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ABSTRACT

We demonstrate a technique for rendering textured haptic sur-

faces in mid-air, using an ultrasound haptic display. Our technique

renders tessellated 3D ‘haptic’ shapes with di�erent waveform

properties, creating surfaces with distinct perceptions.
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1 INTRODUCTION

Non-contact haptic displays can enhance mid-air gesture inter-

action, by allowing users to ‘feel’ the controls they interact with

and by allowing non-visual feedback to be presented directly to

the hand. Many technologies have been developed to enable non-

contact haptics in recent years, but ultrasound haptics [1, 4], in

particular, has received a lot of a�ention because of the high reso-

lution of its output.

In the next section, we present a brief overview of the ways

this technology can be used to produce haptic sensations on the

hand. �ese sensations utilise only a small part of the haptic sense,

typically creating the perception of smooth and continuous vibra-

tion against the hand. Many rich areas of haptic perception are

unexplored, e.g., the perception of di�erent textures. In this work,

we demonstrate a technique that creates haptic surfaces, with tex-

tured properties such as “roughness”. �is could enable richer

non-contact haptics for mid-air interactions: for example, allowing

realistic textured objects for VR/AR, or mid-air bu�ons with distinct

tactile properties.

2 RELATEDWORK

Ultrasound haptics [1, 4] is an emerging technology that allows

users to experience tactile sensations in mid-air, with no need

to hold or contact a device. Focused ultrasound from arrays of

transducers (e.g., Figure 1, le�) creates areas of acoustic radiation

pressure, which are re�ected by the skin [1]. By modulating the

sound at a frequency from the range of haptic sensitivity (e.g.,

200 Hz [1]), the sound is perceived as vibration. �is has been

likened to the feeling of a “gentle breeze” focused upon the skin [7].

Figure 1: An Ultrahaptics device (le�) and two 3D printed

examples of haptic surfaces (right).

Early research prototypes allowed a single point of haptic stim-

ulus above the ultrasound array [4]. Although limited, this had

practical applications in HCI: a single point of feedback could be

presented to a �nger during mid-air pointing interactions [2, 8].

A single point could also be repositioned to create richer tactile

sensations: for example, creating the illusion of continuous motion

on the hand [9]. Later research allowed several distinct points of

stimulus [1], creating potential for new types of haptic experience.

Ultrasound haptics is not limited to distinct ‘focal points’ of

feedback. Long et al. [6] described a haptic rendering technique for

volumetric shapes. �ey controlled the acoustic �eld to create the

illusion of mid-air shapes (e.g., cones and cubes), by rendering the

outline of the 2D cross-section of the shape as the hand intersects

it; e.g., the circular cross-section of a sphere as the hand moves

through it. Korres et al. [5] rendered haptic shapes by rapidly

moving a single point of stimulus to create a “point cloud”; rapid

movement created the perception of all points being presented

simultaneously. Inoue et al. [3] generated an acoustic �eld from

multiple surrounding arrays, allowing haptic stimuli without the

need for frequency modulation (as in [1, 4], etc).

In this paper, we describe a haptic rendering technique that can

be used to create textured surfaces using ultrasound haptics, allow-

ing sensations like “roughness”. �is allows new haptic experiences

and creates new opportunities for mid-air interfaces.

3 RENDERING HAPTIC SURFACES

We de�ne a haptic surface as a tessellation of 3D shapes in a plane;

e.g., a 6x6 plane of pyramids in Figure 2 or a 1x7 plane of tetrahe-

drons in Figure 1, bo�om right. When tessellation is used to create

a surface, the shape, height, and shape width can be varied. �is

changes the structure of the plane and gives three parameters for a

haptic surface:

• tessellation shape (e.g., pyramid, tetrahedron)
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• tessellation height (e.g., 1–10cm)

• tessellation width (e.g., 1–10cm)

height

width

Figure 2: An example surface made from tessellated pyra-

mids. �e shape, height and shape width a�ect the struc-

ture of the haptic surface.

We render the haptic surface in mid-air using ultrasound haptics.

When a user’s hand intersects the surface, we get the points of

intersection and present haptic feedback at those locations only

(Figure 3, le�). We do this by continuously moving a single point

of ultrasound haptic feedback (e.g., to the six locations in Figure 3).

�is creates the illusion of simultaneous presentation across the

whole hand [5].
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Figure 3: Areas of the hand intersecting the surface are

stimulated (le�). Rapid sequential presentation of feedback

across the highlighted locations creates the illusion of simul-

taneous presentation (right).

�ere are several parameters of this rendering method that can

be changed to create the perception that the hand is touching some-

thing with a distinct texture. �e intensity and modulation fre-

quency of the single point of haptic feedback can be changed (e.g.,

reducing intensity or increasing modulation frequency). We en-

hance this by varying the intensity using di�erent waveforms (e.g.,

a �at or sine wave). We also vary the frequency at which the point

of feedback traverses the hand. �is works best from 5–40 Hz, e.g.,

each part of the hand is stimulated by the point of feedback up to

40 times per second. �is gives another four parameters that a�ect

the presentation of a haptic surface:

• intensity (0%–100%)

• waveform (�at, sine, square, sawtooth, triangle)

• modulation freqency (e.g., 200 Hz [1], 175 Hz [2])

• hand traversal freqency (5–40 Hz)

�e seven parameters identi�ed here can be manipulated to

create haptic surfaces with di�erent perceptual properties. Research

is ongoing to be�er understand how these can be used to create

distinct textured surfaces.

4 DEMONSTRATION

Our demonstration will allow a�endees to experience a variety of

mid-air textured haptic surfaces, presented using an Ultrahaptics
1

device and rendered using our technique. We will also use 3D-

printed physical visualisations of each surface (Figure 1, right), to

show a�endees what they are experiencing and to demonstrate the

types of surface this technique can render.
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