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Abstract: Fully electric ships have been widely developed, investigated and evaluated by the
maritime industry as a potential solution to respond to the emissions control required according to
the International Maritime Organization (IMO). This study aims at presenting a novel approach to
evaluate the safety level of a battery-powered high speed catamaran. Following the Formal Safety
Assessment procedure, the risk assessment of the considered ship was conducted leading to the
identification of the involved hazards along with the estimation of their frequency and consequences
thus allowing for the identification of the most severe hazards. Fault tree analysis is carried out for
and the identified top events followed by an event tree analysis to estimate the risk and safety level
of the vessel. Furthermore, a cost-benefit assessment is conducted to evaluate the financial impact
of selected risk control options. The derived results indicate that the application of battery power
systems for high speed ferries exhibits low and acceptable accident frequencies. It is also supported
the current regulation to carry out mandatory risk assessment for battery-powered ships.

Keywords: fully electric ship; battery-powered system; risk assessment; hazard identification; event
tree analysis cost-benefit assessment

1. Introduction

International shipping has made a huge effort to achieve sustainable operations and reduce
its environmental footprint including gaseous emissions. According to International Maritime
Organization’s (IMO’s) third Greenhouse Gas (GHG) study, 80% of global transportation by volume is
delivered by international shipping, whereas the carbon dioxide emissions generated from shipping
activities only amounts to 2.2% of the global emissions [1]. However, to meet the ultimate goal of
eliminating GHGs, the IMO has set up its agenda to control the GHG emissions in phases. By the year
of 2030, it targets to reduce 40% of carbon dioxide emissions from the maritime sector, whereas by
the year of 2050, at least 50% of the total GHG emissions from marine industry must be mitigated.
To address this challenge, many technologies have been emerging and are under development targeting
to completely eliminate the gaseous emissions. One of these technologies is the fully electric ship,
which employs energy storage systems as the power source, such as battery and super-capacitors.

Battery-powered systems have been investigated by a number of researchers as delineated in the
following. Galloway and Hustmann [2] investigated the material cost and recycling of batteries for
the automotive industry. Dai et al. [3] analysed the lithium-ion battery for automotive applications
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using the life cycle approach, which indicates that the emissions generated of the battery come from
the manufacturing phase, but depend on the production location and the material sources. It proved
the research results from Dunn et al. [4], who presented the life cycle assessment summary for
li-ion battery production and recycling. The LCA of battery is further investigated by Raugei and
Windfield [5]. Zhao and You [6] carried out a comparative study on Li-ion battery through a process
based and integrated hybrid life cycle assessment (LCA) approach, comparing the GHG emissions and
the energy consumption of two types of batteries (LiMn2O4 (LMO) and Li(NixCoyMnz)O2 (NCM)).
Hiremath et al. [7] investigated and compared different battery storage systems applied for stationary
applications using the LCA approach. Matheys et al. [8] evaluated the environmental impacts of five
electric vehicle battery systems to find out the preferred one for the automotive industry.

A number of studies focused on the maritime transportation, most of which dealt with
hybrid systems consisting of batteries and marine diesel engines. Kluiters et al. [9] investigated
a battery-powered marine vessel employing the sodium/nickel chloride zero emissions batteries
research activity (ZEBRA). The battery was tested and investigated for navy vessels by simulating
the charge and discharge processes based on the ships practical operation. Lan et al. [10] conducted
an optimisation of a ship hybrid power system including a photovoltaic system, a diesel engine and
a battery, concluding on the optimal system sizing to minimize the CO2 emissions, as well as the
capital and fuel costs. Misyris et al. [11] investigated the use of battery on marine vessels (including
hybrid and fully electric ships) and developed a parameter identification method for the battery state
estimation to support the battery performance evaluation during the on-board operation. Yu et al. [12]
investigated the potential of combining a photovoltaic (PV)/battery/generator for short route ferries
operated in inland waters considering charging in ports. Another assessment on fully electric ships
was carried out by Zahedi et al. [13], who investigated a system including diesel engines, synchronous
generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy
storage, estimating the potential fuel savings for an offshore support vessel. Jones et al. [14] investigated
the application of a battery system in PV applications to estimate the performance of the system from
the perspective of CO2 emissions reduction in order to meet the requirement from Paris Climate
Change Agreement.

However, although the benefits of battery power systems have been broadly evaluated, specifically
from the perspectives of the fuel cost savings and environmental footprint, studies on the system safety
assessment that greatly affects the applicability of these systems on-board ships have not been reported
in the pertinent literature. A number of accidents have been reported for battery powered vessels,
which indicates that the safety assessments, the employed risk mitigation measures and the safety
system design for such vessels may not be adequate [15]. Existing risk assessments for battery systems
focus on automotive or stationary applications. Wang et al. [16] carried out a review on a li-ion battery
and its failure mode and fire prevention strategies for electric vehicles and energy storage system.
In [17], a risk assessment was carried out for stationary li-ion batteries to reduce the probability of
frequency/consequences of all the risks related to the battery life cycle to acceptable or tolerable levels.

However, there exist a few studies carrying out risk assessments on marine battery power plants.
Jeong et al. [18] developed a multi-criteria decision making approach for a hybrid battery-engine
system and focused on cost-environment-risk issues. The risk assessment carried out could be further
expanded to include more detailed hazard identification. Classification societies provide guidelines
for the batteries application on-board ships [19,20]. This study aims at investigating the safety level
of the battery-powered high speed catamaran. This is accomplished by employing an approach,
which combines hazard identification (HAZID), fault tree analysis (FTA), event tree analysis (ETA) and
cost-benefit assessment to identify the potential hazards and top events during the life span of the
considered vessel and to quantitatively estimate their risk impacts (including frequency, consequences,
risk and the cost of risk control options). The approach will be applied on passenger ships for validation
and then tailored for ferries, which can be compared to the respective results for passenger ships and
provided a general view on ferries’ safety and risk levels.
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2. Methodology

This study employs a series of methods to quantitatively assess the safety and risk level of a fully
electric ferry. A general formal safety assessment (FSA) is carried out supported with HAZID, fault
tree analysis and event tree analysis.

2.1. Formal Safety Assessment

A formal safety assessment (FSA) is a risk assessment approach approved by IMO to evaluate the
risks associated with shipping industry as well as to determine the cost and benefits of risk control
options (RCOs) to reduce the potential risks [21]. It comprises six steps as shown in Figure 1. In this
study, Step 1 will be supported by HAZID in Section 2.2; Step 2 will be provided in fault tree (FT) and
event tree (ET) in Sections 2.3 and 2.4; the approach of cost-benefit assessment will be presented in
Section 2.4.
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2.2. Hazard Identification and Risk Assessment

Hazard identification (HAZID) [21] is an essential part of the risk assessment where participants,
including ship operators, technology inventors, manufacturers, assessment investigators and regulation
makers, sit down and brainstorm all the possible hazards during the ship’s holistic life span. It also
need to consider the existing database, reports, latest regulations and guidance. The HAZID will
confirm the most concerned hazards for the ferry and provide frequencies and consequence levels for
each hazards so that a quantitative risk assessment could determine the risk levels from risk matrix.
A risk matrix could be developed using defined consequence and probability indices by a logarithmic
scale. A risk index can be established by adding the probability/frequency and consequence indices.
The logarithmic scale of the risk index for ranking purposes of an event can be presented in (1):

Risk = Frequency × Consequence,
log (Risk) = log (Frequency) + log (Consequence),

RI = FI + CI,
(1)
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According to IMO’s FSA guideline [21], the frequency and consequence are defined and categorized
as shown in Tables 1 and 2. The possibility index ranges from 1 to 7 presenting the likelihood of hazard
happening in one ship year. The consequence index ranges from 1 to 5 showing the severity of the
consequence based on the impact of hazards on cost or human life. In this step, the experience and
judgement from the participant of shipping industry will be adapted. All the indices will be filled
in to the risk analysis table and then the risk impacts/results will be calculated directly (see Table 3).
With the definition of risk levels, the levels of hazards will be determined. There are many different
hazard impacts justifying the consequence level, such as effects on ship and effects on potential loss of
human life. However, in one study, one appropriate effect should be selected. In this study, effects
on ships will be firstly considered and in the following steps, the impacts on assets, human life and
environment will be considered.

Table 1. Definition of frequency index [21].

FI Frequency Definition F (per Ship Year)

7 Frequent Likely to occur once per month on one ship 10

5 Reasonably probable
Likely to occur once per year in a fleet of 10

ships, i.e., likely to occur a few times during a
ship’s life

0.1

3 Remote
Likely to occur once per year in a fleet of

1000 ships, i.e., likely to occur in the total life of
several similar ships

1 × 10−3

1 Extremely remote Likely to occur once in the lifetime (20 years) of
a world fleet of 5000 ships 1× 10−5

Table 2. Definition of consequence index [21].

SI Severity Ship Safety & Technology Equivalent Fatalities

1 Minor Local equipment damage (repair on board
possible, downtime negligible) 0.01

2 Significant Non-severe ship damage—(port stay required,
downtime 1 day) 0.1

3 Severe Severe damage—(yard repair required,
downtime < 1 week) 1

4 Catastrophic Total loss (of, e.g., a medium size merchant ship) 10

Table 3. Risk matrix [21].

PI Probability

SI Severity

1 2 3 4

Minor Significant Severe Catastrophic

7 Frequent 8 9 10 11
6 Probable 7 8 9 10

5 Reasonably
probable 6 7 8 9

4 Little probable 5 6 7 8
3 Remote 4 5 6 7
2 Very remote 3 4 5 6
1 Extremely remote 2 3 4 5
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2.3. Fault Tree Analysis

Fault tree analysis is applied to determine the probabilities of top events in order to identify
the most concerned events. A fault tree analysis (FTA) will be based on the hazard identified in the
HAZID and applying Bayes’ Theorem to determine the final probabilities of top events [22]. The Bayes’
Theorem is stated in (2):

P(A|B) = P(A) P(B|A)/P(B) (2)

where,

A, B are events under consideration;
P(A), P(B) presents the independent probabilities of A and B;
P(A|B) presents the probability of A given B is true;
P(B|A) presents the probability of B given A is true.

All the identified hazards will be sorted based on the consequences in order to categorize them into
different top events which will help to build the event tree and carry our event tree analysis afterwards.

2.4. Event Tree Analysis

Event tree analysis is an inductive way to show all possible outcomes from an initiating event
which could be sub system failure, external event (like flood, fire, and earthquake) or operator error.
An event tree can be used to model the sequences including the relationships among initiating event,
subsequent responses and final states. Various accident sequences will be identified and probability of
occurrence of each sequence will be further quantified in an event tree analysis. The procedures for
event development are shown in Figure 2.
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To carry out an ETA, based on the FSA report for cruise ship and data from goal based damage
ship stability (GOALDS), event trees are established first. With the sequences, event trees for the case
ferry could be developed. Assumptions are made to determine the financial and fatality cost impacts:

1. Cruise ship and ferry have construction prices of €700M and €5M respectively;
2. Cost of averting fatality (CAF) is €7.45M according to GOALDS project, although previous FSAs

have used a value of €3M;
3. Maximum number (capacity) of passengers and crews on board cruise ship and ferry are 8000

and 150, respectively;
4. Average numbers of people on board cruise ship and ferry at peak hours are 5493 and

103 respectively;
5. The environmental impact due to the sinking of the vessel is considered as: a deep sea salvage

will cost €5M and a near shore (shallow water) salvage will cost €1M.

The probabilities for two ships are different and based on experts’ recommendations the following
assumptions are made:

1. The probability of getting struck and striking other ships is 50–50 for high-speed battery driven
ferry; it is 37.5% and 62.5% for larger passenger ships;

2. In this project, the probability of water ingress under condition of getting struck in limited waters
is 12% which is 42% for larger passenger ships;

3. The probability of sinking under condition of water ingress after getting struck in limited waters
is 15% in this study and it is 27% for larger passenger ships;

4. The rest highlighted are agreed to have the same probability for both types of vessels.

In this study, to determine the impact on asset, human life and environment due to hazard
occurrence, the following assumptions were made:

1. Collision:

a. The financial loss factor is 10% for water ingress only and 1% for non-water ingress;
b. The fatality rate is 30% under fast capsizing and 5% for slowly capsizing;
c. A deep-sea salvage will cost €5M and a near shore (shallow water) one will cost €1M;

2. Grounding:

a. The financial loss factor is 10% for water ingress only and 1% for non-water ingress;
b. The fatality rate is 5% for water ingress; the fatality rate is 30% under fast capsizing and

18% for slowly capsizing;
c. There will be only near shore salvage which will cost €1M;

3. Contact:

a. The financial loss factor is 10% for water ingress only and 1% for non-water ingress;
b. The fatality rate is 30% under fast capsizing and 5% for slowly capsizing;
c. A deep-sea salvage will cost €5M and a near shore (shallow water) one will cost €1M;

4. Fire

a. High, medium and low damage degree fire have financial loss factor of 70%, 50%,
and 30%, respectively;

b. Restrict fire inside the ignition compartment but rapidly suppressed will have fatality
rates of 5% and 0% for high and low damage degree; for slow fire suppression situation,
the fatality rates rise to 30% and 5%.
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c. For fire expanded to the other compartment, when the fire is suppressed fast, the fatality
rates are 5%, 0% and 0% for high, medium and low damage degree; for slow fire suppression,
the rates rise to 30%, 18% and 5%;

d. No salvage required.

From the event tree analysis, the probabilities of identified and developed scenarios will be
estimated based on the collected data of fleet at risk and accidents. A general approach to connect all
these methods will be presented in the next section to present an overall view of the methodology.

The method applied to determine the individual risk is based on IMO’s FSA and the equation is
shown below (3):

IR = F × P × E (3)

where,

IR is the individual risk;
F is the frequency;
P is the resulting casualty probability;
E is the factional exposure to that risk.

2.5. Cost-Benefit Analysis of Risk Control Options

Although the findings of quantitative risk assessment can be determined using above mentioned
approaches, it is necessary to investigate measures which could improve the design further. According to
the methodology used, a cost-benefit assessment (CBA) is required in order to rank the appropriateness
of the proposed risk control options (RCOs). The gross cost to avert a fatality and the net cost to avert
a fatality are used as indicators. The definitions of GrossCAF and NetCAF are given here below in
(4) and (5):

GrossCAF = ∆C/∆R (4)

NetCAF = (∆C − ∆B)/∆R (5)

where:

∆C is the cost per ship of the risk control option during the lifetime of the vessel.
∆B is the economic benefit per ship resulting from the implementation of the risk control option during
the lifetime of the vessel.
∆R is the risk reduction per ship, in terms of the number of fatalities averted, implied by the risk
control option during the lifetime of the vessel.

2.6. General Approach

This paper will follow the procedure of FSA to evaluate the risk impact of full electric ferry.
HAZID will identify potential hazards during the design, construction and operation of the ferry
and the installation and usage of the battery power system. A schematic diagram was shown in
Figure 3. to present the overall and collaboration of approaches in this study. Within the identification
processes, the frequency and consequence levels will be estimated based on experts’ experience and
judgement in order to determine the risk impacts of the hazards. It will also help to identify a list
of most concerned top events which will be analysed using ETA to determine the frequencies of a
series of accident scenarios. The impacts under different scenarios will be further evaluated from the
perspective of asset financial cost, fatality cost and environmental recycle cost. To make sure the data
collected providing reasonable and acceptable results, a validation process will be used to test the data
collected for passenger ships before applying to high-speed inland waterway ferries. The validation
will be conducted by comparing the determined accident frequencies with other projects: GOALDS,
design, operation and regulation for safety (SAFEDOR) and the study investigating cost effective
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measures for reducing the risk from fires on ro-ro passenger ships (FIRESAFE) [23–26]. Until the
model is valid, the same approach will be carried out for ferries in order to determine the accident
frequencies for this type of ship. It will also indicate the accident frequency variation from passenger
ships to ferries after comparison. A list of risk control options with cost and their potential to reduce
the accident frequencies will be provided based on the recommendations of HAZID members (experts
from shipyard, ship operators, technology providers and research institutes). Eventually, the risk
assessment will be quantified from risk levels to financial costs which provides a straightforward
approach to shipping industry to evaluate the performance of full electric vessels from the perspective
of risk.Safety 2020, 7, x FOR PEER REVIEW 8 of 37 
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3. Case Study

3.1. Case Ship

To investigate the safety level of battery power plants on marine vessels, one case ship study
was carried out on a high-speed battery powered ferry operated in Norwegian Sea which area covers
many small islands and requires frequent passenger transportation between islands and mainland.
The specification of the case ship has been presented in Table 4.

Table 4. Case ship specifications and general arrangement.

Main Dimensions

Length 29.32 m Number of stops up to 12
Breadth 9 m Passengers 147

Demihull breadth 2.44 m Crew 3
Draft 1.26 m Motor 2 × 550 kW

Lightship 200 tones Battery capacity 1.3 MWh
Operational speed 23 knots Route length 23 nm

Service hours per day Up to 20.5 Serviced per day 14 times
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3.2. Battery System

The battery power system includes two packs of batteries, located on port and starboard sides
of the case study ferry. The battery power plant on the vessel comprises two identical battery packs
connected to the direct current (DC) hubs and through the power module (DC/alternating current
(AC convertors) they can provide energy to motors, driving propellers and thrusters, and hotel loads.
The battery packs will be charged while in port from local grid power or existing auxiliary power
supply in the shore changing station. The capacity of a Wartsila approved battery pack is 653 kWh
and the output voltage ranges from 672 to 896 V. There are two battery packs onboard (port and
starboard). To identify the hazards among the battery system, the systems of innovative battery and
conventional engine power plant are simplified as shown in Figures 4 and 5. Inside the dash line area,
the deviations between two power plants are highlighted so that the risk assessment will be focused in
these components.
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Figure 4. System diagram of battery power plant.

3.3. Scope of This Study

The scope of this study will be confined and confirmed so that the risk assessment directly
evaluates the most concerned issues to the stakeholders. Figure 6 presents the scopes of the risk
assessment including mainly three phases: (1) design, construction and installation; (2) operation:
voyage and approaching/leaving port; and (3) emergency situations. Different activities will be
considered while assessing these phases. In this study, the first phase will take into account of
ship design, ship production processes, battery design, battery room arrangement (in a general ship
arrangement), battery installation and operation in the shipyard. Phase two will mainly focus on the
operational activities so the route and schedule, load case conditions, operational profile, arrangement,
maintenance and crew operations will be under consideration. In the last phase, the operation during
emergency will be evaluated including crew operation, training, manoeuvring capacity, evacuation
route, lifesaving equipment and safety systems (fire suppression and fire alarming systems).
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4 Battery breach—fire, corrosion, asphyxia 1.40 4.60 
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Figure 6. Scope of risk assessment study.

4. Risk Assessment Results and Discussion

According to the methodology in Section 2, the risk assessment has been carried out and results
were determined and presented in the following sections including hazard identification, accident
statistic, event tree analysis and cost-benefit assessment of identified RCOs.

4.1. HAZID

A risk register was developed during the HAZID meeting (shown in Appendix A: Risk Register)
and the consequent follow-up work and discussions on estimating probabilities and consequences of
the identified hazards and their ranking were carried out to determine the most concerned top events:
collision, contact, grounding and fire. The fault trees of them are presented in Figures 7–10. The HAZID
questionnaire is summarized in the following tables (Tables 5–8). The risk register containing a total of
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55 hazards whose frequencies and consequences were evaluated. The following number of hazards
was identified:

• Design, construction, installation (21 hazards);
• Operation (25 hazards);
• Emergency (9 hazards).

Safety 2020, 7, x FOR PEER REVIEW 12 of 37 

 

7 Crew unsafe when removing damaged equipment—asphyxia 1.10 5.00 
8 Grounding—hull damaged 2.00 3.00 
9 Flooding—capsizing 1.00 5.00 

 

Figure 7. Fault tree analysis on hazard associate with collision. 

 
Figure 8. Fault tree analysis on hazard associate with contact. 

Figure 7. Fault tree analysis on hazard associate with collision.

Safety 2020, 7, x FOR PEER REVIEW 12 of 37 

 

7 Crew unsafe when removing damaged equipment—asphyxia 1.10 5.00 
8 Grounding—hull damaged 2.00 3.00 
9 Flooding—capsizing 1.00 5.00 

 

Figure 7. Fault tree analysis on hazard associate with collision. 

 
Figure 8. Fault tree analysis on hazard associate with contact. Figure 8. Fault tree analysis on hazard associate with contact.



Safety 2020, 6, 39 12 of 38
Safety 2020, 7, x FOR PEER REVIEW 13 of 37 

 

 

Figure 9. Fault tree analysis on hazard associate with grounding. 

 

 

Figure 9. Fault tree analysis on hazard associate with grounding.

Table 5. HAZID questionnaire results—design, construction and installation.

No Hazard Description Frequency Consequence

1 Ferry overheight—contact with bridge 1.27 4.10
2 Too big battery—structural failure 1.00 4.20
3 Steel overweight—structural failure 1.10 4.60

4 Battery breach—fire, corrosion,
asphyxia 1.40 4.60

5 Battery fail to start—battery
unavailability during critical operations 1.64 4.10

6 Thermal runaway—fire 1.33 4.66

7 Battery room damaged—flooding, ship
power loss 1.09 2.10

8 Loss of propulsion or steering—ship
power loss 1.17 3.34

9 Battery room damaged—flooding 1.09 2.10

10 Loss of essential services—other
essential services failed 1.64 2.64

11 Fire and explosion in battery room—fire
and explosion 1.18 3.00

12 Gas development (toxic, flammable,
corrosive)—asphyxia; fire 1.09 4.64

13 Release of flammable/toxic gases—fire
and explosion 1.09 4.82

14 Fire and explosion in battery room—fire
and explosion 1.09 6.10

15 Short circuit in battery or power
system—power loss; fatality 1.42 4.50

16 Overvoltage and
undervoltage—potentially fire 1.25 3.34

17 Battery system unavailable—battery
damaged 1.67 3.00

18 Battery out of power—other essential
services failed 1.50 3.00

19 Battery fall—battery damaged; injury 1.17 3.00

20 Discharge rate too low—power
unavailability 1.08 2.34

21 Evacuation obstructed 1.00 3.00
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Table 6. HAZID questionnaire results—operation: voyage.

No Hazard Description Frequency Consequence

1 Battery breach—fire, corrosion,
asphyxia 1.00 5.00

2 Thermal runaway—fire, corrosion,
asphyxia 1.20 5.20

3 Battery on fire—fire, total loss 1.64 5.18
4 Short circuit—short circuit, fatalities 1.55 3.36

5 Gas off the battery (toxic, flammable,
corrosive)—fire, corrosion, asphyxia 1.09 4.28

6 Battery fail to disconnect—fire 1.10 3.90

7 Internal thermal incident—battery
damaged 1.60 2.80

8 External fire—fire and explosion 1.27 4.28
9 System failed—battery damaged 1.55 2.64
10 Fire and explosion—fire and explosion 1.30 5.80
11 Battery fall—battery damaged; injury 1.00 3.20

12 No cooling of battery—battery
damaged 1.73 2.26

13 Passenger get in the battery
room—battery damaged; injury 1.09 1.18

14 Terrorism—loss of ship, fatalities 1.00 5.90
15 Cyber-attack—loss of ship 1.27 3.90
16 Damage to the hull—corrosion 1.00 5.00

17 Battery life span shortened—battery
damaged 1.00 3.00

Table 7. HAZID questionnaire results—operation: arrive and leave port.

No Hazard Description Frequency Consequence

1 Battery overcharging—battery damaged 1.30 2.40
2 Battery fail to start—battery damaged 1.70 2.00
3 Battery management system failed—fire 1.64 3.18

4 Human error—collision, contact,
grounding 2.55 3.36

5 Collision—total loss 1.00 7.00
6 Contact—hull damaged 2.00 1.00
7 Grounding—hull damaged 2.00 3.00

8 Charging station
damaged—system/equipment damaged 1.00 5.00

Table 8. HAZID questionnaire results—emergency operation.

No Hazard Description Frequency Consequence

1 Fire propagation—total loss 1.10 5.40
2 Evacuation failed—fatalities 1.00 5.60
3 Collision—total loss 1.50 6.60
4 Contact—hull damaged 2.40 2.40
5 Thermal runaway—fire 1.10 3.80

6 Crew unsafe when entering the
room—asphyxia 1.10 5.20

7 Crew unsafe when removing damaged
equipment—asphyxia 1.10 5.00

8 Grounding—hull damaged 2.00 3.00
9 Flooding—capsizing 1.00 5.00
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4.2. Uncertainty Analysis

To provide a trustworthy decision on the hazard identified and the associate risk levels,
the uncertainty analysis on the frequency and consequence index were carried out. The index
of frequency and consequence are resulted of HAZID meeting and determined based on engineer
judgement and estimations. Goerlandt and Reniers [27] proposed a qualitative approach to apply
strength-of-evidence to develop three-level of data confidences based on expert judgments and
assumptions. Three levels are colour coded as green/yellow/red, which presents strong/medium/low
data confidences (Table 9).

Table 9. Definition of data confidence levels [27].

Evidence Type
Confidence Level

Strong Medium Weak

Judgments supported by experts Over 75% 25~75% Less than 25%
Assumptions agreed by experts Over 75% 25~75% Less than 25%

Based on the confidence level and the HAZID questionnaires reports, the confidence levels
of the frequency and consequence of the identified hazard are derived and shown in the Table 10.
It indicates that 25% of the determined frequency indices (FI) and consequence indices (CI) are strongly
trustworthy and about 71% of them have a medium level of data confidence. Therefore, the overall
strength-of-evidence is medium.

Table 10. Determination of data confidence levels (Three levels are colour coded as green/yellow/red,
which presents strong/medium/low data confidences).

Hazard
Number

Design, Construction &
Installation Operation Emergency

Frequency Consequence Frequency Consequence Frequency Consequence
1 75% 42% 75% 75% 90% 20%
2 83% 42% 75% 58% 100% 40%
3 75% 67% 42% 50% 50% 80%
4 50% 25% 33% 58% 40% 70%
5 58% 50% 83% 25% 90% 50%
6 67% 50% 83% 50% 90% 50%
7 83% 17% 92% 42% 90% 60%
8 83% 42% 50% 58%
9 83% 50% 67% 8%

10 42% 58% 33% 58%
11 75% 75% 58% 25%
12 83% 58% 50% 58%
13 83% 83% 83% 58%
14 83% 50% 50% 58%
15 58% 42% 83% 83%
16 75% 42% 92% 8%
17 50% 83% 67% 50%
18 50% 67% 58% 58%
19 83% 67% 42% 42%
20 92% 50% 58% 33%
21 58% 58%

4.3. Accident Statistics

One of the challenges with the qualitative risk assessment is the collection of reliable data regarding
past accidents. The challenge in this case is that the previous FSAs have not addressed inland/protected
water and high-speed vessels similar to our designs. In this respect, new data had to be collected.
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The accident data derived from the Global Integrated Shipping Information System (GISIS): Marine
Casualties and Incidents (IMO). Passenger ship accident data were collected and there are 337 accidents
in the database, and the numbers of accidents in different categories were determined and listed [28].
According to data provided by Sea-Web [29], the number of passenger vessels in the world merchant
fleet in a yearly base were derived in Table 11 and the ship-year for global passenger ships is 4872.
The accident frequencies for global passenger ship fleet are derived and presented in Table 12 and
Figure 11.

Table 11. Number of passenger ships in service vs. year.

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Ships in service 132 152 162 143 142 162 158 124 158 204 213

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Total

Ships in service 247 219 244 224 265 259 271 343 448 602 4872

Table 12. Number of incidents and frequencies for global passenger ship fleet.

No of Accidents Percentage
Accident Frequency

This Study Other Projects

Capsizing 23 16.08% 4.72 × 10−3

Collision 26 18.18% 5.34 × 10−3

(a) 6.99 × 10−3 (GOALDS)
(b) 4.6 × 10−3 (MSC_85-17-1 *)
(c) 1.25 × 10−2 (MSC_85-17-2)
(d) 3.65 × 10−2 (Endrina et al. 2018 [30])

Contact 15 10.49% 3.08 × 10−3
(a) 1.2 × 10−3 (MSC_85-17-1)
(b) 1.25 × 10−2 (MSC_85-17-2)
(c) 1.04 × 10−2 (Endrina et al. 2018 [30])

Fire 35 24.48% 7.18 × 10−3
(a) 8.9 × 10−3 (MSC_85-17-1)
(b) 8.28 × 10−3 (MSC_85-17-2)
(c) 5.21 × 10−3 (Endrina et al. 2018 [30])

Grounding 36 25.17% 7.39 × 10−3
(a) 1.07 × 10−2 (GOALDS)
(b) 9.8 × 10−3 (MSC_85-17-1)
(c) 9.57 × 10−3 (MSC_85-17-2)

Flooding 2 1.40% 4.11 × 10−4

Machinery damage 6 4.20% 1.23 × 10−3 (a) 1.87 × 10−2 (MSC_85-17-2)
(b) 1.04 × 10−2 (Endrina et al. 2018 [30])

Total 143 100% 2.94 × 10−2
(a) 4.4 × 10−2 (MSC_85-17-1)
(b) 6.80 × 10−2 (MSC_85-17-2)
(c) 6.25 × 10−2 (Endrina et al. 2018 [30])

* MSC_85-17-1 & MSC_85-17-2 reported the FSA study on cruise and ro-ro passenger ship (RoPax) ships within the
research project SAFEDOR respectively.

The newly collected data are compared for verification purposes with the frequencies found
in previous projects, namely GOALDS and SAFEDOR. GOALDS reported the accident frequencies
(collision and grounding) for the cruise ship and ro-ro passenger ship (RoPax) from 1994 to 2010;
SAFEDOR reported the accident frequencies (collision, contact, grounding and fire) for cruise ships
and RoPax respectively from 1994 to 2004. Another research carried out by Endrina et al. ([30]) was
presented in Table 12 comparing with the accident frequency from this study. It is observed that the
results from this study, are at the same exponential level with the previously reported figures.
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For the fire accident frequency, the results from FIRESAFE project were used which indicates that
the fires on ro-ro vessels have a frequency (per ship year) of 5.79 × 10−3. In this report, it mentioned
the fire accident frequencies from DNV GL are 5.83 × 10−4 (year 1990–2003) and 2.00 × 10−3 (year
2005–2016). According to SAFEDOR, it is about 1.02 × 10−3. Therefore, the fire accident frequency is
expected to be in the order of 10−3.

Following the same approach, the number of accidents for the inland waterways ferries is derived
based on the accident database (GISIS) and the number of inland waterways ferries in the world
from 2006 to 2018 are determined from Sea-web database which in total has 1178 existing (Table 13).
The incident frequencies are determined and shown in Table 14.

Table 13. Number of inland waterways ferries in service vs. year.

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Sum

Ferry in service 52 69 76 84 85 78 98 84 102 97 101 108 144 1178

Table 14. Number of incidents and frequencies for inland waterways ferries.

Accident No of Accidents Percentage Accident Frequency

Capsizing/listing 2 22.22% 1.70 × 10−3

Collision 2 22.22% 1.70 × 10−3

Contact 1 11.11% 8.49 × 10−4

Fire 2 22.22% 1.70 × 10−3

Stranding/grounding 2 22.22% 1.70 × 10−3

Flooding 0 0% 0
Machinery damage 0 0% 0

Total 9 100% 7.64 × 10−3

It is reasonable to have much lower accident frequencies since ferries are usually operation in
the conditions of rapid response to extreme weather conditions, better manoeuvring characteristics of
these vessels and the propulsion redundancy, and human factors (e.g., better training, less fatigue etc.).

After determining these data, an event tree analysis has been conducted to determine the impact
of the different accident scenarios.
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4.4. Event Tree Analysis

Based on the results from the HAZID session and the analysis of available accident statistics,
the following top events were selected for event tree analysis and the sequences are described and
presented in the following section:

• Collision

# Struck/Striking = > Operational state = > Water Ingress = >Sinking = > Consequences

• Contact

# Contact Objects = > Water Ingress = >Sinking = > Fatalities = > Consequences

• Fire

# Escalation = > Extinguishing speed = > Damage degree = > Consequences

• Grounding

# Navigation = > Sea Bed = > Water Ingress = > Staying Aground = > Afloat = > Consequences

With the assumptions in Section 2.4., the following event trees with cost impacts are derived in
the following figures. Figures 12–15 correspond to the ET developed for larger passenger ships in
previous studies (GOALDS and cruise ship FSA). The ET in Figures 16–19 are purposely developed for
this study.

The ETs developed includes both the fatalities per year and the financial impacts of incidents per
year. For cruise ships, the fatalities per year due to collision accidents are 8.22 × 10−2 which is much
higher than that for high-speed ferries (4.90 × 10−4). The fatalities per year are 1.12 and 4.82 × 10−3

(large cruise ships and small ferries) due to grounding accidents; they are 6.06 × 10−2 and 2.36 × 10−4

due to contact, and 3.43 × 10−1 and 1.52 × 10−3 due to fire. The total fatalities per year due to accidents
for cruise ships are much higher than small ferries. The financial impacts of incidents per year were
determined: for cruise ships, the impacts for four categories (collision, grounding, contact and fire) are
€130,706, €521,777, €100,106, and €2,132,184 respectively; for small ferries, the impacts are much lower
than cruise ships, which are €297, €856, €165 and €3599. The costs for cruise ships are significantly
higher, which are resulted from the total loss prices (i.e., construction costs) of large cruise ships and
small ferries. The total loss prices used in the calculation for cruise ship and ferry are €700M and
€5M. Therefore, the financial impacts are determined to be 4.1%� and 1%� of the total loss prices of
cruise ship and ferry respectively which indicates the financial impacts on cruise ships are still higher
than small ferries. To compare the risk impacts for these two types of ships, further calculations and
discussions will be carried out next.

The overall risk calculation is shown in Tables 15 and 16. For the large passenger ships (8000 PoB),
these assumptions are made: 16 knots, sailing 358 days per year, 23.45 h and 695 km per sailing.
For high-speed battery-driven ferry in this project, the assumptions are: 23 knots, sailing 330 days
per year, 15 h per day, 1 h per sailing and 23 nm per sailing. The following results are derived,
compared and presented it in Table 17: individual risk per sailing, maximum sailing per year for crew
member, maximum sailing per year for any passenger, maximum individual risk for crew member,
maximum individual risk for passenger the fatalities per 108 person hours (fatality accident rate, FAR),
the fatalities per 108 person km and the fatalities per 108 person sailings.
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Figure 12. Event tree analysis of collision for passenger ships.
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Figure 13. Event tree analysis of grounding for passenger ships.
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No 90% 1.66x10-4 10%         10,000,000 0%                          -            1,663 
Harbor 

structures 60%

Yes 10% Slow 90% 1.66x10-5 100%       100,000,000 5%         2,046,142,500           1,000,000        35,698 
Yes 10%

Fast 10% 1.85x10-6 100%       100,000,000 30%       12,276,855,000           1,000,000        22,865 

3.08x10-3  €       325,878 

Figure 14. Event tree analysis of contact for passenger ships.
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Figure 15. Event tree analysis of fire for passenger ships.
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Figure 16. Event tree analysis of a collision for the ferry in this study.
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Figure 17. Event tree analysis of grounding for the ferry in this study.
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Figure 18. Event tree analysis of contact for the ferry in this study.
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Figure 19. Event tree analysis of fire for the ferry in this study.
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Table 15. Overall risk calculation for all passenger ships.

Hazard
Category

Ind. Risk Fatalities Incidents Fatal
Accidents Total Loss 8000 People

on Board

(per Year) (per Year) (per Year) (per Year) (per Year) FAR %

Collision 1.03 × 10−5 8.22 × 10−2 5.34 × 10−3 1.08 × 10−4 1.08 × 10−4 0.18 5.12
Grounding 1.40 × 10−4 1.12 7.39 × 10−3 6.74 × 10−3 7.19 × 10−5 2.44 69.72

Contact 7.58 × 10−6 6.06 × 10−2 3.08 × 10−3 9.08 × 10−5 9.08 × 10−5 0.13 3.78
Fire/Explosion 4.29 × 10−5 3.43 × 10−1 7.18 × 10−3 2.65 × 10−3 1.44 × 10−5 0.75 21.38

Total 2.01 × 10−4 1.61 2.30 × 10−2 9.60 × 10−3 2.85 × 10−4 3.505 100.00

Table 16. Overall risk calculation for ferry.

Hazard
Category

Ind. Risk Fatalities Incidents Fatal
Accidents Total Loss 150 People

on Board

(per Year) (per Year) (per Year) (per Year) (per Year) FAR %

Collision 3.27 × 10−6 4.90 × 10−4 1.70 × 10−3 3.44 × 10−5 3.44 × 10−5 0.004 6.93
Grounding 3.22 × 10−5 4.82 × 10−3 1.70 × 10−3 1.55 × 10−3 1.65 × 10−5 0.035 68.21

Contact 1.57 × 10−6 2.36 × 10−4 8.49 × 10−4 1.95 × 10−5 1.95 × 10−5 0.002 3.34
Fire/Explosion 1.01 × 10−5 1.52 × 10−3 1.70 × 10−3 6.27 × 10−4 3.40 × 10−6 0.011 21.52

Total 4.72 × 10−5 7.07 × 10−3 5.94 × 10−3 2.23 × 10−3 7.38 × 10−5 0.052 100

Table 17. Results comparison for all passenger ship and high-speed battery-driven ferry.

Results Large Passenger Ship Ferry (This Study)

Individual risk per sailing 5.61 × 10−7 1.19 × 10−8

Max sailing per year for crew member 180 1650 *
Max sailing per year for any passenger 20 600 **
Max individual risk for crew member 1.01 × 10−4 1.96 × 10−5

Max individual risk for passenger 1.12 × 10−5 7.14 × 10−6

Fatalities per 108 person hours (FAR) 3.505 0.052
Fatalities per 108 person km 0.081 0.028

Fatalities per 108 person sailings 56.080 1.191

* With 5 sailings per day and 330 working days per year, the crew should have 1650 sailings of 1 h; ** People live on
the islands need to commute using the ferry so it assumes 2 sailings per day for 300 days. That means 600 sailings of
1 h.

According to [22], the fatalities per 108 passenger-km and Fatalities per 108 passenger hours (FAR)
of waterways travelling are 0.6 and 12 respectively. In this study, they are considerably lower. They are
0.081 and 3.505 for typical large passenger ships and 0.028 and 0.052 for the high-speed battery-driven
ferry in this study. Based on this findings, the ferry in this study meets the expectation to be “as safe as
the existing ships”.

4.5. RCOs and Cost Assessment

The risk reductions, costs and benefits brought by the different RCOs were estimated based on the
feedback from the experts in the consortium so that the cost-benefit impacts can be determined after
applying the RCOs. Their values will be updated when more details about the design are available
and market prices are confirmed. There are seven potential RCOs identified after HAZID indicating
the most severe hazards:

1. Move the battery room on the main deck:

Moving the battery room of the case study vessel on the main deck will reduce the risks associated
with potential fire in that room. This is in line with Norwegian Maritime Authority’s (NMA’s)
recommendations. This measure will also have the benefit of reducing the allowable minimum
breadth of the demihulls, resulting to potential total resistance reductions which will produce capital
expenditures (CAPEX, battery costs) and operating expenses (OPEX, recharging costs) reduction.
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On the other hand, it will raise the vertical centre of gravity (VCG) and affect the stability, but due to
the catamaran design, this will not affect adversely its collision, contact and grounding risks.

2. Select proper firefighting system:

A firefighting system will be equipped with a minor modification of the ferry, and the operation
and maintenance cost of the system shall be considered.

3. Add alarm system:

An alarm system will be coupled with the ferry and the operation and maintenance cost of the
system shall be considered.

4. Pre-test system/equipment:

Pre-test any new system and equipment before the installation will avoid incidents/accidents
while operating. It will require system/equipment inspection and checking where labours and testing
equipment will be necessary.

5. Supply protection for crew:

Protections such as goggles, gloves and jackets should be provided to crews while working on
board and repairing faulty systems. The associated costs are investment of these protections and might
be replacing them every a few years to keep the quality to be well functioning.

6. Regular inspection and maintenance:

This is necessary to prevent accident and incident from happening. This requires labour investment
as well as replacement of aging spare parts.

7. Crew training:

Crew training should be included in all phases, i.e., construction, operation and maintenance
phases, in order to avoid unskilled persons who might mis-operate and cause accidents.

The costs, benefits and risks associated to the application of RCOs are estimated and presented in
Table 18. The cost data based on experts’ recommendation, judgment and experience. The costs of
the RCOs include the investment (CAPEX) and operational cost (OPEX). The potential reduction rate
on accident frequencies (collision, contact, grounding and fire) of each RCO was estimated. With an
assumption of 20 years ferry life span and 5% interest rate, the gross and net cost-benefits were
determined. This indicates that RCO 1 (relocation of the battery room on the main deck) brings the
highest benefits. For RCO 1, this corresponds to €112.3K savings while averting a fatality but other
RCOs require capital investment to help to reduce the potential loss of life (RCOs 2 and 3 require
capital investment of €25.6K; RCO 4 requires €12.5K; RCO 5 needs to invest €10.9K; RCO 6 requires
€25.9K; and RCO 7 needs a capital investment of €9.3K).

Table 18. Cost and benefit assessment of risk control options (RCOs).

RCOs 1 2 3 4 5 6 7

PLL (fatalities/ship-year) 1.61
Reduction 10% 10% 5% 5% 5% 7.5% 7.5%

∆PLL (fatalities/ship-year) 0.161 0.161 0.080 0.080 0.080 0.120 0.120
Cost (€) −30,000 20,000 10,000 20,000 5000 0 10,000

Annual Maintenance Cost (€) 0 5000 2500 0 1000 5000 1000
∆C (€) −30,000 82,311 41,156 20,000 17,462 62,311 22,462

Gross CAF (€) −9339 25,624 25,624 12,452 10,872 25,864 9323
Annual Benefit (€) 26,544 * 0 0 0 0 0 0

∆B (€) 330,802 0 0 0 0 0 0
NetCAF (€) −112,319 25,624 25,624 12,452 10,872 25,864 9323

* Energy saving due to moving battery room on the main deck which brings improvement of ship hull form and
reduces the resistance.
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5. Conclusions and Recommendations

In this study, we presented an approach to assess the risk and safety level for a battery-powered
high-speed catamaran ferry using HAZID, fault tree, event tree and cost-benefit assessment.
The conducted HAZID session provided experts’ judgement and experience on the identified hazards
to determine the levels of frequency and consequence of these hazards. A supplement was made to
the hazard register to include more concerned risk incidents in the register. In addition, based on the
expertise of the HAZID session experts, some hazards were eliminated and are not necessary to be
included. Based on the HAZID results, four most severe top events were identified: collision, contact,
grounding and fire. With data collected from IMO and the Sea-Web database, the accident frequencies
of these top events were determined for passenger ships and then tailored for ferries. Referring to
the GOALDS project and the FSA report (IMO), event trees were firstly established for all types of
passenger ships in this study. The event trees were modified based on experts’ suggestion to fit for HSC
ferries. With consideration of financial, potential loss of life and environmental impacts, eventually
the total risk and its impact were determined for the considered ferry and were compared to large
passenger ships as well as other types of ferries.

The main findings of the risk and safety assessment are the following:

• The accident frequencies for vessels, and high-speed battery-driven ferries, are not significantly
different from the ones for larger passenger ships;

• The system architecture (Figure 4), especially the battery management system, does not raise any
concerns regarding higher accident frequencies. This needs to be confirmed with the final battery
management system (BMS) design and the more detailed analysis the manufacturer will perform
as the ship design progresses;

• The updated event trees and the quantitative risk assessment show that the vessel’s design is as
safe as existing ships.

• Risk control options for further reduction of the risk have been examined. Among all the
proposed risk control options, the relocation of the battery room on the main deck is the most
cost-effective RCO.

The results from this study could be updated along with a more complete battery system and ferry
design. With further detail information about the system and the ferry, a more accurate assessment
will be achieved in future studies.
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Abbreviations

€ Euro
AC Alternating Current
CAF Cost of Averting Fatality
CAPEX Capital Expenditures
CBA Cost-benefit Analysis
CI Consequence Indices
CO2 Carbon Dioxide
DC Direct Current
DG Diesel Generator
EMSA European Maritime Safety Agency
ET Event Tree
ETA Event Tree Analysis
FAR Fatality Accident Rate

FIRESAFE
Study Investigating Cost Effective Measures for Reducing the Risk from Fires on Ro-Ro
Passenger Ships

FSA Formal Safety Assessment
FT Fault Tree
FTA Fault Tree Analysis
FW Fresh Water
GHG Greenhouse Gas
GISIS Global Integrated Shipping Information System
GOALDS Goal Based Damage Ship Stability
GrossCAF Gross Cost to Avert a Fatality
h Hour
HAZID Hazard Identification
HSC High-speed Craft
IMO International Maritime Organization
K Thousand
LCA Life Cycle Assessment
LOA Length Overall
M Million
MSC Maritime Safety Committee
NetCAF Net Cost to Avert a Fatality
NMA Norwegian Maritime Authority
OPEX Operating Expenses
P Probability
PI Probability Indices
PLL Potential Loss of Life
PoB Passengers on Board
PV Photo Voltaic
RCOs Risk Control Options
RI Risk Indices
RoPax Ro-Ro Passenger Ship
SAFEDOR Design, Operation and Regulation for Safety
STABALID Stationary Batteries Li-ion Safe Deployment
SW Sea Water
TrAM Transport: Advanced and Modular
VCG Vertical Centre of Gravity
ZEBRA Zero Emissions Batteries Research Activity
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Appendix A. Risk Register

Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

Design, construction, installation

1 Ferry over-height
Designed battery pack didn’t comply

with the height requirement for ferries
operated area

Contact
Check design to fulfil the

requirement
1.27 * 4.10 5.37

2 Too big battery Too large battery in size and weight
Failed the

classification check
Design optimization 1.00 4.20 5.20

3 Steel overweight
Change of ferry structure and design due

to battery system
Failed the

classification check
Design optimization 1.10 4.60 5.70

4 Battery breach
Physical damage: cut, shock, vibrations,

metal projection
Fire, Corrosion,

Asphyxia

Pre-test system/equipment
when arrived and after

installation
1.40 4.60 6.00

5 Battery fail to start
Component damaged due to harsh

installation environment
Power

unavailability

Check and test system when
arrived and after installation;
follow the installation manual

1.64 4.10 5.74

6 Thermal runaway Occur flame or heat source Fire Install firefighting system 1.33 4.66 5.99

7 Battery room damaged

Didn’t comply the ship hull design rule:
keep certain distance between battery

room wall and outer hull during collision
contact and grounding

Flooding, ship
power loss

Check design to fulfil the
requirement

1.09 2.10 3.19

8
Loss of propulsion

or steering
Battery room contains other systems
supporting essential vessel services

Ship power loss
Remove unnecessary systems

in battery room
1.17 3.34 4.51

9 Battery room damaged
Battery room is positioned before the

collision bulkhead
Flooding

Follow DNV GL’s regulation
on battery room arrangement

1.09 2.10 3.19

10 Loss of essential services
Battery room contains other systems
supporting essential vessel services

Other essential
services failed

Follow DNV GL’s regulation
to avoid other systems in

battery room
1.64 2.64 4.28

11
Fire and explosion in

battery room
Heat sources or high fire risk objects in

battery room
Fire and explosion

Follow DNV GL’s regulation
on battery room arrangement

1.18 3.00 4.18
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Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

12
Gas development (toxic,

flammable, corrosive)

No system equipped; not start
automatically; low capacity; no local

start-stop system; lack of monitoring; no
alarm system; sensor malfunctioning

Asphyxia; fire
Follow DNV GL’s regulation
on ventilation requirement

1.09 4.64 5.73

13
Release of

flammable/toxic gases
Failure/damage of the battery system;

lack of detection
Fire and explosion

Follow DNV GL’s regulation
on Hazardous area design

1.09 4.82 5.91

14
Fire and explosion in

battery room
No fire assessment; no detection

methods; improper fire extinguishing
Fire and explosion

Design follow DNV GL’s
regulation on Fire integrity

1.09 6.10 7.19

15
Short circuit in battery

or power system

Fail to shut the battery: 1 No circuit
breaker available; 2 no fuses available; 3

wrong breaker selected.
Power loss Equip with switchgear 1.42 4.50 5.92

16
Overvoltage and

under-voltage
Bad converter design Potentially fire

Test of converters and regular
inspection; add alarm

1.25 3.34 4.59

17
Battery system

unavailable

Insufficient testing: interface, converter,
system and its auxiliaries, and the

installation space (possible ventilation,
liquid cooling, gas detection, fire

detection, leakage detection)

Battery damaged

Test of the whole system and
regular inspection; add alarm;

and add condition
monitoring system

1.67 3.00 4.67

18 Battery out of power Selected battery capacity insufficient
Other essential
services failed

Design to fulfil the power
requirement

1.50 3.00 4.50

19 Battery fall
Collision; too high battery (improper

design)
Battery damaged;

injury

Reduce stack height; batteries
shall be properly attached to

the ship hull.
1.17 3.00 4.17

20 Low battery power
Low capacity of battery; low charging

rate of charging system
Power

unavailability

Understand and match the
system to the

operational profile
1.08 2.34 3.42

21 Evacuation obstructed
Evacuation station too close to

battery room
Fail to evacuate

Evacuation plan simulation;
risk based ship design.

1.00 3.00 4.00
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Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

Operation
a. Voyage

1 Battery breach
Cut, shock, vibrations, metal projection

on battery
Fire, corrosion,

asphyxia
Restrict access to and objects

in battery rooms
1.00 5.00 6.00

2 Thermal runaway
Heat sources or high fire risk objects in

battery rooms
Fire, corrosion,

asphyxia

Comply with the rule of no
heat source in battery rooms

and install alarming and
firefighting system

1.20 5.20 6.40

3 Battery on fire
No communication between EMS and

the packs
Fire

Keeping the packs powered
up; ensure ESS parameters are
showing on the interface; and

install alarming and
firefighting system;

1.64 5.18 6.82

4 External short circuit Wire aging, bad insulation
System failed;

injuries
Wear protection gloves and

check and replace aging wire
1.55 3.36 4.91

5
Gas off the battery (toxic,

flammable, corrosive)
Failure/damage of the battery system

Fire, corrosion,
asphyxia

Ventilation system 1.09 4.28 5.37

6 Battery fail to disconnect
Battery management system failed; no

emergency disconnections
Fire

Regularly maintenance the
BMS; disconnection switch

installed
1.10 3.90 5.00

7
Internal thermal

incident
No emergency instruction; aging wire Battery damaged

Include instructions and
avoid heat or sparks

1.60 2.80 4.40

8 External fire
No emergency instruction; heat

source nearby
Fire and explosion

Prepare emergency document;
keep battery from heat, spark
and fire; firefighting system

1.27 4.28 5.55

9 System failed
Lack of systematic maintenance and

function testing and observation
Battery damaged

Advance inspection and
testing; maintenance and

change regularly; condition
based monitoring system

1.55 2.64 4.19
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Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

10 Fire and explosion Over-temperature Fire and explosion

Ventilation system; avoid heat
source in BM and install

alarming and
firefighting system;

1.30 5.80 7.10

11 Battery fall
Collision; too high battery

(improper design)
Battery damaged;

injury
Reduce stack height; strength
and maintain battery shelves

1.00 3.20 4.20

12 No cooling of battery Failures of fans; loss of coolant Battery damaged
Include monitoring and

inspection
1.73 2.26 3.99

13
Passenger get in the

battery room
Lack of sign and warning

Battery damaged;
injury

Add warning sign; lock the
battery room

1.09 1.18 2.27

14 Terrorism Enormous media attention
Loss of ship,

fatalities

Apply ISPS Code, anti-piracy
procedures to be in place and

ship security
1.00 5.90 6.90

15
Cyber-attack/connect to

wrong system
Enormous media attention; lack of cyber

security protection
Loss of ship

Include security system;
cautions of spam emails and
regulating the remote access

1.27 3.90 5.17

16 Damage to the hull
Electrical-chemical corrosion due to high

DC from shore charging to ship
Corrosion

Supply protection for crew;
regular inspection and

maintenance
1.00 5.00 6.00

17
Battery life

span shortened
Battery working at adverse SOC Battery damaged Detection; alarm systems 1.00 3.00 4.00

b. Arrival/departure to/from port

1
Battery

overcharging/overheating

No automatic disconnection or lack of
monitoring; failure of
temperature sensors

Battery damaged
Charging/discharging failure
shall give alarm at a manned

control station.
1.30 2.40 3.70

2 Battery fail to start
Component damaged due to bad battery
operation and harsh operation conditions

Battery damaged
Check and test system before

servicing; follow the
operation manual

1.70 2.00 3.70

3
Battery management

system failed
Overvoltage and under-voltage

without protection
Fire

Converter designed
following regulation

1.64 3.18 4.82
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Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

4 Human error Lack of crew training on manoeuvring
Collision, contact,

grounding

Train crew before onboard
and provide guide

for operation.
2.55 3.36 5.91

5 Collision Operation failure, Struck by other ship Total loss
Enhance navigation system;

crew training
1.00 7.00 8.00

6 Contact Bad manoeuvring Hull damaged
Train crews; include

anti-contact equipment
2.00 1.00 3.00

7 Grounding
Mooring ropes broke; An insufficient or
improper information of the port or the

navigational water ways
Hull damaged

Navigation system/plan;
berthing system

2.00 3.00 5.00

8
Charging station

damaged
Lack of protection: hit by objects (cable,

plug, etc.); electrical hazard; overheating
System/equipment

damaged

Pre-test system/equipment;
standard electrical

safeguarding (fuses, breakers,
overvoltage protection, power

control, etc.)

1.00 5.00 6.00

Emergency operation

1 Fire propagation
Improper firefighting system; fire door

failure; no detection or alarm
Total loss

Apply proper firefighting and
alarming system; regular

inspection and maintenance
on fire door;

1.10 5.40 6.50

2 Evacuation failed
Lack of ladders, rope, lifebuoy and life

jacket; evacuation blocked
Fatalities

Evacuation equipment check;
arrangement of evacuation

route
1.00 5.60 6.60

3 Collision Operation failure, struck by other ship Total loss
Enhance navigation system;

crew training
1.50 6.60 8.10

4 Contact Bad manoeuvring Hull damaged
Train crews; include

anti-contact equipment
2.40 2.40 4.80

5 Thermal runaway
Battery power down during events; no

other packs running
Fire

Keep battery power on; run
other battery systems

1.10 3.80 4.90
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Hazards
RCOs P C R

No.
Initial Accidental

Event
Cause Consequence

6
Crew unsafe when
entering the room

Lack of ventilation, protection, initial
assessment and check

Asphyxia

Keep the ventilation system
running, Supply protection
for crew; inspection before

entering the site

1.10 5.20 6.30

7
Crew unsafe when
removing damaged

equipment

Lack of ventilation; system still working
while removing; lack of training,

assessment, monitoring, inspection of
other module in same column

Asphyxia

Keep the ventilation system
running; crew training;

assessing and monitoring
before crew entering

to remove

1.10 5.00 6.10

8 Grounding
Mooring ropes broke; An insufficient or
improper information of the port or the

navigational water ways
Hull damaged

Navigation system/plan;
berthing system

2.00 3.00 5.00

9 Flooding Contact, collision, grounding. Capsizing
Regular inspection and

maintenance on ship hull and
watertight doors

1.00 5.00 6.00

* Different colours were used to show the levels of frequency, consequences and risks: green = low; yellow = medium; red = high.
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