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Centro de Matemática Aplicações Fundamentais e Investigação Operacional

Faculdade de Ciências, Universidade de Lisboa

Campo Grande, Edificio C6, piso 2

1749-016, Lisboa, Portugal

e-mail: amargheri@fc.ul.pt

Carlota Rebelo†
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Abstract

This paper is concerned with the analysis of phase 3 vaccine trials.
In a randomised controlled trial, a representative sample of a popula-
tion is given a vaccine and a matched sample is given a placebo. These
individuals are followed for a stipulated length of time, while infection
(or disease) occurrences are registered. Vaccine efficacy is then calcu-
lated to measure the reduction in disease rate (or risk) attributed to
the vaccine. Seemingly very reasonable, this procedure often results
in the most disparate estimates when conducted in different parts of
the world. Here we argue that this is due to cohort selection acting
on the trial participants as follows. The more susceptible individu-
als are infected first, leaving behind a pool whose mean susceptibility
decreases over time. As a result infection rates decrease, and this
effect is stronger in the control group provided that the vaccine re-
duces susceptibility. Therefore, any direct measure of vaccine efficacy
is expected to decrease as the trial progresses, and this happens faster
in settings where the intensity of pathogen exposure is higher. We
propose an analytical scheme that takes this phenomenon into account
while estimating efficacy more consistently across settings. We provide
analytical results concerning the dependence of vaccine efficacy on the
intensity of pathogen exposure as well as on the mean and variance of
the distribution of disease risk.

1 Introduction

Vaccine development is a lengthy process, lasting in the order of 10-15 years.
Typically it includes an initial stage, of basic laboratory research and pre-
clinical animal studies, to identify formulations with the ability to elicit an
effective immune response. Some products are then approved to proceed
to clinical studies in human subjects. A series of vaccine trials of increas-
ing scale is then performed: phase 1 trials involve 20-80 subjects to assess
whether the vaccine is safe in humans and what immune response it evokes;
phase 2 trials involve several hundred individuals to assess the efficacy of the
vaccine against artificial infection and clinical disease; phase 3 trials involve
thousands of subjects across several sites to evaluate efficacy under natural
disease condition.

Phase 3 trials are essentially conducted according to randomised con-
trolled designs, whereby a representative sample of a population receives
a vaccine and a matched sample is given a placebo, in a highly regulated
manner. These individuals are followed for a stipulated length of time, while
infection (or disease) occurrences are registered. Vaccine efficacy is then cal-
culated to measure the reduction in disease rate (or risk) attributed to the
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vaccine [4, 13]. This often results in a disparity of results when trials are
conducted in different settings [5,6,11], with a consistent tendency for lower
vaccine protection in regions where the intensity of transmission is higher.
Here we examine the mathematical basis for such trend.

We argue that this is due to a selection process acting on the cohort of
trial participants as follows. The more susceptible individuals are infected
first, leaving behind a pool whose mean susceptibility decreases with time.
As a result infection rates decrease over time, and this effect is stronger in the
control group provided that the vaccine reduces susceptibility. Therefore,
any measure of vaccine efficacy is expected to decrease as the trial progresses,
unless heterogeneity is accounted for, and this happens faster in settings
where exposure to the pathogen is higher.

The paper is organised as follows. Section 2 introduces a minimal model
to provide context to current vaccine trial procedures. Section 3 shows the
model’s inadequacy to consistently fit efficacy estimates for vaccines against
tuberculosis (BCG) and malaria (RTS,S), as measured in different parts
of the world. We reason that the discrepancies may be due to individual
heterogeneity in disease risk and, in Section 4, reformulate the model to
consider that disease risk follows a gamma distribution. Efficacy curves
generated numerically with the new model show a tendency for decreasing
vaccine protection with increasing intensity of exposure. In Section 5, we
propose an alternative measure of vaccine efficacy, which might work more
consistently across settings.

For simplicity, we assume that infection coincides with disease and use
the two terms interchangeably. Analogously, we use non-infected and healthy
interchangeably to refer to individuals who are free of the disease under
study. Besides being in the interest of simplicity, this convention also helps
convey that the results presented here are not specific to infectious diseases,
but are more generally applicable to any response to a stimulus that can be
exerted in different intensities.

2 Minimal model for a vaccine trial

Any analysis of a vaccine trial must compare some measure of disease oc-
currence in two groups of the population that are differentiated by whether
or not they have received the vaccine, here named the vaccine group and the
control group. To model disease occurrences in the context of a trial it is
reasonable to assume that the intensity of exposure remains constant given
that the vaccine group represents only a small fraction of the population
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and, therefore, eventual reductions in this group do not significantly affect
the prevalence of infection overall. A minimal model for the control group
can then be formalised by a system of linear differential equations as

dSc

dt
= −λSc + γ(1− Sc), (1)

dIc
dt

= λSc, (2)

where λ is the per capita disease rate, also termed force of infection, which
applies to healthy individuals (proportion Sc of the control group), and γ is
the rate of recovery, which applies to those who have the disease (proportion
1 − Sc of the control group), and time is measured in years. Note that Ic
is not the proportion of the population who has the disease at any given
time (as typical in mathematical epidemiology textbooks [1]) but rather the
cumulative number of disease occurrences per person, in this case belonging
to the control group. The model for the vaccine group is analogously written
as

dSv

dt
= −σλSv + γ(1− Sv), (3)

dIv
dt

= σλSv, (4)

where σ is the reduction factor applied to the per capita disease rate due
to vaccination, Sv represents the healthy proportion of the vaccine group
and Iv the cumulative number of disease occurrences per person, in the
vaccine group. Note that making the recovery rate equal to zero (γ =
0) may be representative of an infectious disease which is either a long-
lasting condition or induces long-lasting immunity, or a study design where
individuals are permanently removed from the trial once they acquire the
disease. Conversely, γ > 0 represents a scenario where individuals regain
their susceptibility and are placed back in the trial upon recovery.

The equations for the rates of change in control individuals (1,2), and
their vaccine group analogues (3,4), can be solved analytically. Given that all
individuals are non-infected at the beginning of the trial (Sc(0) = Sv(0) = 1
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and Ic(0) = Iv(0) = 0 ), we have

Sc(t) =
γ

λ+ γ
+

λ

λ+ γ
e−(λ+γ)t, (5)

Ic(t) =
λγ

λ+ γ
t+

λ2

(λ+ γ)2

[

1− e−(λ+γ)t
]

, (6)

Sv(t) =
γ

σλ+ γ
+

σλ

σλ+ γ
e−(σλ+γ)t, (7)

Iv(t) =
σλγ

σλ+ γ
t+

(σλ)2

(σλ+ γ)2

[

1− e−(σλ+γ)t
]

. (8)

In practice, as the trial is conducted, researchers record events of disease
acquisition and recovery. This information is then used to calculate the
disease rate, also called disease incidence, defined as the number of cases
per person-years at risk. In terms of our models, the instantaneous rates
are expressed as

rc(t) = λ, (9)

rv(t) = σλ, (10)

in this case constant in time, as previous noted by Smith et al [13] and further
by Halloran et al [4]. Vaccine efficacy is then calculated as the proportional
reduction in incidence due to vaccination, this is

V E1 =
rc − rv

rc
= 1−

rv

rc
= 1− σ, (11)

which is independent of baseline disease rate, λ. Alternatively, another
measure commonly used in clinical trials is the disease risk, which reports the
cumulative number of disease occurrences per person at risk. Considering a
trial of duration T , this gives

V E2 = 1−
Iv(T )

Ic(T )
, (12)

which appears to be a decreasing function of λ due to depletion of suscep-
tibles, occuring faster in the control group than in those vaccinated given
that vaccine reduces susceptibility somewhat (Figure 1A,B).

Figure 1 illustrates the two formulations of vaccine efficacy. The rate-
based measure V E1 is, as expected, constant over λ (Figure 1B, horizontal
dotted line in black), and independent of the recovery rate γ. The risk-
based measure V E2 decreases with λ with a slope that is attenuated by γ

5



(Figure 1B, γ = 0 in blue and γ = 12 in red). Figure 1A shows cumulative
disease occurrences per 100 persons in a trial of one-year duration (blue
and red refer to γ as before, while solid and dash-dotted curves correspond
to control and vaccine groups, Ic and Iv, respectively). The black lines in
Figure 1A are shown to indicate what the cumulative disease occurrences
would have been had the susceptible pool not been subject to depletion by
the disease. Equivalently, the black lines coincide with the disease rates, in
this case per 100 person-years.
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Figure 1: Two formulations of vaccine efficacy. A, Coloured curves represent
cumulative disease occurrences per 100 persons in a trial of one-year duration
(solid and dash-dotted curves correspond to control and vaccine groups, Ic
and Iv, respectively). Black lines indicate disease rates. B, Rate-based V E1

in black, and risk-based V E2 in colour. Blue and red refer to γ = 0 and
γ = 12, respectively.
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3 Data from randomised clinical trials

We have extracted, from the literature, vaccine efficacy estimates on tuber-
culosis (Table 1) and malaria (Table 2). Table 1 shows data on neonatal
vaccination with the Bacille Calmette-Guérin (BCG) vaccine against pul-
monary tuberculosis (5 studies from a systematic literature review [6]), and
Table 2 lists data on the RTS,S vaccine against clinical malaria (11 sites from
a multi-center clinical trial [11]). Both datasets are structured by study site
and plotted in Figure 2.

The dotted lines in Figure 2 represent 1−σ, according to the rate-based
measure V E1, which here we set at the level of the highest efficacy estimate
as a first approximation. As changing parameter σ basically moves these
horizontal lines up and down, it is evident that this cannot consistently fit
the data.

The dashed lines represent the risk-based measures V E2, for γ = 0 in
the case of tuberculosis and γ = 12 in the case of malaria. Although these
show a downward trend as in the trial measurements, it appears so shallow
that the slope is hardly detectable when plotted in a scale comparable with
the data.

Although both V E1 and V E2 are approximations for the vaccine efficacy,
in theory one is always more appropriate than the other depending on the
vaccine mode of action or study design [13]. In the particular datasets used
here, V E1 should be more adequate since both studies are based on rate-
based measures of disease. In any case, the two measures perform very
similarly when confronted with the data.

Since neither of these simple measures is able to fit the data at the global
scale, the topic of variable vaccine efficacy continues to motivate field studies
to seek explanations for the observed discrepancies. Such projects tend to
be very large and expensive, and are almost invariably based on a biological
rationale for the immunological response to the vaccine to be higher in some
populations than in others. Here we show, mathematically, that this is not
necessarily the case. Central to our argument is that individual heterogene-
ity is present in every setting and the mean field approximations described
above are poor representations of what is actually being measured in the
field. Moreover, we argue that randomised study designs, considered the
gold standard for clinical trials, deliberately selected heterogeneous groups
promoting the discrepancies under discussion.
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Table 1: BCG vaccine protection against pulmonary tuberculosis [11].
Site, Country Incidence Vaccine efficacy

(per 100 person-years) % (95% CI)
Saskatchewan, Canada 0.7 80 (31, 94)
Chicago (hospital), USA 0.3 66 (40, 81)
Chicago (households), USA 0.8 72 (-2, 92)
Turtle and Rosebud, USA 1.0 60 (-25, 87)
Bombay, India 3.8 38 (-7, 65)
Overall — 59 (42, 71)

Table 2: RTS,S vaccine protection against clinical malaria [6].
Site, Country Incidence Vaccine efficacy

(per 100 person-years) % (95% CI)
Kilifi, Kenya 10.4 66.0 (37.5, 81.5)
Korogwe, Tanzania 5.9 52.0 (26.2, 68.8)
Manhiça, Mozambique 8.5 33.3 (7.1, 52.1)
Lambaréné, Gabon 17.7 36.1 (10.8, 54.1)
Bagamoyo, Tanzania 13.2 37.5 (13.5, 54.9)
Lilongwe, Malawi 16.6 33.5 (8.2, 51.8)
Agogo, Ghana 85.8 31.1 (13.3, 45.2)
Kombewa, Kenya 48.4 27.1 (12.9, 38.9)
Kintampo, Ghana 66.4 25.9 (15.0, 35.4)
Niamoro, Burkina Faso 120.7 17.7 (7.0, 27.2)
Siaya, Kenya 139.0 20.2 (7.4, 31.3)
Overall — 28.2 (23.3, 32.9)

4 Introducing heterogeneity in disease risk

Individual heterogeneity in disease risk can be due to biological factors in-
trinsic to each individual, such as susceptibility to infection [7] in the case
of infectious diseases, or to extrinsic factors affecting exposure to the infec-
tious agent, such as contact dynamics [8]. In reality, many factors (intrinsic
and extrinsic) combine to determine the risk distribution, q(x), a proba-
bility density function describing individual risks. In this setting, q(x) dx
approximates the fraction of the population of type x.

The model for the control group in a heterogeneous population is then
written as an infinite system of linear differential equations

dSc

dt
(x) = −λxSc(x) + γ(q(x)− Sc(x)), (13)

dIc
dt

(x) = λxSc(x), (14)
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Figure 2: Vaccine efficacy data from randomised controlled trials. A, Tu-
berculosis [6]. B, Malaria [11]. Dotted and dashed lines represent V E1 and
V E2, respectively.

and, analogously, for the vaccine group we have

dSv

dt
(x) = −σλxSv(x) + γ(q(x)− Sv(x)), (15)

dIv
dt

(x) = σλxSv(x). (16)

The model solutions become

Sc(x, t) =
γq(x)

λx+ γ
+

λxq(x)

λx+ γ
e−(λx+γ)t, (17)

Ic(x, t) =
λxγq(x)

λx+ γ
t+

(λx)2q(x)

(λx+ γ)2

[

1− e−(λx+γ)t
]

, (18)

Sv(x, t) =
γq(x)

σλx+ γ
+

σλxq(x)

σλx+ γ
e−(σλx+γ)t, (19)

Iv(x, t) =
σλxγq(x)

σλx+ γ
t+

(σλx)2q(x)

(σλx+ γ)2

[

1− e−(σλx+γ)t
]

. (20)
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In what follows, we consider a risk distribution q(x) with finite mean µ =
E[x] =

∫ +∞

0 xq(x) dx and finite variance V ar = V [x] =
∫ +∞

0 (x−µ)2q(x) dx.

4.1 Rate-based analysis with heterogeneity

From system (13-16) and solutions (17-20), the instantaneous infection rates
are

rc(t) =

∫∞

0 λxSc(x, t) dx
∫∞

0 Sc(x, t) dx
=

∫∞

0
λxq(x)
λx+γ

[

γ + λxe−(λx+γ)t
]

dx
∫∞

0
q(x)
λx+γ

[

γ + λxe−(λx+γ)t
]

dx
, (21)

rv(t) =

∫∞

0 σλxSv(x, t) dx
∫∞

0 Sv(x, t) dx
=

∫∞

0
σλxq(x)
σλx+γ

[

γ + σλxe−(σλx+γ)t
]

dx
∫∞

0
q(x)

σλx+γ

[

γ + σλxe−(σλx+γ)t
]

dx
,(22)

which intuitively are decreasing functions of time due to cohort selection for
reduced susceptibility [9, 14, 15]. As long as the vaccine is protective (i.e.
σ < 1), this effect is more pronounced in rc(t) than in rv(t) as individuals in
the control group are infected faster. Consequently, the ratio of disease rates
in vaccinated over control groups increases, and vaccine efficacy decreases
as the trial progresses. Finally, the magnitude of this effect increases with
the force of infection.

In what follows we analyse these trends more formally in comparison
with the data presented in the previous section. Emphasising its dependence
on σ, λ and q(x), the rate-based vaccine efficacy expected from a trial of
duration T in a heterogeneous population is written as

V E1(σ, λ, q, T ) = 1−

∫ T

0

∫∞

0
σλxSv(x,t) dxdt

∫ T
0

∫∞
0

Sv(x,t) dx dt
∫ T
0

∫ ∞
0

λxSc(x,t) dx dt
∫ T
0

∫∞
0

Sc(x,t) dx dt

, (23)

whose tendency to decrease with λ is illustrated by the plots in Figure
3A,C adopting for q(x) gamma distributions with different variances. In the
following result we prove this tendency for small positive values of λ for any
probability distribution q. The homogeneous case considered in Section 2 is
retrieved when q is a delta distribution.

Theorem 4.1 The function V E1(σ, λ, q, T ) satisfies

V E1(σ, 0, q, T ) = 1−σ,
∂V E1

∂λ
(σ, 0, q, T ) =

{

σ(σ − 1)
Cγ,T

γT
V ar
µ

, if γ > 0

σ(σ − 1)T2
V ar
µ

, if γ = 0
,

(24)
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where Cγ,T =
e−γT − 1

γ
+ T > 0.

Proof. We notice first that the factor λ appearing in the numerators of
rv(t) and rc(t) cancels out in equation (23). To simplify the notations and
emphasize the variables relevant for our calculations, we rewrite (23) after
the cancellation of the factor λ as

V E1(σ, λ) = 1−

A(σ,λ)
B(σ,λ)

A(1,λ)
B(1,λ)

, (25)

where, of course, we set

A(σ, λ) =

∫ T

0

∫ ∞

0
σxSv(x, t) dxdt (26)

and B(σ, λ) =
∫ T

0

∫∞

0 Sv(x, t) dxdt. Since for any σ ∈]0, 1] we have A(σ, 0) =
σTµ, and B(σ, 0) = T, the first formula in (24) follows immediately. For
any values of σ and λ, the four functions σxSv(x, t), xSc(x, t), σSv(x, t) and
Sc(x, t) are dominated on [0, T ] × [0,+∞[ by the integrable function (x +
1)q(x). Then, we can interchange the order of integration in the integrals of
formula (23). Moreover, fixed a compact set K in ]0,+∞[, for any λ ∈ K

there exist constants CK ,DK > 0 such that the derivatives with respect
to λ of all these four functions are dominated on [0, T ] × [0,+∞[ by the
integrable function (CK + DKx)q(x). As a consequence, we can compute
the λ derivatives of the integrals in (25) by differentiating under the integral
sign, and get the second formula in (24) directly by the quotient rule for
derivatives taking into account that

∂A

∂λ
(σ, 0) = −

σ2

γ
Cγ,T (V ar + µ2),

∂B

∂λ
(σ, 0) = −

σ

γ
Cγ,T µ, (27)

if γ > 0, whereas for γ = 0 analogous formulas hold replacing
Cγ,T

γ
with T 2

2 .

We notice that, consistently with the plots in Figure 3A,C, given two
distributions q1 and q2 with the same mean value µ and such that q2 has a
greater variance than q1, there exists a suitable interval J =]0, λ̄] such that
the functions λ → V E1(σ, λ, qi, T ), i = 1, 2, are decreasing in J and are
ordered as

V E1(σ, λ, q1, T ) > V E1(σ, λ, q2, T ), λ ∈ J.
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The natural question is whether the negative correlation with the variance
of q still holds as λ increases. To address this question analytically for the
previous model appears a very difficult task, even for a special choice of q,
and is beyond the scope of this paper. Meanwhile, the numerical solutions
in Figure 3A,C indicate that the trend presists as λ is increased further, at
least within the range that is relevant for the data.

4.2 Risk-based analysis with heterogeneity

The case of risk-based analysis is more amenable to mathematical treatment
and we are able to provide proofs concerning vaccine efficacy trends more
globally. In the following we give some results about the impact of both
variance in disease risk and overall intensity of exposure on the vaccine
efficacy calculated from risk ratios. Emphasising its dependence on σ, λ
and q(x), we express the risk-based vaccine efficacy as

V E2(σ, λ, q, T ) = 1−

∫∞

0 Iv(x, T )dx
∫∞

0 Ic(x, T )dx
. (28)

Our next result is the analogue of Theorem 4.1 for the risk-based model.
The homogeneous case considered in Section 2 is again obtained when q is
a delta distribution.

Theorem 4.2 The function V E2(σ, λ, q, T ) satisfies

V E2(σ, 0, q, T ) = 1−σ,
∂V E2

∂λ
(σ, 0, q, T ) =

{

σ(σ − 1)
Cγ,T

γT

(

V ar
µ

+ µ
)

, if γ > 0

σ(σ − 1)T2 (
V ar
µ

+ µ), if γ = 0
,

(29)
where Cγ,T > 0 is as in Theorem 4.1.

Proof. The proof is a straightforward consequence of the identity

∫∞

0 Iv(x, T ) dx
∫∞

0 Ic(x, T ) dx
=

A(σ, λ)

A(1, λ)
,

where A(σ, λ) is defined in (26), and of the first equation in (27), in which,

when γ = 0 ,one has to replace
Cγ,T

γ
with T 2

2 .

Notice that Theorem 4.2 shows that the trends for V E2 are the same as
those established in Theorem 4.1 for V E1. Therefore, all the comments made
above about the behaviour of V E1 for small values of λ may be repeated
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for V E2. However, in this case, the question of whether or not the negative
correlation with the variance of q still holds as λ increases may be answered
analytically, considering the scenario without reinfection (γ = 0) in the
special case of the gamma distribution. Since the results we present below
are of qualitative type and hold for λ varying in a suitable interval, without
loss of generality, in what follows we assume T = 1 and no longer write T

as an argument of V E2. The model without reinfection takes the form

V E2(σ, λ, q) = 1−
1−

∫∞

0 q(x)e−σλxdx

1−
∫∞

0 q(x)e−λxdx
. (30)

From now on we consider that the individual risk is a gamma distributed
random variable with probability density function given by

q(x, k, θ) =
xk−1e−

x
θ

θkΓ(k)
,

where θ and k are positive constants and Γ(·) denotes the Gamma function.
We recall that if x is a random variable which is gamma distributed then

the mean value of x is µ = E[x] = kθ and its variance is V [x] = kθ2 = µθ.

Taking into account the expression of the Laplace transform of the prob-
ability density function of the gamma distribution and setting with a slight
abuse of notation V E2(σ, λ, µ, θ) = V E2(σ, λ, q(·, µ, θ)) we obtain

V E2(σ, λ, µ, θ) = 1−
1− (1 + σθλ)−

µ
θ

1− (1 + θλ)−
µ
θ

.

The following results give a fairly detailed qualitative description of
global behaviour of the vaccine efficacy when the disease risk is gamma
distributed. For this special case, they complement Theorem 4.2, which
although considering a general distribution was restricted to small positive
values of λ. In particular, from Theorem 4.3 below we see that the length of
the λ interval on which we can guarantee that the vaccine efficacy correlates
negatively with the variance of the distribution is a function of the mean and
variance. Actually, in Remark 1 we show that, for fixed mean of the gamma
distribution, the larger the variance the larger such λ interval. Interestingly,
we find that the negative correlation between vaccine efficacy and variance
does not hold when transmission rates are sufficiently high; whatever the
value of the relative risk of infection in vaccinated vs unvaccinated individ-
uals (σ), the efficacy curves cross when λ in represented on a suitably large
scale (see Corollary 4.1).
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Theorem 4.3 The function λ → V E2(σ, λ, µ, θ) is strictly decreasing in
[0,+∞[ for any (σ, µ, θ) ∈]0, 1[×R

+ × R
+. Also

i) For any (µ, θ) ∈ R
+×R

+, there exists a positive λ = λ(µ, θ) such that

∂V E2

∂θ
(σ, λ, µ, θ) < 0, for each λ ∈]0, λ(µ, θ)]. (31)

uniformly in σ ∈]0, 1].

ii) For fixed (σ, µ) ∈ R
+×]0, 1[ and 0 < θ1 < θ2, there exists λ̄ =

λ̄(σ, µ, θ1, θ2) such that the following holds

V E2(σ, λ, µ, θ1) < V E2(σ, λ, µ, θ2), ∀λ > λ̄.

Proof. By direct computation it is easy to prove that ∂V E2

∂λ
(σ, λ, µ, θ) is

negative for any λ ∈]0,+∞[ and for any (σ, µ, θ) ∈]0, 1[×R
+ × R

+, and
the first claim of our statement follows. Now we prove the second part of
the theorem. If we set A(σ, λ, µ, θ) = 1 − (1 + σθλ)−

µ
θ , where (σ, λ, µ, θ) ∈

]0, 1[×R
+ × R

+ ×R
+, we have that, for any fixed σ̄ ∈]0, 1[,

∂V E2

∂θ
(σ̄, λ, µ, θ) < 0

if and only if
∂A
∂θ

(σ̄, λ, µ, θ)

A(σ̄, λ, µ, θ)
>

∂A
∂θ

(1, λ, µ, θ)

A(1, λ, µ, θ)
. (32)

Then, if we define

H(σ, λ, µ, θ) =
∂A
∂θ

(σ, λ, µ, θ)

A(σ, λ, µ, θ)
=

µ

θ2

[

σλθ
σλθ+1 − log(1 + σλθ)

]

(1 + σλθ)
µ
θ − 1

,

to get (32) for a given triplet (λ, µ, θ) it will be sufficient to show that σ →

H(σ, λ, µ, θ) is decreasing in the interval [σ̄, 1]. We show that this property
holds uniformly with respect to σ ∈]0, 1] for sufficiently small values of λ that
depend on (µ, θ) and this implies i). First, by using the Taylor expansion in
the variable u = σλθ at u = 0 with µ fixed, we see that H can be extended
as an analytic function to u = 0 and that H(σ, λ, µ, θ) = −

σλ
2 + o(σλθ). As

a consequence, there exists ε = ε(µ) > 0 such that, if 0 < σλθ < ε then

∂H(σ, λ, µ, θ)

∂σ
= −

λ

2
+ o(σλθ) < 0 (33)

14



for any σ ∈]0, 1]. It follows that for any (µ, θ) ∈ R
+ × R

+ we can find a
small value of λ := λ(µ, θ) such that the inequality (33) holds uniformly for
σ ∈]0, 1]. Hence, the same is true for (31), and property i) is proved. We
move now to the proof of ii). Direct computation shows that

sgn

(

∂H

∂σ
(σ, λ, µ, θ)

)

= sgn(K(σ, λ, µ, θ)) (34)

where

K(σ, λ, µ, θ) =
σλθ

σλθ + 1

[

(1 + σλθ)−
µ
θ − 1−

µ

θ

]

+
µ

θ
log (1 + σλθ) . (35)

Now, for any given (σ, µ, θ) ∈]0, 1] × R
+ × R

+ we have that K → +∞ as
λ → +∞. Then, being K continuous, a standard compactness argument
allows to conclude that fixed any σ̄ ∈]0, 1], there exists λ1 = λ1(σ̄, µ, θ) such
that K(σ, λ, µ, θ) > 0, ∀σ ∈ [σ̄, 1], λ > λ1(σ̄, µ, θ).

Actually, given θ1 > 0 and θ2 > 0 with θ2 > θ1, by the same ar-
gument one can conclude the existence of a λ̄ = λ̄(σ̄, µ, θ1, θ2) such that
K(σ, λ, µ, θ) > 0, ∀σ ∈ [σ̄, 1], θ ∈ [θ1, θ2], λ > λ̄.

As a consequence, we have that σ → H(σ, λ, µ, θ) is increasing in the
interval [σ̄, 1] for any θ ∈ [θ1, θ2] and any λ > λ̄, so that ∂V E2

∂θ
> 0 for

σ ∈ [σ̄, 1], for any θ ∈ [θ1, θ2] and any λ > λ̄.

We conclude that fixed any σ, θ1 < θ2 and µ, there exists λ̄ = λ̄(σ, µ, θ1, θ2)
such that V E2(σ, µ, λ, θ1) < V E2(σ, µ, λ, θ2), for all λ > λ̄, and ii) is proved.

An immediate consequence of the previous result is the following:

Corollary 4.1 Under the assumptions of Theorem 4.3, given θ1 and θ2 with
0 < θ1 < θ2, for all (σ, µ) the curves λ → V E2(σ, µ, λ, θi) switch their order
for large λ.

Remark 1 In the proof of i), the function λ(µ, θ) for which ∂H
∂σ

< 0 uni-
formly with respect to σ ∈]0, 1] can take small values. However, we can
extend its values by taking as λ = λ(µ, θ) the unique function defined im-
plicitly by

K(1, λ, µ, θ) = 0, (36)

where K is given by (35). This statement follows from two facts. Firstly,
∂K
∂λ

> 0 for the points satisfying (36) and the existence of λ follows from the
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implicit function theorem. Since ∂K
∂λ

> 0 this function is also globally unique.
Secondly, the function σ → K(σ, λ, µ, θ), σ ∈ [0, 1], satisfies K(0, λ, µ, θ) =
0 and

∂K

∂σ
=

λµ(σλµ− 1)

(1 + σλθ)2
(1− (1 + σλθ)−

µ
θ ),

so that it is decreasing in the interval [0, 1
λµ

] and it is increasing in the

interval [ 1
λµ

, 1]. Therefore, K(σ, λ, µ, θ) < 0 whenever K(1, λ, µ, θ) < 0. For

any given (µ, θ) ∈ R
+×R

+, one can check that K(1, λ, µ, θ) < 0 for small λ,
and, by definition of λ(µ, θ), this inequality holds for λ ∈]0, λ(µ, θ)[. Then,
by construction, i) of Theorem 4.3 holds by taking as function λ(µ, θ) the
one defined implicitly by (36).

One important qualitative feature of this function is that it is increasing
in θ. In order to prove this we can use a two dimensional implicit plot.
Namely, setting x = θ

µ
, y = µλ, from (36) we get

K̃(x, y) =
xy

1 + xy

[

(1 + xy)−
1

x − 1−
1

x

]

+
log(1 + xy)

x
= 0 (37)

We have plotted the contour line K̃ = 0 and verified that this is an increasing
function x → y(x), for x > 0 (not shown). Then, by the uniqueness of

the implicit function, we conclude λ(µ, θ) = 1
µ
y
(

θ
µ

)

, and θ → λ(µ, θ) is

increasing.

5 Redefining vaccine efficacy

In line with the rationale that measured discrepancies in vaccine protection
arise from differences in frequency of exposure across settings, the iden-
tification of a consistent measure might require disentangling efficacy from
exposure [3,10]. We have presented a mathematical framework for obtaining
such measure. We propose the fitting of heterogeneous linear models, such
as those in Section 4 (solid curves in Figure 3), to datasets from multi-center
clinical trials, as introduced in Section 3 for tuberculosis [6] and malaria [11],
to estimate 1− σ, which is, effectively, a measure of efficacy per unit of ex-
posure. The distributions of disease risk among individuals within trial sites
would be simultaneously estimated.

It may be argued that currently used measures, based on the homoge-
neous models in Section 2, are more informative of the actual effect of the
vaccine in each setting. We are not proposing that such analyses should be
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Figure 3: Vaccine efficacy on disease incidence gradients. A, Tuberculosis,
data from [6], curves generated with formula (23) and γ = 0. B, Tuber-
culosis, curves generated with formula (28) and γ = 0. C, Malaria, data
from [11], curves generated with formula (23) and γ = 12. D, Malaria,
curves generated with formula (28) and γ = 12. Data points are countries
where a trial has been conducted to estimate vaccine efficacy. Curves are
labeled by variance in the risk distribution q(x).

discarded, rather that they should not be called “vaccine efficacy??. Indeed
our procedure relies on a collection of many such measurements across set-
tings to inform the estimation of a more basic quantity, which has a clear
interpretation and can be used in a variety of models for prediction in dif-
ferent contexts.

6 Discussion

As we have seen, despite the overwhelming evidence that vaccine efficacy,
as estimated in clinical trials, decays with disease incidence, it is feasible
to conceive a vaccine efficacy parameter that is incidence-independent and
a model that reproduces the incidence-dependent observations when ade-
quately parametrised. Such universal efficacy parameter can be estimated
by fitting the model to vaccine efficacy data on a gradient of incidences. Ad-
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justing models to global data requires flexible risk distributions that can also
be estimated in this process [2, 12]. By this procedure, an efficacy measure
can be obtained for any vaccine in a way that is globally consistent with trial
outcomes when local distributions of individual risk are adequately included
as an auxiliary component of the model.

Practical measures of vaccine efficacy are commonly based on rate ratios
or risk ratios [13]. For illustration we have chosen two vaccines that have
undergone randomised controlled trials in different locations and rate-based
efficacy measures were provided (BCG against pulmonary tuberculosis [6]
and RTS,S against malaria [11]). We have superposed a family of curves
(parametrised by variance in the distribution of individual disease risk) with
previously published data demonstrating that the curves describe the trends
of interest as intuitively explained (Figure 3). Curves generated by rate-
based or risk-based procedure are visually very similar.

Efficacy curves appear to satisfy an order such that the higher the vari-
ance in disease risk the lower the vaccine efficacy. Although this ordering
is proved to break down for high enough forces of infection, numerical solu-
tions indicate that this is unlikely to have practical relevance. In this sense,
combating risk heterogeneity, by means of social protection, biological in-
terventions or environmental control, might be considered as strategies to
increase the benefits of vaccines.

In this paper we have considered individual heterogeneity in disease
risk [9,10], in contrast to other studies that have considered variation in the
effect of the vaccine itself [3, 4, 13]. Although both distributions are likely
to affect current measures of vaccine efficacy [16], we wanted to counter a
perceived tendency in the research community to explain the observations
entirely in light of the latter. Meanwhile, the full parameterisation of vac-
cine efficacy models remains an important subject for future research.
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