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Manoeuvrable, responsive satellite constellations that respond to real time 

events could provide data on demand for time-critical tasks, such as disaster 

monitoring and relief efforts. The authors demonstrate the feasibility of such 

a system by expanding on a fully analytical method for designing responsive 

spacecraft manoeuvres using low thrust propulsion. These manoeuvres are 

perceived as a graph that enables efficient exploration and optimised selection 

of favourable routes that achieve mission goals while highlighting resilience 

and redundancy in the mission’s execution. A case study is presented that 

considers four satellites required to provide flyovers of two targets, with an 

associated graph of 10839 possible manoeuvres. Investigation of the graph 

highlights that a good, but not minimum time, solution can allow the system 

to perform well, while also providing greater resilience to changes in mission 

priorities and errors in execution. This analytical approach enables operators 

to trade-off between a loss of time by using only one satellite versus the 

disruption of moving multiple satellites for a potentially faster response. The 

impact of varying mission capabilities, such as using fewer satellites, smaller 

swath width or less propellant, can be evaluated by reducing the graph without 

recalculating manoeuvre options. 
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1. INTRODUCTION 

Interest in responsive satellite systems is growing as terrestrial applications increasingly 

necessitate the use of real time, on demand data (Voigt, et al., 2016; Santilli, et al., 2018; 

Gopinath, 2015). Current state of the art satellite systems, such as those operated by Planet, 

Inc. (Boshuizen, et al., 2014) and Spire Global, Inc. (Platzer, et al., 2015; Buchen, 2015), 

cannot manoeuvre and, as such, would require thousands of satellites provide global, real-

time coverage. This would be both impractical and financially prohibitive with potentially 

severe implications for our already congested space environment (Morin, 2019; Skinner, et 

al., 2019). Successful implementation of manoeuvrable satellite systems will address this 

issue by reducing the number of spacecraft needed to provide on demand information for time 

critical applications, such as disaster response. However, to ensure efficient operation of such 

a system, an understanding of the capabilities and limitations of manoeuvrable spacecraft is 

required, as is a method for analysing and comparing the multitude of distinct manoeuvre 

options possible to ensure an efficient concept of operations for the system.  

Previous research by the authors has developed a fast and accurate method of planning 

spacecraft manoeuvres using low thrust propulsion that can facilitate rapid analysis of 

responsive scenarios involving numerous satellites, targets, and ground stations (McGrath & 

 

* Research Associate, Department of Mechanical and Aerospace Engineering, University of Strathclyde, 16 

Richmond St, Glasgow G1 1XQ, UK, ciara.mcgrath@strath.ac.uk. 
† Research Associate, Department of Mechanical and Aerospace Engineering, University of Strathclyde, 16 

Richmond St, Glasgow G1 1XQ, UK, ruaridh.clark@strath.ac.uk. 
‡ Professor, Department of Mechanical and Aerospace Engineering, University of Strathclyde, 16 Richmond St, 

Glasgow G1 1XQ, UK, malcolm.macdonald.102@strath.ac.uk. 

mailto:ciara.mcgrath@strath.ac.uk
mailto:ruaridh.clark@strath.ac.uk
mailto:malcolm.macdonald.102@strath.ac.uk


 

 2 

Macdonald, 2019; McGrath, 2018). This method uses general perturbation techniques and 

thus can produce a large number of solutions extremely quickly whilst maintaining a high 

degree of accuracy. The method can provide the user with a full overview of all the eligible 

manoeuvre options for flying over a region of interest on the Earth. These options will vary in 

terms of the change in velocity (ΔV) required for the manoeuvre, as well as the time taken for 

the manoeuvre and the look angle to the target at flyover. As such, the ability to consider all 

options is extremely valuable, allowing the operator to trade off each solution and identify 

those that best align with their unique mission priorities. This previous work by McGrath & 

Macdonald, 2019 demonstrated that reconfiguring a constellation of 24 satellites could 

provide increased persistence of coverage of 1.6 – 10 times compared to a traditional, non 

manoeuvring constellation, depending on the latitude of the target region. For the scenario 

considered in this previous work, it was predicted that up to 12 targeting reconfigurations 

could be performed. However, these prior analyses selected the reconfiguration manoeuvres 

by considering each reconfiguration independently; in fact, manoeuvres selected early in the 

mission will affect the choices available in the future and thus, for truly efficient operations, 

an assessment is required that considers the full sequence of manoeuvres necessary to achieve 

the mission goals. 

This article addresses the challenge of manoeuvre planning for responsive spacecraft 

constellations by using the previously developed method of low-thrust spacecraft manoeuvre 

propagation to create an expansive trade space of manoeuvre options. This trade space is 

represented as a graph that can be explored to obtain insights into the capabilities of the 

responsive system and to devise a concept of operations that considers the entire operational 

scenario. The use of the previously derived fast method of manoeuvre calculation allows for 

large graphs, encompassing thousands of manoeuvres, to be generated.  

A graph capturing all possible manoeuvre options, where each option is represented as an 

edge, can comprise of many of thousands of nodes that each represent a flyover of a target. 

When edges are supplied with a weighting that captures some property of a manoeuvre, such 

as time taken or ΔV required, then an optimal path through the graph can emerge. Manually 

identifying effective routes in large graphs is not always feasible, but shortest path algorithms, 

such as Dijkstra’s algorithm (Dijkstra, 1959), or tree-search methods (Silver, et al., 2016), 

including branch and bound algorithms (Morrison, et al., 2016) can efficiently identify these 

paths to inform manoeuvre decisions. Dijkstra’s shortest path algorithm has previously been 

applied to space applications to design efficient routing processes for data transfer through 

spacecraft constellations with intersatellite communication capabilities (Gnawali, et al., 2005; 

Lowe & Macdonald, 2016). Branch and bound solution algorithms have also been applied to 

space applications, such as to define an optimal targeting schedule for an agile Earth 

observing satellite (Chu, et al., 2017).  These applications focus on minimising cost and/or 

maximising profit by identifying the most favourable ‘path’ through the system. However, 

these metrics, while useful, are limited, especially when considering a responsive satellite 

system, where a shortest path might become unusable if there is a change in mission 

priorities, such as a need to conserve ΔV or reduce flyover time. Therefore, a route through 

the graph that presents many good options rather than a single optimal option may be 

preferable. The proposed method enables a trade off between finding a short route through the 

graph and ensuring that there are many good options if the route needs to be altered. 

 This combination of graph-theoretical techniques with rapid orbit propagation and 

manoeuvrability is a novel approach to responsive satellite operations that offers a new way 

of exploring and analysing space missions. The speed of the technique makes it ideal for 

mission design and trade space exploration, by providing an efficient means of assessing the 

expected performance of a responsive spacecraft constellation architecture. It also provides an 

efficient methodology for use in responsive operational planning and enables the cost of 

responsiveness, in terms of propellant requirements, to be assessed and quantified, so that an 
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informed decision can be made considering this cost against the benefits of increased, or more 

timely, coverage. Furthermore, by providing a full overview of all manoeuvre options, rather 

than focusing on determining the shortest path solution, the proposed method enables an 

operator to assess the resilience and redundancy of the possible options.      

This article is constructed as follows. The Method Section (Section 2) shall introduce how 

the manoeuvre sequence graph is constructed – highlighting the different types of manoeuvre 

– and how this graph is searched and analysed. The Case Study Section (Section 3) shall then 

introduce the scenario of overflying two national parks to perform fire monitoring 

observations. The Results Sections (Sections 4 and 5) explore the added insights, provided by 

the graph analysis, that would be available to an operator in this mission scenario for differing 

mission resources and priorities. 

2. METHOD 

2.1 Problem Statement 

To understand the motivation behind this work, first consider a single, manoeuvrable 

satellite that is required to sequentially fly over two targets, A and B. There are a multitude of 

manoeuvres that can be employed to flyover the targets, each with a different ΔV cost, 

manoeuvre time, and resultant look angle to the target (McGrath & Macdonald, 2019). The 

choice of manoeuvre will determine the spacecraft’s new orbit parameters, which will in turn 

determine the subsequent manoeuvre options. This is presented in Figure 1, where each 

possible flyover of each target is considered as distinct, due to the difference in orbit 

parameters at the time of flyover. 

In Figure 1, there are three possible manoeuvre options for flying over target A and the 

required ΔV is indicated for each manoeuvre. For the purposes of this example, minimising 

ΔV is assumed to be the only operational goal; manoeuvre time and look angle at flyover are 

also considered but only in terms of providing operational constraints (e.g. maximum values 

allowable), such that the manoeuvres shown are those that meet the selected criteria. Consider 

the first manoeuvre to flyover target A; in considering this stage of manoeuvring alone, it is 

clear from Figure 1 that the uppermost manoeuvre, requiring 1 m/s ΔV, is the minimum ΔV 

manoeuvre. However, from this point there are no suitable manoeuvres available to provide a 

subsequent flyover of target B. The central manoeuvre to flyover target A requires 3 m/s ΔV 

and is the next best manoeuvre for the first stage, however the next manoeuvre to flyover 

target B has a very high ΔV cost. Indeed, in this scenario, choosing the highest ΔV 

manoeuvre for the first stage to flyover target A will minimise the ΔV required for the full 

scenario. The minimum ΔV path for this scenario is shown as a dashed green arrow in Figure 

1. This illustrates the need to consider the full operational scenario, rather than selecting 

manoeuvres for each stage of the mission independently. 

 

 

Figure 1: Scenario for sequential flyover of targets A then B from an initial system state, with 

each possible manoeuvre option represented by a single arrow. Numbers represent the ΔV 

required for each manoeuvre. The minimum ΔV path is shown as a dashed green arrow. 
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A more complex scenario can be envisaged, in which two satellites are available to 

manoeuvre and fly over two targets, A and B, but the flyovers can occur in any order. 

Satellite 1 or 2 could flyover both targets, in either order, or each satellite could flyover one 

target. Additionally, for each manoeuvre there are a variety of possible options, which differ 

in ΔV, manoeuvre time and look angle to target at flyover; this is visualised in Figure 2. It is 

clear that this presents a greater challenge than the previous example, though it is much 

simpler than the operational scenarios expected of a real responsive constellation. Inspection 

of Figure 2 identifies the minimum ΔV solution as the case in which Satellite 1 overflies 

Target A followed by Target B, at a cost of 2 m/s. However, once Satellite A has performed 

the first manoeuvre to flyover Target A, there is only one manoeuvre option to flyover Target 

B; if this manoeuvre is no longer suitable (for example if a faster flyover becomes necessary), 

or no longer viable (for example if a slight error in manoeuvre execution results in the 

subsequent manoeuvre becoming too costly) then there are no alternative manoeuvre options 

available to complete the mission. An alternative option is for Satellite 2 to flyover Target B 

and then Target A; this requires a minimum ΔV of 4 m/s but is a more resilient option as there 

is an additional manoeuvre option to flyover Target A should the first option become 

unusable, for any reason. A third option is for Satellite 1 to flyover Target B and Satellite 2 to 

flyover Target A, with both spacecraft manoeuvring simultaneously, requiring a total ΔV of 3 

m/s. This would result in greater disruption to the constellation by requiring two spacecraft to 

manoeuvre, but provides redundancy as subsequent manoeuvres are available for both 

spacecraft to flyover the targets should there be an issue with the execution of the first 

manoeuvres. This illustrates the benefit of considering all possible options, rather than simply 

identifying the shortest path solution. 

 

Figure 2: Scenario where two satellites can flyover targets A and B in any order, with each 

possible manoeuvre option represented by a single arrow. Numbers represent the ΔV required 

for each manoeuvre. 

 

2.2 Representing the Scenario as a Graph  

In order to consider all the possible options to complete the task of flying over multiple 

targets, in any order, with multiple spacecraft available for tasking, it is helpful to visualise 

the scenario as a graph. This is similar to the decision trees shown in Figure 2, where the 

B 

B 

A 
3 

B 

2 

B 

A 

A 

A 

3 

3 

5 

5 

1 

1 

5 

1 

2 

5 

1 

A 

A 

B 

B 

A 

A 

7 

1 

2 



 

 5 

possible flyovers of each target can be considered as nodes and the manoeuvres can be 

considered as edges. However, the graph representation shall now incorporate multiple 

satellites to enable concurrent analysis of all satellite manoeuvres for target flyover. 

The flyovers of targets are defined as nodes in the graph, with the location of these targets 

defined in terms of their latitude and longitude. The initial positions of all satellites in the 

constellation are defined in terms of their Keplerian orbital elements (Bate, et al., 1971) (i.e. 

semi major axis, 𝑎; eccentricity, 𝑒; inclination, 𝑖; right ascension of the ascending node 

(RAAN), 𝛺; argument of perigee, 𝜔; and mean anomaly, 𝑀). Additionally, the Julian date of 

the epoch must be defined to orient the constellation relative to the Earth. An edge is created 

if there exists a manoeuvre that takes a satellite from its initial position and results in it 

overflying the location of a target. In order to establish a realistic search space, constraints are 

placed on the maximum manoeuvre time, ΔV for a single manoeuvre, and on the maximum 

look angle to target, which corresponds to the look angle of the spacecraft instrument. Apart 

from the number of satellites and targets being considered, these constraints will have the 

largest impact on the time required to generate the graph.   

The first node in the graph, node 0, is the root node. From the initial conditions at epoch, 

all possible manoeuvres for each satellite to fly over each target beginning from their initial 

locations are calculated. For each manoeuvre, the position of the satellite that has manoeuvred 

at the time the manoeuvre is completed is recorded. This flyover forms a new node in the 

graph, linked to node 0 by a directed edge representing the manoeuvre. For each manoeuvre, 

the position of the satellite that has manoeuvred at the time the manoeuvre is completed is 

recorded. This flyover forms a new node in the graph, linked to node 0 by a directed edge 

representing the manoeuvre. This edge will hold the manoeuvre time and ΔV parameters as 

weightings. The nodes will hold the information of which target has been seen, which satellite 

has manoeuvred, the time at which the manoeuvre is completed, the look angle to the target at 

flyover, and the position of the manoeuvring spacecraft at this time. This first set of possible 

manoeuvres will be referred to as Stage 1 manoeuvres. 

The set of nodes, connected to node 0 by Stage 1 manoeuvres, are used as the starting 

conditions for a new set of manoeuvres. For the satellite that has just manoeuvred, the 

conditions at the end of the previous manoeuvre are used as the starting conditions for the 

manoeuvre calculations. For all other spacecraft, the starting conditions for the manoeuvre 

calculations are determined by propagating the spacecraft for the total time elapsed through 

the preceding edges. These new manoeuvres, defined as Stage 2, exist if a manoeuvre exists 

that will flyover a target that has not yet been seen on the path that leads to the current node. 

This process is continued with new nodes and manoeuvres until the number of stages 

(manoeuvres) is the same as the number of targets. 

The scalability of the presented method is highly dependent on the size of the graph being 

generated. For the case outlined, in which a single flyover of each target is required, the graph 

will be a tree graph with the depth of the tree (𝑑) dictated by the number of targets. The 

branching factor (𝑏) will be dictated by number of satellites (𝑠), the number of targets (𝑡) and 

the number of possible manoeuvre options at each node such that max(𝑏) = 𝑠𝑡 (
Δ𝑉𝑚𝑎𝑥

Δ𝑉𝑠𝑡𝑒𝑝
), 

where Δ𝑉𝑚𝑎𝑥 is the maximum ΔV considered for a single manoeuvre and Δ𝑉𝑠𝑡𝑒𝑝 is the 

increments of ΔV at which each possible manoeuvre is calculated. If a suitable manoeuvre 

does not exist for a certain combination of satellite/target/ ΔV then it is not added to the graph 

and 𝑏 <  max(𝑏) for the node in question. The maximum time complexity for enumerating 

the full tree is thus 𝑂(𝑀𝑏𝑑) (Morrison, et al., 2016) where M, in this case, is the time 

complexity of the calculation to generate a single manoeuvre option. Due to the power law 

present in this enumeration time, the number of targets will have a large impact on graph 

generation as that determines the depth of the tree (d), while the number of satellites 

considered will have a relatively small impact. This implies the suitability of the presented 
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method for large constellations of spacecraft requiring flyovers of a limited number of targets. 

In this paper we consider two targets, while adopting a large swath width and a wide range of 

manoeuvre time and ΔV. When considering more targets, it may be necessary to constrain the 

swath width and manoeuvre parameters to ensure computational feasibility.  

2.2.1 Manoeuvre Calculations. Generating the graph is the most resource intensive aspect of 

the presented method and is most likely to limit the scalability of the method; by comparison, 

the time required for graph analysis is negligible. Therefore, it is important to choose a 

method of manoeuvre calculation that can be executed efficiently. Herein, the fast general 

perturbation method previously derived by the authors (McGrath & Macdonald, 2019; 

McGrath, 2018) is used to calculate the manoeuvre options for all scenarios. This method 

assumes the use of low thrust propulsion for circular to circular, coplanar manoeuvres and 

considers gravitational perturbations due to an oblate central body up to the order of J2. 

Atmospheric drag is assumed to be compensated for throughout and, as such, the spacecraft 

maintains a constant altitude when not actively manoeuvring; any ΔV required to maintain 

this altitude is included in the ΔV cost associated with a manoeuvre, for both the manoeuvring 

and nonmanoeuvring spacecraft. The manoeuvres only directly change the altitude of the 

satellite, but this in turn causes a change in the RAAN and argument of latitude (AoL) due to 

the variation in orbit period and central body perturbations. For all cases herein, the 

propagation of any nonmanoeuvring satellites is done using the same method, but with no 

manoeuvres performed.  

2.3 Manoeuvre Types 

Considering the full manoeuvre sequence, there are three different types of possible 

scenarios. Same satellite manoeuvres are those cases in which the same satellite performs all 

the manoeuvres on a single path sequentially. This may have operational benefits as only one 

satellite must be manoeuvred for the mission to be completed. Separate sequential 

manoeuvres are those cases in which different satellites manoeuvre at different stages of the 

manoeuvre sequence. This may produce a lower ΔV solution, but may increase operational 

complexity and/or increase the total manoeuvre time. These manoeuvres may also provide 

redundancy in the sequence, as they enable the operator to delay manoeuvre execution until 

later in the sequence. This could be of value if, for example, the need to flyover a target is not 

yet confirmed. Separate simultaneous manoeuvres are those in which two or more separate 

satellites manoeuvre simultaneously to provide flyovers of different targets. An alternative 

method is required to include separate simultaneous manoeuvres in the graph and is described 

in Section 2.3.1. 

 

2.3.1 Separate Simultaneous Manoeuvres The manoeuvre-target graph described thus far can 

only represent operational scenarios in which manoeuvres are performed sequentially; this 

may include same satellite manoeuvres, or manoeuvres by different spacecraft, but it assumes 

that there is no overlap in time among these manoeuvres. In reality, it may be desirable to 

move two or more satellites simultaneously to flyover multiple targets. To account for this, 

manoeuvres from one stage, in the form of edges, can be copied from the graph and 

‘transplanted’ onto nodes in the subsequent stage. This is referred to throughout as separate 

simultaneous manoeuvres and illustrated in Figure 3, where Stage 2 manoeuvres of the same 

colour and style as those in Stage 1 are copies of Stage 1 manoeuvres.  

When transplanting manoeuvres, the ΔV assigned to the edge will be the same as that for 

the original manoeuvre, but the time will vary, as the time along both edges must sum to give 

the time of the longest manoeuvre on the path; this is necessary to account for the fact that 

both manoeuvres happen in tandem. As such, if the time of the first manoeuvre, 𝑡0, is less 

than the time required for the transplanted manoeuvre, 𝑡𝑡𝑟𝑎𝑛𝑠, then the time assigned to the 

new edge, 𝑡𝑛𝑒𝑤, will be the difference between the two times. If 𝑡0 is greater than 𝑡𝑡𝑟𝑎𝑛𝑠, then 

the new assigned time should be zero; however, for implementation it is necessary to assign a 
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small time weighting to the edge, as edges with a weighting of zero will be assumed to not 

exist. Mathematically this can be expressed as  

Δ𝑉𝑛𝑒𝑤 =  Δ𝑉𝑡𝑟𝑎𝑛𝑠, and 𝑡𝑛𝑒𝑤 = {
𝑡𝑡𝑟𝑎𝑛𝑠 − 𝑡0, 𝑡𝑡𝑟𝑎𝑛𝑠 > 𝑡0

𝑡𝑛𝑒𝑤 ≪ 𝑡0, 𝑡𝑡𝑟𝑎𝑛𝑠 ≤ 𝑡0
. 

It must additionally be ensured that the transplanted manoeuvres are performed using a 

different satellite than the manoeuvre they are being transplanted to. For the illustrative 

example shown in Figure 3, three different spacecraft, indicated by different coloured and 

styled arrows, can initially perform manoeuvres to flyover targets A or B. To account for the 

option of these manoeuvres occuring simultaneously, two manoeuvres are transplanted onto 

the first path. Here, 𝑡4 = {
𝑡2 − 𝑡1, 𝑡2 > 𝑡1

𝑡4 ≪ 𝑡1, 𝑡2 ≤ 𝑡1
, and 𝑡5 = {

𝑡3 − 𝑡1, 𝑡3 > 𝑡1

𝑡5 ≪ 𝑡1, 𝑡3 ≤ 𝑡1
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Analysing the Graph 

Prior to analysis, the graph can be reduced based on a number of operational constraints by 

removing any nodes and edges that fall outside these criteria. For example, if there is a 

minimum required look angle to target, then any nodes that do not meet this criterion and the 

paths that extend from these nodes can be removed from the search space. Similarly, if there 

is a maximum time that the mission must be completed in, then any paths that exceed this 

time can be removed. In this way, once the full graph has been generated, various sub-cases 

can be analysed to assess the impact of varying mission parameters, without the need to 

generate a new graph. 

Once the graph has been reduced, if required, analysis of the scenario can be performed. 

For the cases examined herein, this is done by applying Dijkstra’s algorithm (Dijkstra, 1959) 

to find the shortest path through the graph; however, alternative graph search methods could 

be used. The choice of weighting parameters applied to the edges of the graph (e.g. ΔV, time, 

or a utility function capturing multiple parameters) will determine the outcome of Dijkstra’s 

algorithm. For example, assigning the manoeuvre ΔV as a weight to each edge will mean that 

Dijkstra identifies the combination of manoeuvres that will require the minimum total ΔV 

across all spacecraft manoeuvres. Similarly, using manoeuvre time to weight each edge 

provides the combination of manoeuvres that complete the mission in the shortest total time. 

Dijkstra’s algorithm can provide a shortest path solution when the graph is weighted and 

the path must include flyovers of all targets. However, the real benefit of representing the 

system as a graph in this article is the ability to identify how many near optimal options and 

Figure 3: Transplanting of edges to represent separate manoeuvres. Letters indicate targets. 

Edges with the same colour and style are transplanted copies. 
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routes through the graph exist. If the analysis perfectly represented the satellite system, and 

no change in mission priorities were to occur then the shortest path analysis would be 

sufficient. Given that these criteria cannot be taken for granted, there is value in identifying a 

manoeuvre that not only provides a short path through the graph but also leads to a range of 

other short path options. A path that leads to a larger range of manoeuvre options is more 

likely to be able to accommodate a change in circumstance, such as shifting mission priorities 

or manoeuvre execution error. This resilience in the manoeuvre path is in contrast to a path 

with only one manoeuvre option, after the first manoeuvre, where any change could lead to 

the second manoeuvre becoming infeasible. 

The other benefit of a graphical analysis of the system is the ability to select a route where 

redundancy exists. For example, a short path separate simultaneous manoeuvre can be 

performed where it is known that a short path same satellite manoeuvre also exists. Therefore, 

in the case where providing a minimum time flyover is the objective, both the separate 

satellite and same satellite manoeuvre can be performed to add redundancy in flying over the 

second target; should the separate simultaneous manoeuvre fail to provide the required 

coverage for any reason, the same satellite manoeuvre can subsequently be used to provide an 

additional opportunity for data collection. 

 

3. CASE STUDY 

To demonstrate the proposed method of responsive constellation manoeuvre planning, a 

case study is investigated in which a constellation of four satellites is required to flyover two 

targets in any order. The constants and mission parameters used for this analysis are given in 

Table 1 and Table 2, respectively. It is assumed that the spacecraft have a conical field of 

view and hence the swath width represents the diameter of a circular region on the ground. If 

a target is located within this circular field of view it is considered to be visible. The targets 

are selected as the centre of the Cairngorms National Park and Yosemite National Park as 

shown in Figure 4. These areas were selected due to their propensity for fire outbreaks where 

responsive satellites could be tasked to monitor wildfire outbreaks. Cairngorms National Park 

is a region of spectacular beauty in Scotland that is of high conservation importance due to its 

unique flora and fauna; however, it is at increasing risk of fire outbreak (Carver, et al., 2008; 

Gray & Levy, 2009). Yosemite National Park is the third most visited national park in the 

world with almost 4 million visitors annually, but it has a very high fire risk in the drier 

months (National Park Service, 2017; Lutz, et al., 2009; Kane, et al., 2014). The manoeuvre 

calculation method described in Section 2 is used, with manoeuvres calculated at increments 

of 1 m/s ΔV up to the maximum allowable. 

Table 1. Constants. 

Parameter Value Unit 

Gravitational Parameter 3.986 × 1014 m3/s2 

Mean radius of Earth 6371 km 

Coefficient of J2 for Earth 0.0010827 ___ 

Angular velocity of Earth 7.29212 × 10−5 rad/s 

Earth flattening 3.35281 × 10−3 ___ 

Propagation time step 10 sec 
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Table 2. Mission Parameters. 

Parameter Value Unit 

Time and date at epoch 00:00 1/1/1991 ___ 

Julian date at epoch 2448257.5 ___ 

Target 1 latitude 57.120 deg 

Target 1 longitude −3.645 deg 

Target 2 latitude 37.835 deg 

Target 2 longitude −119.545 deg 

Max. time per manoeuvre 7 days 

Max. ΔV per manoeuvre 10 m/s 

Instrument swath 100 km 

 

 

 

Figure 4: Map highlighting both flyover targets. 

 

3.1 Spacecraft Description 

 For this case study, the constellation is assumed to be made up of four CubeSats equipped 

with the electrospray propulsion system developed by the Massachusetts Institute of 

Technology (Krejci, et al., 2017; Mier-Hicks & Lozano, 2017). These propulsion systems are 

highly efficient and capable of producing sufficient acceleration to enable constellation 

reconfiguration (McGrath & Macdonald, 2019). CubeSats are constrained in volume, mass 

and power; however, the recent miniaturisation of components has enabled even small 

spacecraft to deliver valuable Earth observation data. A prime example are the Doves 

launched by Planet, which can provide images of the Earth with resolutions as low as 3 

metres (Boshuizen, et al., 2014). The orbit parameters for the spacecraft to be considered are 

selected arbitrarily, with the constraint that the orbit inclination selected would allow both 

targets to be viewed by all spacecraft. The orbit and spacecraft parameters used in this 

analysis are given in Table 3. 
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Table 3. Spacecraft parameters. 

Parameter Value Unit 

Mass 3 kg 

Cross sectional area 0.03 m 

Coefficient of drag 2.2 ___ 

Thrust 3.5 × 10−4 N 

Orbit altitude 542.857 km 

Orbit inclination 60 deg 

Walker formation (Walker, 

1977) 
4/2/0 ___ 

 

 

Analysing all the possible manoeuvres to complete the proposed mission produces a graph 

of 10840 nodes, where each node represents the system state immediately after a target 

flyover. One node (Node 0) represents the initial system state at epoch. This Node 0 is 

connected to 118 nodes that represent the system state after flyover of one target (i.e. Stage 

1). These 118 nodes, in turn, are connected to 10721 nodes (i.e. Stage 2). Of these, 6157 

nodes represent the system state after a set of sequential manoeuvres, while the other 4564 

nodes are at the end of transplanted edges, representing a set of separate simultaneous 

manoeuvres. Generating the full graph of results takes approximately 1.7 minutes on a laptop 

computer running Windows 10 with 16 GB of RAM.   

 

4. RESULTS FOR FULL GRAPH 

In considering the possible manoeuvre options, it is important to consider the performance 

of the full manoeuvre sequence, in terms of time and/or ΔV usage. Additionally, it is useful to 

assess if redundancy or resilience can be added to a manoeuvre sequence.  

A manoeuvre sequence can be identified as having redundancy if it has separate sequential 

and/or separate simultaneous manoeuvres available, such that other satellites can fulfil the 

mission if tasked at either Stage 1 or Stage 2. It should be noted that a satellite cannot perform 

both a separate simultaneous manoeuvre and then a separate sequential manoeuvre, therefore 

when assessing redundancy only the manoeuvre type with the largest number of options is 

considered.  

A manoeuvre sequence is more resilient if each satellite capable of performing a Stage 2 

manoeuvre has connections to the next target for a range of ΔV inputs; hence, more connections 

from a node represents a wider range of ΔV that can be used to reach the target and the more 

resilient this manoeuvre sequence is to execution uncertainty or changes in mission priorities. 

 

4.1 Minimum Time Solution 

For the case study in Section 3, the Dijkstra’s algorithm identified the shortest path that 

completes both target flyovers as taking 2 days 14 hours and 11 minutes (2.5913 days) and 

requiring 7.037 m/s ΔV. This shortest path involves the use of a separate sequential 

manoeuvre, i.e. manoeuvres occur sequentially but with different spacecraft employed in 

Stage 1 and Stage 2.  
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A shortest path algorithm can only provide limited information about the overall scenario 

and the manoeuvre possibilities within it. However, restricting the graph to consider only 

manoeuvres with times close to that of the shortest path solution can provide greater insights; 

in this case the viable manoeuvre combinations are taken to be those with less than 10 m/s ΔV 

in total that complete both target flyovers within 10 minutes of the time taken by the shortest 

path. In Figure 5a, the number of same satellite manoeuvre options are detailed for the 

shortest time manoeuvre sequences, which reveals that a same satellite manoeuvre can 

accomplish the mission with less than a 1 second difference in mission time (2.5913 days). A 

same satellite manoeuvre sequence can be an attractive option for an operator as there is less 

disruption to the constellation with only one satellite being manoeuvred.  

Figure 5a also displays that the fastest same satellite solution has 8 same satellite 

manoeuvre options in Stage 2, which use varying amounts of ΔV but all complete the mission 

within 3.5 minutes of each other. In this way the graph can highlight resilient manoeuvres, as 

the other fast, same satellite manoeuvre options have fewer Stage 2 manoeuvres available; a 

consequence of manoeuvres not being possible within the time limit and the range of feasible 

ΔV. 

It should be noted that graphs, such as those displayed in Fig. 5, enable an operator to 

highlight Pareto dominance, where a Pareto dominant solution exists if it improves 

performance for at least one priority metric while not reducing performance according to any 

other priorities. For two priority metrics, defined as fast target coverage and number of viable 

ΔV manoeuvres after the first manoeuvre, then the most options solution in Fig. 5a would be 

Pareto dominant. The difference in time between the most options solution and the shortest 

path solution is negligible in a satellite observation application, but there is a clear dominance 

in the number of same satellite manoeuvres. 

Separate simultaneous and separate sequential manoeuvres both use two satellites to 

overfly both targets. This is a more disruptive approach but can ensure targets are covered 

with redundancy available. In Figure 5b, the shortest path manoeuvre sequence has both 

separate simultaneous and separate sequential manoeuvres available; therefore, if desired, a 

backup satellite could be tasked at both stages of the manoeuvre sequence while still 

guaranteeing the fastest response time. It is worth noting that the same satellite cannot be 

involved in both a separate simultaneous and separate sequential manoeuvre in a real 

scenario. Therefore when assessing the no. of separate satellite manoeuvre options in Figure 

5b for both separate manoeuvre types the largest number of options was selected from one of 

the two types rather than summing all of the options. As in the case of same satellite 

manoeuvres, a greater number of manoeuvre options corresponds to greater resilience by 

providing a range of possible manoeuvre options. 

The question of Pareto dominance occurs again with Fig. 5b, but to determine dominance 

of the most options solution over the shortest path there are two aspects that would need to be 

determined. Firstly, whether a flyover occurring 34 seconds later constitutes a reduction in 

performance and, secondly, whether having many separate simultaneous manoeuvres is an 

advantage as all satellites would have to be tasked before the first manoeuvre. 
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Figure 5: Shortest manoeuvre sequences for time, which complete both target flyovers within 10 

minutes of the fastest flyover, alongside the number of manoeuvre options available in Stage 2 for 

(a) same satellite manoeuvres with markers indicating the type of manoeuvre producing the 

shortest time and (b) separate satellite manoeuvres with the markers indicating the type of 

manoeuvre options available after the stage 1 node.   

 

 

4.2 Minimum ΔV Solution 

The shortest path solution, for ΔV, is one in which none of the satellites manoeuvre as the 

satellites naturally cover both targets in just over 3 days. A more interesting scenario emerges 

when constraining the graph so that the mission must be completed in under 3 days. This 

restriction produces a shortest path of 2.045 m/s ΔV, which includes 2 m/s for active 

manoeuvring and an additional 0.045 m/s for drag compensation. However, as in the 

minimum time case, the graph can provide greater insights than the shortest path alone when 

also restricting the total ΔV to 5 m/s or less, not including drag compensation.  

Figure 6 displays a similar result to the minimum time scenario in Figure 5, where same 

satellite manoeuvre options are available that perform almost as well as the shortest path; 

though it should be noted that fewer options are available than seen in the minimum time 

scenario. As in the minimum time case, the shortest path has both separate simultaneous and 

separate sequential manoeuvres available, see Fig. 6, and hence could be an attractive option 

if ensuring target capture is a higher priority than reducing constellation disruption. 
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Figure 6: Shortest manoeuvre sequences for ΔV, which complete both target flyovers with no 

more than 5 m/s ΔV, alongside the number of manoeuvre options available in Stage 2 for (a) 

same satellite manoeuvres with markers indicating the type of manoeuvre producing the shortest 

time and (b) separate satellite manoeuvres with the markers indicating the type of manoeuvre 

options available after the stage 1 node.   

 

 

5. RESULTS FOR REDUCED GRAPH 

This section focuses on the same scenario detailed in Section 3, but the graph is reduced.  

This demonstrates how the proposed method can be used for efficient mission design by 

enabling the effect of changes in mission parameters to be rapidly assessed by retraversing the 

graph. This process does not require individual manoeuvre options to be recalculated but 

instead generates a new graph by removing edges from the original graph. In this case only 

two satellites are considered, both in the same orbit plane, the swath width is reduced to 50 

km, as compared to the previously defined 100 km, and only manoeuvres requiring 5 m/s ΔV 

or less, excluding any drag compensation, are included.  

 

5.1 Minimum Time Solution 

The constraints on the ΔV and swath width produce a smaller, more constrained, graph. 

Despite these changes, the shortest path remains similar, taking 2 days 14 hours and 13.3 

minutes (2.5926 days). The main change is that there are no longer any same satellite 

manoeuvres that can achieve a fast time with the shortest same satellite sequence taking 

around 9 hours and 40 minutes longer. There are also no viable separate sequential 

manoeuvres, with separate simultaneous manoeuvres the only viable option for an operator 

looking for the fastest response.  

 

5.2 Minimum ΔV Solution 

As in the full graph case, the targets can be reached without active manoeuvring. In this 

case, the same satellite would flyover both targets in 7 days 1 hour and 35 minutes. When 

considering the 3 day requirement for flyover of both targets, the shortest path is 4.048 m/s 

ΔV compared with the 2.045 m/s ΔV possible in the full graph, due to the reduced swath 

width and fewer satellites. Figure 7 displays that the shortest path is the clear best choice as it 
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is in possession of a comparatively large number of options after the Stage 1 manoeuvre, with 

eight in total (four ΔV manoeuvres requiring 4 m/s and four requiring 5 m/s). However, as 

mentioned in Section 5.1, this same satellite sequence takes longer than the separate satellite 

options with a time of 2 days 23 hours and 54 minutes. 

 

 

 

Figure 7: Shortest manoeuvre sequences for ΔV, which complete both target flyovers with no 

more than 5 m/s ΔV for the reduced graph, alongside the number of same satellite manoeuvre 

options available in Stage 2 with markers indicating the type of manoeuvre producing the 

shortest time.  

 

 

6. CONCLUSIONS 

Analysing responsive spacecraft manoeuvres using graph techniques allows designers and 

operators to consider the full responsive mission, rather than just considering an individual 

manoeuvre that may be initially optimal but result in a poorer performance over the whole 

operational scenario. The graph captures not only the best sequence of manoeuvres but also 

presents the operator with a choice between optimality and resilience/redundancy. An initial 

manoeuvre can be identified as resilient if the same satellite can accomplish the mission for a 

wider range of ΔV inputs. An operator can also ensure redundancy by identifying manoeuvre 

sequences where other satellites can fulfil the mission if tasked simultaneously or 

subsequently. The use of the graph highlighted that, for the cases considered, a same satellite 

manoeuvre could reduce constellation disruption while still covering both targets within a 

second of the fastest time possible by manoeuvring two satellites. The presented technique, 

therefore, provides a method of analysing the performance of responsive constellations in 

operational scenarios. 
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