00 0.009 567.91 546.31 

6:00 0.009 650.84 526.36 

7:00 0.033 702.68 616.83 

8:00 0.03 800.41 737.72 

9:00 0.03 747.36 694.55 

10:00 0.025 709.5 708.3 

11:00 0.026 706.25 651.15 

12:00 0.032 690.84 646.26 

13:00 0.034 762.13 657.53 

14:00 0.02 868.03 726 

15:00 0.02 691.24 657.45 

16:00 0.03 753.85 731.47 

17:00 0.02 770.38 807.27 

18:00 0.03 799.15 847.59 

19:00 0.0292 794.57 840.43 

20:00 0.032 921.02 810.2 

21:00 0.031 712.18 718.76 

22:00 0.031 815.96 728.76 

23:00 0.031 538.56 613.26 

total 0.007 16924.029 16874.28 

D. Case IV: WT Failure 

It is essential to investigate whether the DPPO could deal 

with any emergency. To evaluate the DPPO on different tasks, 

the trained network was subjected to an extreme CHP 

environment, i.e. without the WT, and the result was 

compared with the normal case. The comparison of the 

dispatch strategies in the two operating status is shown in 

FIGURE 9. When there was no WT output, the DPPO 

algorithm acquired a robust dispatch strategy compared with 

the normal strategy: 1) In the morning setting with the low 

electricity load and the high heat load, the DPPO managed to 

increase the output of the GT appropriately in order to slightly 

reduce the heat output of the GB, to use the stored heat in the 

TST and to sell the same amount of power to the grid. The 

strategy can be rationalized by the fact that the GT has the 

best economic efficiency in the system. By turning up the 

output of the GT, the gap in the electricity supply caused by 

the absence of the WT was accurately met and, 

simultaneously, excessive heat was generated to relieve the 

burden of the GB. 

2) In the midday and the evening settings with the high 

enough electricity load and the declined heat load, the DPPO 

decided to reduce the output of the GT and to increase the 

power purchase from the grid, for optimal economic 

efficiency since it is cheaper to buy electricity from the grid 

rather than to generate. Meanwhile, the DPPO adjusted the 

output of the GB accordingly to meet the rest of the heat load 

and stored the excessive heat in the TST for future use, which 

further promotes the economic performance. In TABLE 4, 

the resulted changes are demonstrated. 

Compared with the optimization method, the DPPO is also 

more advantageous in the solving speed. This is resulted from 

one of its characteristics that once the training of the DPPO is 

completed, there is no need to retrain for each new situation. 

In other words, for any new operation status, the calculation 

time for the DPPO is always next to zero. 

 
Fig. 9. Robustness Test 

 
Table 4 ROBUSTNESS TEST RESULT 

 Morning Midday Evening 

Conditio
n 

Norma
l 

No 
wind 

Norma
l 

No 
wind 

Norma
l 

No 
wind 

Cost/($) 594.04 
685.0

2 
588.28 

691.5
0 

810.9 
897.6

5 

Heat 
error 

0.04 0.03 0.0036 0.04 0.007 
0.002

7 
Electric 
error 

0.009 0.03 0.012 0.03 0.064 0.037 

6. CONCLUSION 

We proposed and analyzed the DPPO algorithms for 

optimizing the stochastic CHP economic dispatch problem. 

We modeled the CHP economic dispatch problem as infinite-

horizon discounted Markov decision process and set 

constrains to simulate the real environment. A form of reward 

signal was designed to lead the algorithm to the goal. We 

introduced proximal policy optimization methods that use 

multiple epochs of stochastic gradient ascent to perform each 

policy update and proved the convergence of the algorithm. 

Besides, we also used asynchronous advantage actor-critic to 

improve the convergence rate of the distributed framework, 

which subsequently improved the data collection speed, 

making it applicable to CHP settings where samples are 

expensive. 

In the domain of the CHP economic dispatch, we 

successfully taught the agents to schedule the devices in the 

CHP system when chasing the economic optimum while 

satisfying load demand. Due to the fact that the dispatch 

activities involve five continuous variables, it is essential to 

optimize the high-dimensional and sequential policies. Thus, 

we utilized the LSTM-convolutional neural network policies 

that used two types of observations as inputs. Our analysis 
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shows the DPPO algorithm could optimize the certain 

objective to a constraint. 

In case study, the result shows that the training time of our 

improved algorithm is 201 seconds and 318 seconds less than 

other two advanced DRL algorithm. And the difference on 

economic performance between this method and optimization 

methods is only 0.029%. The proposed method can cope with 

more situations, have better time scale flexibility, and is 

easier to use on the basis of the same economic performance 

as the optimization method. 

However, there are still shortcomings in solving economic 

dispatch problems with DRL methods. For examples, all 

optimization goals are reflected in the reward formula, which 

is not conducive to achieving multi-objective optimization, 

and optimization goals closer to the user's needs (As we 

analyzed in Case III). 

Since the method we proposed is economical when 

compared with optimization algorithms and other DRL 

algorithm, we hope it can sever as a choice for future work on 

optimization problem. The result promises high robustness 

and high efficiency in learning economic dispatch policy. 

Although the results may not be optimal yet, it would 

definitely benefit from improvements such as combining the 

proposed DPPO with other recognized optimization theory, 

improving its applicability to real-world settings. 
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8. APPENDIX 

A. Hyperparameters of DPPO algorithm 

 
 Table 5 DPPO HYPERPARAMETERS 

Hyperparameter Value 

Discount 𝛾 0.9 

Adam update rate for actor 0.0001 

Adam update rate for critic 0.0005 

Update step 10 
Minibatch size 

Clipping parameters ϵ 

24 

0.2 

B. DEVICE OPERATING PARAMETERS  

 
Table 6 Device Operating Parameters 

Hyperparameter Value 

Discount 𝛾 0.9 

Adam update rate for actor 0.0001 
Adam update rate for critic 0.0005 

Update step 10 

Minibatch size 

Clipping parameters ϵ 

24 
0.2 

C. Environment Variables  

 
Table 7 Environment Variables 

time interval 
electricity load  

(kW) 

wind 

(kW) 

heat load  

(kW) 

TOU price 

($/kWh) 

00:00—01:00 2,178 875 9600 0.065 

01:00—02:00 2,009 1,234.00 9792 0.065 

02:00—03:00 1,873 1,390.00 9907.2 0.065 

03:00—04:00 1,755 1,392.00 9984 0.065 

04:00—05:00 1,704 1,336.00 9792 0.065 

05:00—06:00 1,839 1,223.00 9600 0.065 

06:00—07:00 2,517 1,173.00 9120 0.08 

07:00—08:00 4,211 1,136.00 8640 0.08 

08:00—09:00 5,397 1,158.00 8256 0.095 

09:00—10:00 5,735 1,312.00 7968 0.095 

10:00—11:00 5,651 1,369.00 7776 0.095 

11:00—12:00 5,481 1,376.00 7603.2 0.08 

12:00—13:00 5,227 1,315.00 7516.8 0.08 

13:00—14:00 5,176 1,301.00 7488 0.08 

14:00—15:00 5,143 1,343.00 7497.6 0.08 

15:00—16:00 5,227 1,310.00 7545.6 0.08 

16:00—17:00 5,909 1,208.00 7641.6 0.08 

17:00—18:00 6,417 1,055.00 7776 0.095 

18:00—19:00 6,545 896 8064 0.095 

19:00—20:00 6,206 773 8448 0.095 

20:00—21:00 5,698 672 8832 0.095 

21:00—22:00 4,510 626 9216 0.095 

22:00—23:00 3,025 624 9504 0.065 

23:00—24:00 2,093 703 9600 0.065 

 


