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Abstract: An essential part of mathematical modeling is the accurate and reliable estimation
of the model parameters. In biology, the required parameters are particularly difficult to
measure because of either shortcomings of the measurement technology or a lack of direct
measurements. In both cases, parameters must be estimated from indirect measurements, usually
in the form of time-series data. Here, we present a novel approach for parameter estimation
that is particularly tailored to biological models consisting of nonlinear ordinary differential
equations. By assuming specific types of nonlinearities common in biology, such as generalized
mass action, Hill kinetics and products thereof, we can take a three step approach: (1) transform
the identification into an observer problem using a suitable model extension that decouples the
estimation of non-measured states from the parameters; (2) reconstruct all extended states
using nonlinear observers; (3) estimate the parameters using the reconstructed states. The
actual estimation of the parameters is based on the intrinsic dependencies of the extended
states arising from the definitions of the extended variables, and solved via least squares
approximation. An important advantage of the proposed method is that it allows us to identify
suitable measurements and/or model structures for which the parameters can be estimated. In
addition, the proposed identification approach is generally applicable to models of metabolic
networks, signal transduction and gene regulation.

Keywords: parameter estimation, parameter identification, biological systems, biochemical
systems, high-gain observers, reduced-order observers, observer Lyapunov function.

1. INTRODUCTION

In order to understand the dynamics and function of
biomolecular networks, such as metabolic pathways, signal
transduction and gene regulation, mathematical modeling
presents an appropriate tool. These models depend cru-
cially on kinetic parameters, whose accurate and reliable
estimation still presents a bottleneck. However, recent ad-
vances in measurement technologies makes their indirect
interference from time series data more and more feasible
[Anguelova et al., 2007, Voit and Almeida, 2004].

The dynamics of cell biological processes are often modeled
with reaction kinetic systems composed of ordinary differ-
ential equations. Thereby, the reaction rates r as well as
the measurements y are represented by nonlinear functions
that depend on the species concentrations c and kinetic
parameters ρ

dc

dt
= Nr(c, ρ), c(0) = c0 ∈ R

nc

+ , y = h(c, ρ) ∈ R
p (1)

where N ∈ R
nc×nr denotes the stoichiometric matrix and

c0 the initial condition for t = 0. The solution of this
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equation given a certain initial condition c0 and parameter
ρ is called the trajectory of the system c(t, c0, ρ). From
a mathematical perspective, measurements taken in an
experiment somehow reflects such trajectories, and param-
eter estimation seeks for parameters that represent the
data best based on some optimality criterion. A natural
criterion, also used here, is to minimize the error between
measured and simulated output y − h(x(t, x0, ρ)). Note
that we assume continuous measurement of the output,
which can for instance be achieved by interpolation of
time-course measurements obtained with sufficiently large
resolution.

Often Monte-Carlo based methods, evolutionary strate-
gies or other heuristic methods are utilized. These global
methods can not guarantee to find the optimal solution,
are computationally expensive and require a multitude of
simulation runs that in turn depend on the parameters
[Moles et al., 2003]. A method that tries to minimize
problematic effects arising from this circular parameter
dependence is for example multiple shooting [Peifer and
Timmer, 2007]. Despite undoubtedly usefulness, multiple
shooting methods do however not resolve the circular
dependency. Further, heuristic methods do not allow to
address the question of identifiability, which asks whether



the parameters are theoretically obtainable under the as-
sumptions of noise free measurements and error free model
[Audoly et al., 2001]. The optimum is to choose a model
structure and set of measurements for which all parameters
are identifiable.

Here we present an approach to resolve the circular pa-
rameter dependency within the estimation process for ki-
netics composed of products of generalized mass action
and Hill terms. A suitable model extension eliminates
the kinetic parameters in the system and establishes a
one-to-one correspondence between parameters and states.
This decouples the parameter and the state estimation,
and further, allows us to address identifiability in terms
of observability. The present manuscript is organized as
follows. First some results in the field of observability are
given. Second, we present the model extension together
with the state and parameter estimation methods. In order
to provide a proof of concept, we test the method on a
model of the circadian rhythm in neurospora.

2. PRELIMINARIES

Before discussing observability and observers, it is useful to
outline some important results in that field. For a detailed
discussion of nonlinear observability considering multiple
outputs we refer to Birk and Zeitz [1988].

Consider the dynamical system with output y

ẋ = f(x), x(0) = x0 ∈ R
n, y = h(x) ∈ R

p. (2)

The observability space consists of the outputs and Lie-
derivatives thereof

O = {h1(x), Lfh1(x), Lf2h1(x), . . . ,

hp(x),Lfhp(x), Lf2hp(x), . . .}.

Note that on a trajectory x(t) Lie derivatives and time

derivatives are equivalent dy
dt

= Lfh(x(t)) = ∂hi

∂x
f(x(t)).

The observability map q : R
n 7→ Hn ⊆ O is a selection of

n functions in that space

q(x) =











q1(x)
q2(x)

...
qp(x)











, qi(x) =













L0
fhi(x)

L1
fhi(x)

...
Lni−1

f hi(x)













,

p
∑

i=1

ni = n.

(3)

If q is smooth and has a continuous inverse (=̂ semi-
diffeomorphism) it can be used to transform the system
(2) with z = q(x) into observer normal form

ż = f̄(z), z(0) = q(x0), y = C̄z, (4)

with

f̄(z) =































z2

...
φn1

(z)
zn1+2

...
zn1+...+np−1+2

...
φnp

(z)































, C̄ =
∂

∂z











z1

zn1+1

...
zn1+...+np−1+1











,

which is structured into p modules consisting of integrator
chains summarizing the nonlinearity in φi(z)

zn1+...+ni−1+1 = yi, żj = zj+1, żni
= φi(z).

To check whether an observer exists, the system is ana-
lyzed for observability :

Definition 1. System (2) is locally observable iff the ob-
servability matrix Q = ∂

∂x
q has full rank. It is called

observable in a region R ⊂ R
n iff it is locally observable

for all x ∈ R.

For observer design, often Lipschitz continuity of f̄ is
postulated, since it guarantees uniqueness of solutions of
(4) given a certain initial condition. This can be relaxed,
using the following definition.

Definition 2. System (2) is trajectory observable iff q is
a semi-diffeomorphism and (4) exhibits only one solution
that generates the same output as (2) [Vargas and Moreno,
2005].

3. METHODS

Generally, the reaction rates in (1) may consist of any
nonlinear function. For most biological models however,
the kinetics possess a particular form.

Assumption 3. The reaction rates can be written as

ri = r̂i

nc
∏

j=1

c
νi,j

j

K
ηi,j

i,j + c
ηi,j

j

, (5)

where the parameters are the nominal reaction rates r̂i ∈
R+ and the Hill-constants Ki,j ∈ R+, which describe a
regulatory influence of species j on reaction i.

Remark 4. The orders of the reactions νi,j and the Hill
exponents ηi,j are assumed to be known a priori, and are
therefore not considered as parameters.

Remark 5. The description comprises zero order (constant
reaction rates, i.e. νi,j = ηi,j = 0), mass-action kinetics
(νi,j ∈ N0 and ηi,j = 0), generalized mass-action (νi,j ∈
R0,+ and ηi,j = 0), Michelis-Menten (νi,j = ηi,j = 1) as
well as activating (νi,j = ηi,j ∈ R0,+) and inhibitory Hill
kinetics (νi,j = 0, ηi,j ∈ R0,+).

Restricting the nonlinearity in the reaction rates as above
allows us to reformulate (1) into a more suitable form for
addressing the identification problem. By introducing new
ordinary differential equations for the reaction rates ri and
their denominators mi,j = K

ηi,j

i,j + c
ηi,j

j , we eliminate the
dependency of the system on the parameters. These are
now hidden in the initial conditions, and can be obtained
by either identifying the correct initial conditions or ap-
plying a regression scheme on the extended variables. For
the latter case a analytical solution minimizing the least
squares criterion can be stated regardless of particular
system under consideration. Thus, the problem of param-
eter estimation is transformed into a problem of state
estimation, whereupon appropriate non-linear observers
can be used.

The proposed approach can be structured into the follow-
ing three steps:

(1) Transform the model into its extended form.
(2) Estimate all (non-measured) states using an appro-

priate (nonlinear) observer.



(3) Infer the parameters from these state estimates
through regression.

In the following, details concerning each one of these steps
are presented.

3.1 Model extension

A crucial part of the proposed method is to reformulate the
system in a parameter independent form by introducing
new state variables.

Assumption 6. The concentrations ci and the parameters
r̂i and Ki,j are strictly positive.

Assumption 7. Measurements consist of linear combina-
tions of species concentrations and/or reaction rates.

Remark 8. In the context of intracellular signaling and
gene regulation, measurements usually concern protein
and mRNA levels, i.e species concentrations. In contrast,
measurements for metabolic systems commonly concern
fluxes, i.e. reaction rates [Costenoble et al., 2007].

Definition 9. The Hill variable is defined as

mi,j = K
ηi,j

i,j + c
ηi,j

j (6)

Theorem 10. Under Assumption 6 and 7 the reaction
kinetic model (1) and (5) is equivalent to the parameter
independent system

d

dt
ci =

nr
∑

k=1

Ni,krk,

d

dt
mi,j = ηi,jc

ηi,j−1
j

nr
∑

k=1

Nj,krk, (7)

d

dt
ri = ri

nc
∑

j=1

(

(

νi,j

1

cj

−
ηi,jc

ηi,j−1
j

mi,j

)

nr
∑

k=1

Nj,krk

)

.

Proof. Hill variables: The dynamic description of m is
obtained by differentiation along the trajectory of (1)

d

dt
mi,j = ηi,jc

ηi,j−1
j ċj .

Reaction rates: We multiply both sides of (5) with the
denominator and take the logarithm

∑nc

j=1
log (K

ηi,j

i,j + c
ηi,j

j ) + log (ri)

= log (r̂i) +
∑nc

j=1
νi,j log (cj).

Again taking the time derivative and using (6) yields
nc
∑

j=1

ṁi,j

mi,j

+
ṙi

ri

=

nc
∑

j=1

νi,j

ċj

cj

.

Rearranging yields the differential equations for the reac-
tion rates

ṙi = ri





nc
∑

j=1

νi,j

ċj

cj

−

nc
∑

j=1

ṁi,j

mi,j



 . 2

The great advantage of this description is that the right-
hand-side does not depend on the parameters r̂i and Ki,j

and that the output is linear (which follows directly from
Assumption 7). By defining x = [cT vec(m)T rT ]T (7) is
of the form

d

dt
x = f(x), x(0) ∈ M ⊂ R

n, y = C · x ∈ R
p.

The somewhat artificial introduction of additional states
induces dependencies within the trajectories of the ex-
tended model. From (1) follows that the trajectories move
on a manifold M of dimension ≤ nc, which is then,
through the model extension, embedded in a state-space
of dimension n > nc. In Section 3.3 we will make use of
the arising dependencies to infer the parameter values.

3.2 Observer design

For the reconstruction of all extended variables from time
course measurements yi, i = 1, . . . , p, a natural tool is
provided by nonlinear observers. Assume that the system
is trajectory observable and that we can transform it into
observability normal form with f̄(z) = (Q · f) ◦ q−1(z).

d

dt
z = f̄(z), z(0) = q(x0) ∈ Hn, y = C · z ∈ R

p. (8)

Definition 11. A high gain observer with the gain param-
eter θ ∈ R

+ in observer normal coordinates is of the form
d

dt
z̃ = f̄(z̃) + L(θ) · [y − Cz̃]. (9)

It consist of a simulation term f̄ (a copy of the system)
and a correction term L ∈ R

n×p that feedbacks the error
of measured y and estimated output ỹ = Cz̃ and depends
on a high gain-parameter θ.

Some observers involve a state dependent correction term
L(x), whose design requires extensive symbolic manipula-
tions that might not be feasible for large nonlinear systems
[Birk and Zeitz, 1988]. Here, for simplicity, the correction
term L is designed independently of the actual states of
the system taking a Lyapunov based approach [Gauthier
et al., 1992]. Global convergence can be guaranteed if f̄
is Lipschitz, whereby the Lipschitz constant can be inter-
preted as the maximal slope of f̄ according to which the
minimal observer gain has to be chosen. In the following,
we extend the method for systems with multiple outputs
yk, k = 1, ..., p.

The observer gain matrix L is obtained by solving for each
of the outputs yk the Lyapunov equations

0 = −θS∞,k − S∞,kAk − AT
k S∞,k + CT

k Ck,

where S∞,k ∈ R
k, Ak ∈ R

nk×nk with Ai,j = δi,j−1
1 ,

CT
k ∈ R

nk with Ck = δ1,k and nk denotes the highest
derivative of yk present in the observability map. The
matrix L ∈ R

n×n is then calculated with the block-
diagonal matrix of all inverse solutions

L = diag(S−1
∞,k) · CT , CT ∈ R

n×p, CT
j,k = δk,nk

.

Some additional calculation is necessary to obtain the
observed states in the original (physically meaningful)
coordinates. There are basically two possibilities:

(1) Transform the differential equations of the observer
back into original coordinates using the inverse of the
observability matrix d

dt
x̃ = Q−1 d

dt
z̃. Then the ob-

server is is a system of ordinary differential equations
(proof see Appendix)

d

dt
x̃ = f(x) + Q−1(x) · L · [y − h(x)]. (10)

1 Here δ denotes the Kronecker symbol with δi,j =

{

1 if i = j

0 if i 6= j
.



(2) Transform the observed trajectory back into original
coordinates. Then the observer consists of a dynamic
part in observability coordinates and an algebraic
part [Vargas and Moreno, 2005]

d

dt
z̃ = f̄(z̃) + L · [y − Cz̃], (11)

x̃ = q−1(z̃).

Remark 12. Calculation of the transformed system f̄ and
the inverse observability matrix q−1 involves symbolic ma-
nipulation and might often be infeasible for large nonlinear
systems. Considering that computational effort, the first
observer strategy might be advantageous, particularly in
the setting of a constant correction term L, where only the
inverse of the observability matrix Q−1 must be calculated.

A problem arises if local observability is lost somewhere
along the observed trajectory. However, under certain con-
ditions (q is globally injective with an uniformly continu-
ous inverse), (11) is a so called ǫ-approximate observer
(see Vargas and Moreno [2005] for a detailed discussion).
Clearly, observer (10) fails since Q−1 does not exist where
det(Q) = 0, but modifications are possible that result in
so called event based observers [Vargas et al., 2003].

Definition 13. An event of duration tEvent occurs if the
inversion of Q becomes ill conditioned during the observa-
tion process

tEvent = {t ∈ R :
∣

∣

∣

λmin

λmax

∣

∣

∣ < δ}

where λmin and λmax are the absolute smallest and largest
eigenvalue of Q(x(t, x0)) respectively, and δ is some pre-
defined value δ > 0.

During an event, the determinant of Q is close to zero,
the inversion of Q is numerically ill-conditioned and the
correction term in (10) becomes very large. To resolve this
issue, Vargas et al. [2003] proposed to switch the correction
term Q−1(x)L in (10) to zero.

Proposition 14. [Vargas et al., 2003] For a trajectory ob-
servable system, the event based observer with sufficiently
high gain θ

d

dt
z̃ = f(z̃) + Qinv(z̃)L(θ)(y − h(z̃)), (12)

whereby

Qinv =















Q−1 if
∣

∣

∣

λmin

λmax

∣

∣

∣ ≥ δ,

Q∼1 if
∣

∣

∣

λmin

λmax

∣

∣

∣ < δ.
,

exhibits a limited error x − x̂ if
∑

tEvent,i << tend − t0.

Remark 15. For the example in Section 4 the above ob-
server failed. Once trapped in an event, the system re-
mained there due to the switch-off of the correction term.

3.3 Inferring the parameters

If all the extended states are known, for instance by apply-
ing one of the above discussed observers, the parameters
can be estimated by means of a least-squares fit.

Definition 16. The estimation errors are defined as

ǫmi,j
(t) = mi,j(t) − (K

ηi,j

i,j + cj(t)
ηi,j )

ǫri
(t) = ri(t) − r̂i

nc
∏

j=1

cj(t)
νi,j

mi,j(t)η̄i,j
.

Definition 17. The least squares cost functions are

Θmi,j
=

nt
∑

k=1

(ǫmi,j
(tk))2, Θri

=

nt
∑

k=1

(ǫri
(tk))2. (13)

Theorem 18. An optimal estimate for the parameters min-
imizing the cost functions (13) is

Ki,j =
1

nt

∑nt

k=1
(mi,j(tk) − cj(tk)), (14)

r̂i =

∑nt

k=1 ri(tk)χ(k)
∑nt

k=1 χ(k)
, χ(k) =

nc
∏

j=1

cj(tk)νi,j

mi,j(tk)η̄i,j
. (15)

Proof. We start with the sum of squared errors of the
reaction rates

Φr =
1

nt

∑nt

k=1

(

ri(tk) − r̂i

∏nc

j=1

cj(tk)νi,j

mi,j(tk)η̄i,j

)

2

.

For the sake of simplicity , set χ(tk) =
∏nc

j=1
cj(tk)νi,j

mi,j(tk)η̄i,j
,

and expand the square

Φr =
1

nt

∑nt

k=1

(

ri(tk)2 − 2r̂i(tk)riχ(tk) + r̂2
i χ(tk)2

)

.

Then the minimum is obtained by setting the partial
derivative ∂Φr

∂r̂i
equal to zero

0 =
1

nt

∑nt

k=1
−2ri(tk)χ(tk) + 2r̂iχ(tk)2

= r̂i

2

nt

∑nt

k=1
χ(tk)2 −

2

nt

∑nt

k=1
ri(tk)χ(tk).

Simple manipulation solves this for r̂i, resulting in (15).

A similar procedure for the sum of squares error of the Hill
variables resulting in (14) is

1

nt

∑nt

k

(

mi,j(tk) −
(

K
ηi,j

i,j + cj(tk)ηi,j
)

)2

=

1

nt

∑nt

k

(

mi,j(tk)2 − 2mi,j(tk)
(

K
ηi,j

i,j − cj(tk)ηi,j
)

+
(

K
ηi,j

i,j + cj(tk)ηi,j
)2

)

!
= min.

Now we set the partial derivative to zero and solve for Ki,j

⇒
1

nt

∑nt

k

(

−2mi,j(tk) + 2(K
ηi,j

i,j + cj(tk)ηi,j )
)

= 0

⇔ K
ηi,j

i,j +
∑nt

k

(

−mi,j(tk) + cj(tk)ηi,j
)

= 0

⇔ K
ηi,j

i,j =
∑nt

k

(

mi,j(tk) − cj(tk)ηi,j
)

. 2

4. EXAMPLE

In order to provide a proof of concept for our approach, it
is tested on the circadian clock of neuropsora modeled by
a nonlinear feedback loop in the gene expression of the so
called frequency protein (FRQ) [Leloup et al., 1999]



Outputs & derivatives used
M Fc Fn r1 r2 r2′ r3 r4 r5 rank(Q)

0 1 2 - - - 1 1 1 12
0 2 1 - - - 1 1 1 12
1 0 2 - - - 1 1 1 11
2 1 0 - - - 1 1 1 10
1 1 1 - - - 1 0 2 10
1 1 1 - - - 2 0 1 11
3 3 3 - - - - - - 11
4 2 3 - - - - - - 11
4 3 2 - - - - - - 12

Table 1. Selection of the observability analysis
of the neurospora model, each row corresponds
to one particular construction of q with the
entries being the ni −1 in Equation 3. Observ-
ability is given if Q = dq

dx
has full rank = 12.

Ṁ = r3 − r5 r1 = ksM r3 = vs

K4
1

K4
1 + F 4

n

Ḟc = r1 − r4 − r2 + r2′ r2 = k1Fc r4 = vd

Fc

Kd + Fc

Ḟn = r2 − r2′ r2′ = k2Fn r5 = vm

M

KM + M
,

where M denotes the concentration of FRQ mRNA, Fc

and Fn the concentration of FRQ protein in the cytosol
and nucleus respectively, r1 denotes the rate of translation,
r2 and r2′ of transport in and out the nucleus, r3 of
transcription, r4 and r5 of degradation.

The extended system is

d

dt





































M
Fc

Fn

m1

m2

m3

r1

r2

r2′

r3

r4

r5





































=







































r3 − r5

r1 − r2 + r2′ − r4

r2 − r2′

2 Fn (r2 − r2′)
r1 − r2 + r2′ − r4

r3 − r5

r1 (r3 − r5) /M
r2 (r1 − r2 + r2′ − r4) /Fc

r2′ (r2 − r2′) /Fn

−2 r3 Fn (r2 − r2′) /m1

r4 (r1 − r2 + r2′ − r4)
(

1/Fc − 1/m2

)

r5 (r3 − r5)
(

1/M − 1/m3

)







































.

For simplicity of the design, we assume in the following
that the species concentrations as well as the transcription
and degradation rates are measured [Shu and Hong-Hui,
2004]. (Note however, that the system is also observable if
only the concentrations are measured y = [M Fc Fn].)

y =
[

M Fc Fn r3 r4 r5

]T
.

We explored different constructions of q, i.e. different
combinations of chosen output derivatives, to analyze
observability (Table 1). Thereby it is advisable to limit the
oder of that derivatives for two reasons. First, to keep the
observer design simple, and second to minimize numerical
errors. An invertible Q = ∂

∂x
q ∈ R

n×n is for example
obtained using (Table 1 row 1)

q =
[

M Fc Ḟc Fn Ḟn F̈n r3 ṙ3 r3 ṙ4 r5 ṙ5

]T

.

However, there are singular points. Looking at the deter-
minant tells us that local observability is lost if

r2 = r2′ ∨ r3 = r5 ∨ r1 + r2′ = r2 + r4 ∨

Fc(r2 − r2′) = Fn(r1 + r2′ − r2 − r4),

and q−1 is non-Lipschitz (see Appendix), but continuous
under the image of q since q ◦ q−1 = id.

Both observer structures, (10) and (11), were imple-
mented. The limit for the condition number of Observer
(10) is chosen to δ = 10−4.

In a simulation study with the originally published pa-
rameters and the corresponding initial conditions for the
extended system, the observers are initialized with x̃i(0) =
2xi(0) for all non-measured variables i = 4, . . . , 9. For
the given initial condition, the event based observer fails
(Figure 1a), whereas the ǫ-approximative observer (15)
converges (Figure 1b). There are periods where observer
error increases due to the reduced observability properties
of the system (Figure 1.3). Calculation of the parameters
using the state estimates of (15) for t > 10 h to ensure
convergence of the observer, does not exhibit errors > 0.5%
(Table 4), proving the applicability of the method. Note
that biological measurements usually exhibit errors about
one order of magnitude larger or worse.

5. CONCLUSIONS

This paper proposes a novel method for kinetic parameter
estimation that is particularly tailored to biological mod-
els consisting of ordinary differential equations. Basically,
the potential of the presented method lies in the model
extension, which establishes a one-to-one correspondence
between parameters and states. Therewith, the main task
of the method becomes to reconstruct the extended tra-
jectory from the measurements. Here, we used Lyapunov
based observers, however, since biological data is usually
discrete and noisy, other techniques might be useful, such
as Kalman filters or hybrid observers composed of a con-
tinuous simulation part f(x) updated at discrete time-
stamps. The inherent dependencies of the observed trajec-
tory given by the definition of the extended states allows us
to solve a least squares criterion for the parameters. Note
that estimation of the parameters could in principle also
be achieved by identifying the true initial conditions of the
observer, which is however a hard problem. In addition, the
benefits that might arise from the extended system being
parameter independent are not yet fully explored.
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Fig. 1. (1) - (2) The real (solid) and estimated (dotted) trajectories of the non measured states for (a) the event based
observer (10) and (b) the ǫ-approximative observer (11) with gain parameter θ=1. (3) The sum of squares error of
the observers

∑n
j (xj,est − xj,real)

2. The red lines indicate where events occur on the observed trajectory. The inlay
shows a magnification for t > 10h.
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Appendix A. (BACK-)TRANSFORMATION FROM
THE OBSERVER INTO ORIGINAL COORDINATES

Consider a continuous observer in observer normal form
[Birk and Zeitz, 1988]

d

dt
z̃ = f̄(z̃) + L(y − ỹ),

with a constant gain matrix L. We transform back into
original coordinates by differentiating x̃ = q−1(z̃).

d

dt
x̃ =

dq

dz̃

dz̃

dt
=

[

Q−1(z̃)g(z̃) + Q−1(z̃)L(y − ỹ)
]

z̃=q(x̃)
.

Remind that f = Q−1g ◦ q, wherewith follows

d

dt
x̃ = f(x̃) + Q−1(x̃)L(y − ỹ).

Appendix B. INVERSE OBSERVABILITY MAP OF
THE NEUROPORA MODEL

q−1 =
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