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Abstract—Radar systems have become one of the principal
sensory components in automotive vehicles, due to their ability
to detect and discriminate between different objects in various
scenarios. In this paper the micro-Doppler signature is used to
identify road targets as cyclist, person, group of people, dog
walking, and dog trotting. In order to boost the performance
of Automatic Target Recognition in automotive environment,
each node could share its micro-Doppler based features in a co-
operative manner, using novel Vehicle To Vehicle communication
frameworks based on joint radar and communication systems.
The classification performance is evaluated considering two
scenarios, a single-sensor scenarios where the micro-Doppler
signature is observed by a single user, and a multi-sensor
scenarios where each user shares its feature vector.

Index Terms—ATR, automotive application, single-sensor,
multi-sensor

I. INTRODUCTION

A typical radar system transmits an electromagnetic wave
and receives echo scatterings from a target. When the target is
not stationary, it causes a shift in frequency known as the
Doppler effect. Additionally, the secondary motions of the
target such as limb movement and vibrations may introduce
further frequency modulations around the main Doppler com-
ponent. This phenomenon is well known as the micro-Doppler
effect and has been extensively described in [1]. Being caused
by secondary motions, micro-Doppler components generally
change over time causing a frequency varying signal [1]. These
time-frequency modulations represent a unique signature of
the target, that allows for algorithms to be developed for
Automatic Target Recognition (ATR). The use of micro-
Doppler for ATR has been widely investigated in recent years
[2], and it can be now considered a technology ready to be
deployed in commercial devices [3].

Radar systems are becoming a key technology for current
and future Advanced Driver Assistance Systems (ADAS) due
to their capacity to enable a detailed representation of the
surroundings, independent of light and weather conditions.
Additionally, to increase road security a car could share
critical information with other vehicles or infrastructure such
as alarms or radar images. In [4] a joint radar communication

system based on the Fraction Fourier Transform (FrFT) for
automotive applications was presented. The proposed system
embeds information in waveforms suitable for radar opera-
tions allowing for both communication and sensing to take
place simultaneously while meeting low-SWaP (Size, Weight
and Power) requirements since no dedicated antenna and
transceiver are required for each operation. In [4] it was
shown that the radar performance of the proposed waveform
design in terms of Ambiguity Function (AF) and Side Lobe
Levels is similar to that of a Linear Frequency Modulation
(LFM) waveform while also demonstrating that the random
nature of the embedded data do not significantly impact the
radar performance. Additionally, in [5] it was shown that the
proposed framework can work in different communication
channels while assuring a good Bit Error Rate (BER).

In this work, the capability to exploit the systems such as
the one proposed in [4] in conjunction with micro-Doppler
based classification is investigated, with particular emphasis
on the possibility to share target information among the
different vehicles. Particularly, in single-sensor configuration
the classification is based on the observation obtained from a
single user, while in multi-sensor each user shares its extracted
features with other users. The features are shared using the
framework proposed in [4], and they are fused through the
Principal Component Analysis (PCA). In the literature, differ-
ent feature extraction methods for micro-Doppler classification
have been proposed including transform-based features [6] and
linear predictive coding [7]. In this work the feature vectors are
extracted using the Krawtchouk moments due to their benefit
of scale, rotation and translation invariant properties [8]. These
characteristics, together with the capability to pre-compute the
polynomials, make Krawtchouk moments reliable for real time
target recognition.

The remaining paper is organized as follows, Section II
presents the feature extraction framework from the micro-
Doppler signatures, in single-sensor and multi-sensor scenar-
ios. Section III and Section IV present preliminary classifica-
tion performance in single-sensor and multi-sensors scenarios
respectively. Finally, Section V concludes the paper and dis-
cusses future work.
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Figure 1: Block diagram of the proposed algorithm for a
single-sensor scenarios.

II. MICRO-DOPPLER CLASSIFICATION

In this section, the proposed feature vector extraction
method using the Krawtchouk moments is presented. The
block diagram of the proposed algorithm for a single-sensor
scenario is illustrated in Fig. 1. Initially, the algorithm takes
as input the received slow time signal srx(n), with n =
0, · · ·N−1, containing the micro-Doppler components. At the
pre-processing state, srx(n) is formed into a zero mean and
unit variance signal s̃rx(n). After this operation, to observe the
frequency changes over time the Short Time Fourier Transform
(STFT) is calculated [9]. Then the spectrogram is obtained
through the modulus of the STFT [9]. The spectrogram is a
visual representation of the spectrum of the received signal as
it varies with time and is expressed as:

χ(ν, k) =

∣∣∣∣∣
N−1∑
n=0

s̃rx(n)wh(n− k)e−i2ν
n
N

∣∣∣∣∣
k = 0, · · · ,K − 1

(1)

where i =
√
−1, ν is the normalized frequency and wh(·)

is the window function. In the proposed algorithm the spec-
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Figure 2: Example of spectrogram and CVD obtained by a
received signal from a person, (a) spectrogram and (b) CVD.

trogram is preferred over other time-frequency representations
due to its robustness to interference [10] and its low computa-
tional complexity. However, the spectrogram as defined in (1)
will depend on the initial motion phase that the target is when
captured. This means that different signatures will be obtained
for the same motion if the target is captured with a different
initial motion phase. To avoid this issue the Cadence Velocity
Diagram (CVD) is used. The CVD is defined as the Fourier
Transform of the spectrogram along each frequency bin [11],
which can be written as:

∆(ν, ε) =

∣∣∣∣∣
K−1∑
k=0

χ(ν, k)e−i2ν
k
K

∣∣∣∣∣ (2)

where ε is the cadence frequency. The CVD is chosen due
its ability to extract useful information such as the cadence
of each frequency component and the maximum Doppler shift
which are invariant to the initial phase of the motion. To obtain
a matrix whose values belong to the set [0, 1] the magnitude
of the CVD obtained by (2) is normalized as follows

∆̄(ν, ε) =
∆(ν, ε)−min

ν,ε
∆(ν, ε)

max
ν,ε

[
∆(ν, ε)−min

ν,ε
∆(ν, ε)

] (3)

After extracting the CVD, the feature extraction function
is applied. The feature vector, F = [F0, F1, · · · , FQ−1], of
dimension Q, which is desired to identify unequivocally each
class, is obtained using the Krawtchouk moments as well
described in [12] and [13]. In order to avoid that polarized
vector may affect the classification performance, the feature
vector is normalised as follows:

F̃ =
F− ηF

σF
(4)

where ηF and σF are, respectively, the mean and standard
deviation of F. The Krawtchouk moments are suitable for this
application especially due to their scale invariant property.
Fig. 2(a) shows a spectrogram obtained from the simulated
signal from a person. As it can be seen the spetrogram depends
on the initial phase of the motion and the number of the
period depends on the length of the signal. On the other hand,
the corresponding CVD is shown in Fig. 2(b). The CVD is
characterized by vertical lines whose the position depend on
the micro-motions. In Fig. 2(b) the line at zero cadence is
the main Doppler where the periodicity is zero, while the

Figure 3: Block diagram of the proposed algorithm in multi-
sensor scenarios.



second line at 1.36 Hz means that a micro-motion component
with periodicity of 0.7 seconds is present. The application of
Krawtchouk moments is chosen as an efficient way to extract
local characteristics from the CVD image [14].

The proposed block diagram to extract the feature vector
when K sensors are present is illustrated in Fig. 3. In this
scenario, each user receivers K feature vectors extracted using
the single sensor algorithm. These vectors are combined into
a new feature vector, F̃Com, of KQ elements. After this stage,
the PCA is applied on F̃Com. The PCA, [15], is a statistical
procedure that uses an orthogonal transformation to convert the
combined feature vector of KQ elements into a new feature
vector F̃PCA that contains M uncorrelated elements.

The classification performances of the extracted feature
vectors, in both scenarios, are evaluated using a k-Nearest
Neighbour (kNN) classifier for its low complexity.

III. CLASSIFICATION PERFORMANCE CONSIDERING A
SINGLE-SENSOR SCENARIO

In this section, the classification performance is evaluated
in a single-sensor scenario considering three main classes of
road targets. The examined main targets are human, cyclist and
dog (German Shepherd). The simulated targets are shown in
Fig. 4. Additionally, the dog class is made up of dog trotting
and dog walking classes while the human class consist of other
two classes as single person and group of people.

For the human class the model shown in Fig.4(a) is used,
while the kinematic and radar return model described in [1] are
implemented. The dog kinematic model is based on the data
captured for healty German Shepherd [16] and its physical
model is shown in Fig.4(b). The differences between dog

(a) (b)

(c)

Figure 4: Target, (a) person, (b) dog, (c) bike.

(a) Dog

(b) Cyclist

Figure 5: Simulated spectrograms, (a) dog, and (b) cyclist.

walking and dog trotting are their velocity. Finally, the model
of a cyclist on a bike applies the forward movement and the
rotation of the wheels, of the pedals arms and the partial
rotation of the pedals with the physical model show in Fig.4(c).
As the micro-Doppler depends on the motion of the target,
each target has a different signature. Fig. 2(a) shows the sim-
ulated micro-Doppler of a single person, while the simulated
spectrograms obtained when the signal is scattered by a dog
and cycle are, respectively, shown in Fig. 5. Comparing the
spectrograms obtained from these three targets, we can see
that for a fixed time duration the number of cycles of motion
(signature periodicity) depends on the target. Moreover, the
micro-Doppler is around the main Doppler component which
depends on the target’s main velocity.

The system’s performance is evaluated in terms of the
Accuracy (ACC) against different values of the Signal Noise
Ratio (SNR) and confusion matrices. The accuracy is the
rate of correctly classified targets over the entire test set.
The noise is added on the CVD before the normalization
and is modelled as Additive White Gaussian Noise (AWGN)
with SNR∈ [−5, 15] dB. The feature vector is extracted as
described in Section II, see Fig. 1 and in this analysis the
order of the Krawthouck moments is set at 3, while a 1-Nearest
Neighbor classifier is used.
In this analysis three classifiers are applied as illustrated in

Fig. 6. The first classifier, labeled with CF1, is applied to
discriminate between the tree main classes (human, dog and
cyclist). While the second and third, labeled with CF21 and
CF22, are used to discriminate the sub-classes that comprise
the main classes. In particular the classifier CF21 is used to



Table I: Interval of parameters.

target height (m) velocity
person [1.6, 1.8] [1, 2.5] m/s
cyclist [1.4, 1.6] [8, 16] km/h
dog walking [0.52, 0.62] [1, 3.5] m/s
dog trot [0.55, 0.65] 3.5, 5 m/s
group of p [1.55, 1.75] [0.5, 2.5] m/s

discriminate between a single person and group of people,
while the classifier CF22 is implemented to discriminate the
action of the dog walking and dog trotting.

Each target is observed considering 36 different azimuth an-
gles. These angles are distributed uniformly between 0 to 2π.
Moreover, for each angle the same target is taken into account
5 times with different height and velocity parameters. This
means that for the same class of the target 180 observations
have been acquired. The values of the heights and velocities
are chosen in random uniformly manner where the perspective
interval are listed in Table I.

The duration of the signal used to extract the CVD is
4 seconds while the Pulse Repetition Frequency (PRF) is
1.5 kHz. The carrier frequency of the system is fc = 77 GHz
while the range resolution is 1 meters. Additionally, each
signal starts with a different motion phase. The performance
is computed over 500 Monte Carlo runs for each SNR,
and for each iteration the observations are divided randomly
in 60% used to train the classifier and 40 % for testing.
The differences between the observation used for testing and
training are the different noise and the azimuth angel. Where
the azimuth angle are chosen in a random manner.

In Fig. 7, the Accuracy obtained, from the classifier CF1,
considering the three main classes (human, dog and cyclist)
is illustrated. Fig. 7 shows that when SNR ∈ [−5, 15] dB the
Accuracy moves from 0.96 to 0.976. This means that even for
low values of SNR the system is capability to discriminate
the three main classes. An example of confusion matrix when

Figure 6: Classifier design.

Table II: Confusion matrix of the classifier CF11 SNR=−5
dB, single-sensor scenario.

ATR
Truth human dog cyclist
human 94.1 % 5.1 % 0.8
dog 2.15 % 97.85 % 0
cyclist 3.3 % 0 % 96.7

Table III: Confusion matrix of the classifier CF21 SNR=−5
dB, single-sensor scenario.

ATR
Truth single person group of people
single person 77.1 % 22.9 %
group of people 26.8 % 73.2 %

Table IV: Confusion matrix of the classifier CF21 SNR= 15
dB, single-sensor scenario.

ATR
Truth single person group of people
single person 78.9 % 21.1 %
group of people 24.4 % 75.6 %

SNR is at −5 dB is given in Table III. This result suggests that
the proposed system can be applied in environment where low
SNR values may be presented, as an automotive environment.

The Accuracy obtained from the classifier CF21 and CF22 is
illustrated in Fig. 8. As it can be seen when the classifier CF21
is applied the Accuracy moves from 0.75 to 0.77. Additionally,
the Accuracy obtained from the classifier CF22 moves from
0.6 to 0.7. Comparing these two Accuracy’s, we can see that
the activity of the human classes is better classified than the
dog activity.
For a better understating of these results the confusion matrices
considering the human classes, classifier CF21, when SNR is
set at -5 dB and 15 dB, are given in Table III and Table IV,
respectively. Under closer inspection, it can be seen that for
high SNR values a person and group of people are detected
only the 78.9% and 75.06% of the times, respectively. Ad-
ditionally, the confusion mateices obtained from the classifier
CF22 when SNR is at -5 dB and 15 dB, are given in Table V
and Table VI. When SNR is set at −5 dB the missclassification
of the dog trotting and dog walking are 0.4 and 0.38, while
when SNR moves from −5 dB to 15 dB the missclaffication
decreased by 0.293 and 0.1, respectively. In this section it has
been shown that the first classifier is capability to distinguish
between the three main classes, and the performance does
not depend highly on SNR. Additionally, when second stage
classifiers are used to discriminate sub-classes of the main
class, high values of missclafficiation are obtained.

Figure 7: Accuracy obtained from the first classifier, for
different SNR values, considering a single-sensor scenario.



Figure 8: Accuracy obtained from the classifier CF21 and
CF22 for different SNR values, considering a single-sensor
scenario.
Table V: Confusion matrix of the classifier CF22 SNR=-5 dB,
single-sensor scenario.

ATR
Truth dog walking dog trotting
dog walking 61.2 % 38.8%
dog trotting 40.43 % 59.57 %

Table VI: Confusion matrix of the classifier CF22 SNR=15
dB, single-sensor scenario.

ATR
Truth dog walking dog trotting
dog walking 71.02 % 28.98 %
dog trotting 69.7 % 30.3 %

IV. CLASSIFICATION PERFORMANCE CONSIDERING A
MULTI-SENSOR SCENARIO

In an automotive environment where more than one user
shares the same channel at the same time, low values of
SNR might be experienced. As discussed in Section III, in
a single-sensor scenario, the system might not be adequate to
distinguish between the behaviour of the same target. In order
to improve the classification performance each user could use
a joint radar communication system, as the one proposed in
[4], to share its feature vector with other users. In this section,
the performance is evaluated when three sensors are present.
The feature vector is extracted as described in Section II.
The number of uncorrelated elements M is chose such that
the sum of the percentage of the total variance explained
by each principal component is more than 75 % [15]. The
Krawthchouk moments and the kNN classifier parameters are
the ones used in Section III. The performance is evaluated over
500 Monte Carlo runs for each value of SNR. Moreover, for
each iteration, the observations obtained from the three users

Table VII: Confusion matrix of the classifier CF1 SNR=−5
dB, multiple-sensor scenario.

ATR
Truth human dog cyclist
human 99.94 % 0 % 0.06
dog 0 % 100 % 0
cyclist 0.07 % 0 % 99.93

Figure 9: Accuracy obtained from the classifiers CF21 and
CF22 for different SNR values, considering a multi-sensor
scenario.

are fused in a random manner. At this point, for each iteration,
the 60% of the observations are used for the training while the
40 % for the testing. Furthermore, in each iteration, the PCA is
applied on the training data and then transformation is applied
on the test data.

The Accuracy obtained from the classifier CF1 for each
SNR values is 0.99. An example of the confusion matrix
when SNR is at −5 dB is given in Table VII. Comparing the
Accuracy obtained considering a single-user (Section III) with
multiple-user scenarios, it can be seen that when SNR is at
−5 dB the Accuracy is increased by 0.039, while when SNR
is at 15 dB the increased is by 0.029.

The Accuracy obtained from the classifiers CF21 and CF22
is illustrated in Fig. 9. In this scenario, the Accuracy obtained
form the CF21 moves from 0.78 to 0.82, while those obtained
considering the classifier CF22 moves from to 0.78 0.85.
Consequently both classifiers CF21 and CF22 are capability
to discriminate the activity of the main class.
Comparing the results obtained considering a single-sensor
with the multi-sensor analysis, we can see that when three
users share their feature vectors the system is capable to
distinguish sub-classes of classes even in environment with
low SNR values.

V. CONCLUSION

In this paper a novel micro-Doppler based road targets
recognition scheme was proposed using joint radar and com-
munication operation to enable co-operative multi-static obser-
vations. The performance has been evaluated in both single-
sensor and multi-sensor scenarios. In a single-sensor scenario,
the classification is based on the micro-Doppler obtained by a
single user, while in multi-sensor scenario each user shares its
information with other users and the feature vector are focused
applying the PCA. The results demonstrated that in automotive
environment, the target recognition based on a co-operative
multi-sensor are significantly better than the single-sensor.
Future analysis include micro-Doppler signature extraction in
multi-static radar scenarios, and experimental validation of the
proposed system.
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