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Abstract
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically.
Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma
density ne > 0.25nc when the laser amplitude is larger than a certain threshold. To satisfy the phase-matching conditions
of frequency and wavenumber, the excited electrostatic mode has a constant frequency around half of the incident light
frequency ω0/2, which is no longer the eigenmode of electron plasma wave ωpe. Both the scattered light and the
electrostatic wave are trapped in plasma with their group velocities being zero. Super-hot electrons are produced by
the non-eigen electrostatic wave. Our theoretical model is validated by particle-in-cell simulations. The SRS driven in
this non-eigenmode regime is an important laser energy loss mechanism in the laser plasma interactions as long as the
laser intensity is higher than 1015 W/cm2.
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1. Introduction

Laser plasma interactions (LPIs) are widely associated
with many applications such as inertial confinement fusion
(ICF)[1–3], radiation sources[4], plasma optics[5, 6] and
laboratory astrophysics[7, 8]. The concomitant paramet-
ric instabilities found in LPI are nonlinear processes,
which can greatly affect the outcome[9]. Generally, laser
plasma instabilities[10, 11], especially stimulated Raman
scattering (SRS), stimulated Brillouin scattering (SBS) and
two-plasmon decay (TPD) instability, have been mainly
considered in ICF with the incident laser intensity less
than 1015 W/cm2[12–14]. However, the laser intensity may
be of the order of 1016 or even 1017 W/cm2 in shock
ignition[15–19], Brillouin amplification[20, 21] and the interac-
tions of high-power laser with matter[22–24]. Therefore, the
parametric instabilities close to the regime of subrelativistic
intensity need to be explored in depth.

As well known, SRS usually develops in plasma density
not larger than the quarter critical density ne 6 0.25nc due
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to the decay of the scattering light in its propagation in
the overdense density plasma[4, 10]. In the density region
ne 6 0.25nc, the electrostatic wave is the eigenmode of
the electron plasma wave. Relativistic intensity lasers can
reduce the effective electron plasma frequency, and therefore
eigenmode SRS may develop at ne > 0.25nc

[25]. In this
work, we show the presence of non-eigenmode SRS, which
is found at plasma density ne > 0.25nc even without consid-
ering the relativistic effect. The development of a non-eigen
electrostatic mode is described by the linear perturbations of
fluid equations, which may lead to a few subsequent nonlin-
ear phenomena[20, 26–28]. This mode develops only when the
laser intensity exceeds a certain threshold. The theoretical
model is supported by particle-in-cell (PIC) simulations.

2. Theoretical analysis of SRS in the non-eigenmode
regime

Generally, SRS is a three-wave instability where a laser
decays into an electrostatic wave, with frequency equal to the
eigen electron plasma wave, and a light wave. However, the
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Figure 1. Amplitude thresholds for the development of eigenmode and non-
eigenmode SRS in plasma above the quarter critical density. The threshold
for the case of eigenmode SRS ath−e is due to the relativistic effect.

stimulated electrostatic wave is no longer the eigenmode of
the electron plasma wave in the SRS non-eigenmode regime,
where both the frequencies of scattered light and electrostatic
field are nearly half of the incident laser frequency. The
mechanism of this instability can be described by the SRS
dispersion relation at plasma density ne > 0.25nc.

To investigate the non-eigenmode SRS mechanism in LPI,
we first introduce the non-relativistic dispersion relation of
SRS in cold plasma[10]
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Furthermore, in Equation (1), ω0 and ωe are the frequencies
of the incident laser and the electrostatic wave, respec-
tively. k0 and ke are the wavenumbers of the pump laser
and the electrostatic wave, respectively. Generally, we have
Re(ωe) = ωpe in the SRS eigenmode regime ne 6 0.25nc.
However, when the amplitude of the incident laser a0 is
larger than a threshold, a stimulated non-eigen electrostatic
mode Re(ωe) 6= ωpe will be developed at ne > 0.25nc.

Now we analytically solve Equation (1) under ne >

0.25nc. Let ωe = ωer + iωei , where ωer and ωei are the real
and imaginary parts of ωe, respectively. The wavenumber
of scattering light is a real ksc = 0 in the non-eigenmode
regime, i.e., the scattered light is trapped in the plasma. And
to keep the phase-matching conditions, we set the electro-
static wavenumber kec = k0c. In this case, the imaginary
part of Equation (1) can be simplified to
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Equation (2) is satisfied for any ωpe when ωer = ω0/2.
Therefore, the frequency of the electrostatic wave is a con-
stant, and it is independent of the plasma density. The phase
velocity of the electrostatic wave is around vph = ωer/ke &
c/
√

3 ∼ 0.58c.
Substituting ωer = ω0/2 into the real part of Equation (1),

one obtains the growth rate of the SRS non-eigenmode:
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The above equation indicates that the growth rate ωei is
reduced by the increase in plasma density. The threshold
ath−n for SRS developing in the non-eigenmode regime
can be obtained from 4ωpe(ω0 − ωpe) + ω

2
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Equation (4) indicates that 0.25nc is the turning point be-
tween eigenmode SRS and non-eigenmode SRS, where the
threshold ath−n = 0.

For the density region just near the quarter critical density
ne & 0.25nc, Equation (4) can be simplified to ath−n &
(8/
√

3)(ne/nc − 0.25). Therefore, the condition for the
excitation of non-eigenmode SRS in a plasma with density
ne & 0.25nc is that the amplitude of pump laser satisfies the
above condition, which is almost linearly proportional to the
plasma density.

In the following, we consider the relativistic modification
of the SRS non-eigenmode in hot plasma. The dispersion of
SRS under the relativistic intensity laser is[9, 25]
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where ω2
L = ω′2pe + 3k2

ev
2
th with ω′pe = ωpe/

√
γ , and

γ = (1 + a2
0/2)

1/2 and vth are the relativistic factor and
electron thermal velocity, respectively. Different from non-
eigenmode SRS, the threshold for eigenmode SRS devel-
oping in cold plasma with ne > 0.25nc is ω′pe 6 0.5ω0,
i.e., ath−e >

√
2(16n2

e/n2
c − 1). As a comparison, the driven

amplitudes for non-eigenmode SRS ath−n and eigenmode
SRS ath−e at different plasma densities are shown in Fig-
ure 1. One finds that the amplitude threshold for eigen-
mode SRS is much larger than for non-eigenmode SRS,
i.e., ath−e � ath−n . Therefore, the intensity of SRS in
ne > 0.25nc is underestimated according to the previous
eigenmode model. As an example, the threshold for laser
driving non-eigenmode SRS at plasma density ne = 0.26nc
is around ath−n = 0.045. A laser with amplitude a0 = 0.1
can develop non-eigenmode SRS in the plasma region with
density 0.25nc < ne . 0.273nc.
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Following the similar steps of the non-relativistic case, the
imaginary part of Equation (5) is simplified to
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We obtain the same identical relation for the real part ωer =

ω0/2 from Equation (6). Note that the relativistic factor and
electron temperature have no effect onωer which is no longer
the eigen frequency ωL . The dispersion relation of the non-
eigen electrostatic mode satisfies
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From Equation (7), we know that the group velocity of non-
eigen electrostatic wave is vg = δωer/δke ≈ 0. Therefore,
electrostatic wave will be trapped in the plasma.

The comparisons between the numerical solutions of
Equations (1) and (5) are exhibited in Figure 2. One finds
that Re(ωe) = ω0/2 is a constant even including relativistic
and temperature effects. The frequency of electron plasma
wave is reduced by the relativistic factor ω′pe = ωpe/

√
γ .

Therefore, the growth rate ωei is increased by the relativistic
modification as shown in Figure 2(a). On the contrary,
the frequency of electron plasma wave is enhanced by the

electron temperature ωL =

√
ω′2pe + 3k2

ev
2
th , and therefore

we find a decrease of the growth rate at higher temperature
Te = 1 keV in Figure 2(b). Note that the above studies are
discussed in the weak relativistic regime, where the plasma
density modulation induced by the laser ponderomotive
force is weak.

Phase-matching conditions are satisfied in the SRS non-
eigenmode regime, and therefore the frequency of concomi-
tant light is also Re(ωs) ≈ 0.5ω0, which can be obtained
from the dispersion relation of scattered light

ω2
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pe = Ds+ + Ds−, (8)
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2c2a2
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According to the linear parametric model of inhomoge-

neous plasma, the Rosenbluth gain saturation coefficient for
convective instability is G = 2πΓ 2/vsvp K ′[29], where Γ , vs
and vp are the instability growth rate, the group velocity of
scattering light and the plasma wave, respectively. K is the
wavenumber mismatch for incident light, scattering light and
plasma wave. As it is known, convective instability transits
to absolute instability when K = 0[30]. Based on the above
discussions, the mismatching term of non-eigenmode SRS is
Kne = k0−ke−ks = 0 due to ke = k0 and ks = 0 all the time.
Therefore, non-eigenmode SRS is an absolute instability in
inhomogeneous plasma.

In conclusion, different from normal SRS, a new type
of non-eigenmode SRS can develop in plasma with den-
sity ne > 0.25nc. The stimulated electrostatic mode has

Figure 2. Numerical solutions of SRS dispersion equation at plasma density
ne = 0.27nc with laser amplitude a0 = 0.1. (a) The relativistic modification
on the non-eigenmode SRS at Te = 0. (b) The effect of electron temperature
on non-eigenmode SRS. The dotted line and dashed line are the imaginary
part and the real part of the solutions, respectively.

an almost constant frequency around half of the incident
light frequency ω0/2, which is no longer the eigenmode
of the electron plasma wave ωpe. The group velocities of
concomitant light and electrostatic wave are zero in the non-
eigenmode regime. The non-eigenmode SRS develops only
when the laser intensity is higher than a certain threshold,
which is related to the plasma density.

3. Simulations for non-eigenmode SRS excitation

3.1. One-dimensional simulations for non-eigenmode SRS
in homogeneous plasma

To validate the analytical predictions for non-eigenmode
SRS, we have performed several one-dimensional simu-
lations by using the OSIRIS code[31, 32]. The space and
time given in the following are normalized by the laser
wavelength in vacuum λ and the laser period τ . A linearly
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Figure 3. Distributions of the electrostatic wave in (ke, ωe) space obtained for the time window [100τ , 400τ ] at plasma density ne = 0.26nc under (a) pump
laser amplitude a0 = 0.04 and (b) pump laser amplitude a0 = 0.046. (c) Distribution of the electromagnetic wave in (ks , ωs ) space obtained under the same
conditions as in (b). (d) Longitudinal phase space distribution of electrons under different laser amplitudes at t = 600τ .

polarized semi-infinite pump laser with a uniform amplitude
is incident from the left boundary of the simulation box.
In this subsection, only the fluid property of the instability
is considered, and therefore we set electron temperature
Te = 100 eV with immobile ions. The plasma density is
ne = 0.26nc.

Based on Equation (4) and Figure 1, we know that the
triggering threshold for non-eigenmode SRS is ath−n =

0.045 at density ne = 0.26nc. To validate the theoretical
threshold, two simulation examples under different laser
intensities are displayed here. Figure 3(a) shows the case
when the laser amplitude is less than the threshold (a0 =

0.04 < 0.045), and no instability mode can be found. When
the laser amplitude is increased to a0 = 0.046 > 0.045,
the non-eigen electrostatic mode can be found at kec ≈
0.86ω0 and ωe ≈ 0.499ω0 in Figure 3(b). The corresponding
electromagnetic mode with ksc ≈ 0 andωs ≈ 0.5ω0 is shown
in Figure 3(c). These simulation results agree well with the
analytical prediction. As discussed above, the phase velocity
of the non-eigen electrostatic wave is around vph ∼ 0.58c
at ne = 0.26nc. Therefore, numbers of electrons are heated
enormously at the nonlinear stage t & 600τ in the SRS

non-eigenmode regime as compared to the case below the
threshold as shown in Figure 3(d).

3.2. Two-dimensional simulations for non-eigenmode SRS
in homogeneous plasma

To further validate the linear development and nonlinear evo-
lution of non-eigenmode SRS in high-dimensionality with
mobile ions, we have performed several two-dimensional
simulations. The plasma occupies a longitudinal region from
25λ to 125λ and a transverse region from 5λ to 25λ with
homogeneous density ne = 0.26nc. The initial electron
temperature is Te = 100 eV. Ions are movable with mass
mi = 3672me and an effective charge Z = 1. An s-polarized
(electric field of light is perpendicular to the simulation
plane) semi-infinite pump laser with a peak amplitude a0 =

0.05 at focal plane x = 75λ is incident from the left boundary
of the simulation box.

According to Equation (4), we know that the incident
laser with peak amplitude a0 = 0.05 is sufficient to de-
velop non-eigenmode SRS at plasma density ne = 0.26nc.
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Figure 4. The plasma density is ne = 0.26nc for (a)–(d). (a) Distribution of the electrostatic wave in (ke, ωe) space obtained for the time window [320τ , 480τ ]
and transverse region [14.4λ, 15.6λ]. (b) Spatial distribution of electrostatic wave at t = 1850τ . (c) Spatial distribution of electromagnetic wave at t = 1850τ .
(d) Spatial distribution of ion density at t = 1950τ . The plasma density is ne = 0.265nc for (e) and (f). (e) Distribution of the electrostatic wave in (ke, ωe)
space obtained for the time window [320τ , 480τ ] and transverse region [14.4λ, 15.6λ]. (f) Spatial distribution of the ion density at t = 1950τ . Ee and Ez are
normalized by meω0c/e, where me and e respectively are the electron mass and electron charge. ni is normalized by nc .

The simulation results for plasma density ne = 0.26nc are
displayed in Figures 4(a)–4(d). Fourier transform of the elec-
trostatic wave is taken for the time window [320τ , 480τ ].
We summate the Fourier spectrum along the transverse
direction between y = 14.4λ and y = 15.6λ, and show
the distribution in Figure 4(a). One can find a non-eigen

electrostatic mode around kec = 0.86ω0 and ωe = 0.492ω0.
Note that the growth rate of SBS is about half of the
non-eigenmode SRS; therefore, SBS has little effect on
the development of non-eigenmode SRS. As discussed in
Section 2, the group velocities of the electrostatic wave and
electromagnetic wave associated with the non-eigenmode
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Figure 5. (a) The spatial–temporal distributions of electrostatic wave. (b) Distributions of the electrostatic wave in (ke, ωe) space obtained for the time
window [150τ , 200τ ]. (c) The spatial–temporal distributions of ion density. (d) Energy distributions of electrons at different times. Ee and ni respectively
are normalized by meω0c/e and nc .

SRS are zero. As a result, they will be trapped in the plasma.
This is confirmed in our numerical simulation as shown in
Figures 4(b) and 4(c) that the electrostatic wave and the
concomitant electromagnetic wave form localized structures.
The trapped light and electrostatic wave may cause the laser
energy deficit in ICF related experiments[33]. The trapped
waves expel the ions to form density cavity at later time
t = 1950τ as seen from Figure 4(d). These plasma cavities
subsequently affect the evolution of the non-eigenmode SRS
and SBS[20, 27, 28]. Note that this density cavity is formed
due to the non-eigenmode SRS, which is different from the
solitons generated by relativistic intensity lasers[34–38].

The laser with peak amplitude a0 = 0.05 < ath−n =

0.067 is insufficient to develop non-eigenmode SRS at
ne = 0.265nc. The simulation results under plasma density
ne = 0.265nc are displayed in Figures 4(e) and 4(f). The
comparison between Figures 4(a) and 4(e) indicates that the
pump laser with peak amplitude a0 = 0.05 fails to drive
non-eigenmode SRS at ne = 0.265nc when the amplitude
threshold is not reached. Only the ion acoustic wave
developed by SBS with wavenumber ki c = 2k0c = 1.72ω0

can be found in Figure 4(f). And no density cavities have
been formed under the conditions. These results further
indicate that non-eigenmode SRS is a seed for the subsequent
nonlinear physical phenomena.

3.3. One-dimensional simulations for non-eigenmode SRS
in inhomogeneous plasma

To study the non-eigenmode SRS in hot inhomogeneous
plasma, we have performed a simulation for the inhomoge-
neous plasma ne = 0.26 exp[(x − 50)/1000]nc with den-
sity range [0.26nc, 0.287nc]. The plasma locates in x =
[50λ, 150λ], and two 50λ vacuums are left on either side of
the plasma. The initial electron temperature is Te = 2 keV.
Ions are movable with mass mi = 3672me. The ion charge
and temperature respectively are Z = 1 and Ti = 1 keV. The
driving laser is a linearly polarized semi-infinite pump laser
with a uniform amplitude a0 = 0.07.

The spatial–temporal evolution of the electrostatic wave is
exhibited in Figure 5(a). We find that a strong electrostatic
wave has been developed at the front of plasma x . 60λ
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at t = 180τ . The electrostatic wave envelop is found to
be stationary due to its group velocity vg = 0. Note that
the spatial gradient has little effect on the development
of non-eigenmode SRS, in that the phase matching of the
three waves is always satisfied in inhomogeneous plasma.
Therefore, non-eigenmode SRS is an absolute instability.
Figure 5(b) shows the distribution of electrostatic wave
in (ke, ωe) space, where one can find a spectrum around
ωe = 0.499ω0. This result further validates that the fre-
quency of non-eigen electrostatic wave is independent of
plasma density and electron temperature. The electrostatic
and electromagnetic waves trapped in plasma will expel ions.
From Figure 5(c), we know that the ion density cavity is
gradually formed from t = 400τ at the front of plasma. Large
numbers of hot electrons are produced by the non-eigen
electrostatic field as shown in Figure 5(d). As discussed
above, the phase velocity of the non-eigen electrostatic field
is around 0.58c. The temperature of the electron hot tail at
t = 2000τ is around 141 keV. The transmission rate of the
pump laser through plasma is about 19.46% at t = 2000τ ,
which indicates that non-eigenmode SRS is an important
pump energy loss mechanism in the LPI as long as the laser
intensity is higher than 1015 W/cm2.

4. Summary

In summary, we have shown theoretically and numerically
that the non-eigenmode SRS develops at plasma density
ne > 0.25nc when the laser amplitude is larger than a certain
threshold. The electrostatic wave produced by the non-
eigenmode SRS has a constant frequency ω0/2, which is no
longer the eigen electron plasma wave ωpe. The phase veloc-
ity of the non-eigen electrostatic wave is about 0.58c, which
corresponds to an electron energy of 175 keV. Therefore,
super-hot electrons can be produced via the development of
the non-eigenmode SRS. The trapped electromagnetic wave
and electrostatic wave associated with this instability can
drive density cavities in plasma. Our theoretical model is
validated by PIC simulations. The non-eigenmode SRS is an
important pump energy loss mechanism in the LPI as long as
the laser intensity is higher than 1015 W/cm2.
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