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Abstract

Marine accidents are complex processes in which many factors are involved
and contribute to accident development. For this reason, effectively analyse
what combination of factors lead an accident event is a complex problem, es-
pecially when human factors are involved. State-of-the-art methods such as
Human Factor Analysis and Classification System, Human reliability Assess-
ments, and simple Statistical Analysis are not effective in many situations
since they require the intervention of human experts with their limitations,
biases, and high costs. The authors propose to use a data-driven approach
able to utilise the information present in historical databases of marine acci-
dent for the purposes of establishing the most influential human factors. For
this purpose a two-stage approach is presented: first, a data-driven predictive
model is built able to predict the type of accident based on the contributing
factors, and then the different contributing factors are ranked based on their
ability to influence the prediction. Results on a real historical database of
accidents provided by the Marine Accident Investigation Branch will support
the proposed novel approach.
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1. Introduction

Historic accident analysis reveals that shipping accidents have always
been a concern for the maritime sector, incurring in significant economic
consequences and social impacts (Eliopoulou et al., 2016; Wang, 2002). In
order to reduce accidents, the shipping industry is continuously developing
and implementing safety measures, which overall have a significant contribu-
tion to maritime safety (Hesse, 2003).

Marine accidents are complex processes, in which usually there is not
just a single factor involved (Hetherington et al., 2006; Jin et al., 2002; Kris-
tiansen, 2013). Therefore, it becomes difficult to effectively analyse what
combination of factors lead to a specific accident event. For this reason, the
increase in maritime safety studies and consequent breakthroughs in the liter-
ature is relatively slow compared to the rate of accidents (Soner et al., 2015).
Considering that around 90% of world trading is still carried out by shipping
companies (Chauvin et al., 2013), and that the world fleet is constantly en-
larged, this can be translated into an increase in the maritime accidents rate.
Hence, even a small improvement in maritime accidents prevention can make
a tremendous positive impact on safety. The complexity of identifying all the
variables involved in accidents and non scientific methods followed during ac-
cident investigations, make extremely challenging to integrate lessons learnt
from past accidents into safety assessments. This situation creates a barrier
to enhancing safety.

When analysing the available literature, it becomes evident that human
factors had a high contribution to past accidents. According to Azadeh &
Zarrin (2016), human factors are the cause of at least 66% of the accidents
and more than 90% of the incidents not only in the maritime sector but also
in different industries (i.e. aerospace or nuclear). For instance, the explo-
sion of the Space Shuttle Challenger or the Three Mile Island accident were
attributed to human errors (Azadeh & Zarrin, 2016). Furthermore, O’Hare
et al. (1994) identified that human factors are responsible for up to 80% of
the accidents reported in both civil and military aviation. Regarding the
maritime industry, different authors have also highlighted that some form of
human error triggers more than 80% of maritime casualties (Graziano et al.,
2016; Navas de Maya et al., 2018; Rothblum, 2000; Turan et al., 2016). How-
ever, despite the high contribution of human factors into past accidents, it
was not until the sink of the vessel Herald of Free Enterprise in 1987 that the
International Maritime Organization (IMO) started considering human fac-
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tors from a different perspective (Schröder-Hinrichs et al., 2013). In the last
decades, various authors have conducted numerous studies to identify and
successfully evaluate the contribution of human factors into past accidents.
By analysing the relevant literature, it is possible to identify three different
approaches regarding the analysis of human factors.

The first and most applied technique to analyse and classify human fac-
tors is the well-known HFACS method (Shappell & Wiegmann, 2000), which
initially was designed for military aviation. Thus, HFACS was successfully
expanded to other strategic industries as civil aviation, railway, mining and
maritime (Celik & Cebi, 2009; Chauvin et al., 2013; Chen et al., 2013; Luo
& Shin, 2016; Schröder-Hinrichs et al., 2011; Yıldırım et al., 2017). How-
ever, although HFACS has a strong theoretical foundation (i.e. it is based
on Reason’s ideas and theory), it presents some limitation. HFACS have
industry restrictions, as it was designed to analyse the causes of aviation
accidents, then some categories within this model are not applicable to other
sectors. Hence, HFACS presents a remarkable lack of versatility. Moreover,
although psychological factors can be identified by interviewing relevant per-
sonnel when applying HFACS, these psychological factors will be limited due
to the subjectivity of using expert judgement (Fu et al., 2017). Finally, by
applying HFACS, the scope of the investigation is limited to the predefined
taxonomy and organisation level, hence; it will be altered in each accident
outcome or scenario being modelled.

The second technique, HRAs, has been extensively applied to diverse
sectors. It is possible to establish two different generations regarding HRAs.
Within the first generation, the concept of human error is associated with
the weaknesses of people. In this first category, some representatives HRA
methods are the Technique for Human Error Rate Prediction (THERP), the
Human Error Assessment and Reduction Technique (HEART) or the Jus-
tification of Human Error Data Information (JHEDI). On the other hand,
the second generation of HRAs are characterised by approaching human be-
haviour to risk analysis. In this category, some representatives HRA methods
are the Technique for Human Event Analysis (ATHEANA) or the Cognitive
Reliability and Error Analysis Method (CREAM) (Yang et al., 2013). The
above-mentioned methods have been applied in numerous case studies (Cas-
tiglia et al., 2015; Kirwan, 1997; Kumar et al., 2017; Ung, 2015, 2019; Yang
et al., 2014; Zhang et al., 2019; Zhou et al., 2017).

However, the majority of the above HRAs apply some sort of expert
judgement, as the human element contribution into an accident is difficult
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to quantify numerically. Nevertheless, by incorporating expert opinion, the
results are highly influenced by the own expert knowledge, hence, the results
become subjective. Besides, HRAs are designed for a specific sector or sce-
nario. This limitation does not allow creating a generic model, which could
be easily applied to any maritime accident. Hence, the necessity to model a
new scenario for each case study is time and cost consuming. Thus, there is
a lack of a proper technique, which could be applied to any accident scenario,
to identify the main human-contributing factors into maritime accident.

Finally, additional techniques have been applied in the literature to iden-
tify accident contributing-factors and prevent accidents. First, statistical
analysis has been extensively performed to identify accident contributing-
factors (Bye & Aalberg, 2018; Eliopoulou et al., 2016; Papanikolaou et al.,
2014; Schlögl et al., 2019; Ventikos et al., 2018; Yıldırım et al., 2017).

However, the aforementioned efforts of statistically modelling the relation-
ship between contributors and accidental outcomes have been difficult due to
the type of data and inconsistency in data collection. In addition, alternative
techniques that have been applied in the literature for risk assessment and
accident prevention are Bayesian Networks (BN), key risk indicators or fuzzy
logic (Abou, 2012; Hänninen, 2014; Shi et al., 2018).

Nevertheless, despite all the research carried out in the past decades on
the analysis of human factors in accident analysis, there are still some open
questions and limitations (Jeong et al., 2016). In particular, the main limita-
tions of the above describe techniques lie in the fact that the human element
contribution into an accident is difficult to quantify, therefore there is the
necessity of applying expert judgement. Consequently, the results are biased
by the experts’ past experience and subjective to the single expert interpre-
tation of the events, and the quality of the results may not be instrumental
in understanding the actual most important maritime accidents contributing
human factors. Moreover, human expert judgement is time consuming and
expensive. Finally, the solutions available in the literature are frequently
tailored to a specific case, therefore the transferability of approaches is diffi-
cult to achieve due to demanding adaptation procedures related to the time
necessary to engage and involve the adequate expertise. Therefore the appli-
cation on different accidental scenario and sectors may be either not doable
or effective (Schröder-Hinrichs et al., 2011).

In this paper, the authors propose to utilise Data-Driven Models (DDMs)
(Oneto, 2019; Shalev-Shwartz & Ben-David, 2014; Vapnik, 1998) to create
models exploiting robust statistical inference procedures, and historical data
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to perform unbiased predictions on previously unseen cases. Recently, DDMs
have proved to be valid instruments for transport related problems (Cipollini
et al., 2018; Coraddu et al., 2017; Iranitalab & Khattak, 2017; Osman et al.,
2019; Petersen et al., 2012; Smith et al., 2013) and, in some preliminary
works (Akyuz et al., 2017; Grech et al., 2002; Hänninen, 2014; Lützhöft,
2004; Praetorius et al., 2015; Tirunagari et al., 2012), it has been shown that
DDMs applied to the study of the human factor in accident analysis may
produce interesting results.

In this paper, the authors propose a novel approach that can recognise
the most important human factors involved into a specific accident outcome,
eliminating the necessity of expert judgement and therefore the human bias,
by simply exploiting and historical database of marine accidents. Moreover,
another advantage of this human unbiased proposed approach lies in the abil-
ity to adapt the methodology on a different accidental scenario and sectors
(i.e. aviation and railway) and taxonomy. To this aim, the authors propose
a two-stage approach:

(I) first a data-driven predictive model is built, leveraging on an histori-
cal accident database provided by the Marine Accident Investigation
Branch (MAIB), able to predict the type of accident bases on the con-
tributing factors;

(II) then the different contributing factors are ranked based on their ability
to influence the prediction.

Ensemble methods (Breiman, 2001) and Kernel methods (Hsu & Lin, 2002;
Polato et al., 2018; Shawe-Taylor & Cristianini, 2004) represent the state-of-
the-art for dealing with Phase (I). During Phase (II), state-of-the-art feature
ranking methods for Ensemble and Kernel methods (Guyon & Elisseeff, 2003;
Guyon et al., 2008; Louppe, 2014; Louppe et al., 2013) will be exploited to
rank the human factor and then to identify the most important maritime
accidents contributing factors.

The paper is structured as follows. Section 2 provides a detailed descrip-
tion of the data-set, including the data source, the data structure and the
data description. In Section 3 the authors’ proposal is described. Section 4,
includes the experimental results obtained. Finally, Section 5 concludes the
paper and discuss future perspectives related to this work.
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2. Problem Description and Available Data

As described in the previous section, marine accidents are complex pro-
cesses in which, usually, there is not a single factor solely responsible for the
accident outcome. Hence, efforts must be focused on developing a suitable
approach that allows identifying those factors with a higher contribution
to accidents. Thanks to this information, specific strategies (i.e. adequate
training programs or amend of existing specification) can be developed and
applied in order to mitigate them and enhance the overall maritime safety.

The method proposed in this paper for the identification of main human
factors responsible for past maritime accidents is applied to a historical ac-
cident database, which was provided by the Marine Accident Investigation
Branch (MAIB)1. The database comprises marine accidents involving UK
vessels worldwide and all vessels operating in UK territorial waters. Thus,
it includes detailed information about 91 accidents, in which human factors
were recorded, for the period 2011-2016. Moreover, the aforementioned pe-
riod was selected as MAIB started recording human factors accidental data
in 2011.

Each accident in the database consists of 94 Boolean features (see Ta-
ble 1), corresponding to the presence or not of a particular accident con-
tributing factor, and an additional feature which identifies the accident cat-
egory (see Table 2). The full list of accident contributing factor are provided
by the European Maritime Safety Agency (EMSA) and reported in (EMSA,
2016). In the available database nine accident categories, or accident out-
comes, are present and the following description are taken and adapted from
EMSA (EMSA, 2018):

• Grounding/Stranding (C1): event during which a moving navigating
ship, either under command or not (i.e. power or drift conditions),
strikes the sea bottom, shore or underwater wrecks;

• Capsizing/Listing (C2): event during which the ship no longer floats
in the right-side-up mode due to external factors (i.e. negative initial
stability, transversal shift of the centre of gravity, or the impact of
external forces;

• Contact (C3): casualty caused by a ship striking or being struck by an
external object. Thus, the sea bottom is excluded (i.e. a contact with

1https://www.gov.uk/government/organisations/marine-accident-investigation-branch
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the sea bottom is considered as a grounding event);
• Collision (C4): casualty caused by ships striking or being struck by

another ship. This event might involve more than two vessels;
• Fire/Explosion (C5): an uncontrolled ignition on board of a ship;
• Flooding/Foundering (C6): event during which the ship is taking water

on board; It can be progressive or massive;
• Hull Failure (C7): failure event affecting the general structural strength

of the ship;
• Loss of Control (C8): event during which a total or temporary loss of

the ability to operate or manoeuvre the ship, failure of electric power
occurs;

• Damage to Ship or Equipment (C9): damage to equipment, system or
the ship not covered by any of the previous casualty types.

In addition to what has been provided by MAIB in the database, the
method proposed in this paper is applied to different relabelling of above
described database, aiming to demonstrate that the results remain signif-
icantly constant, independently of the accident outcome analysed. Hence,
the method is applied to four different aggregations of the outcome of the
accident (see Table 3):

• Aggregation 1 (A1): all the nine accident categories outcomes have
been considered as independent categories. However, by considering
each accident category separately, the number of data points in each
category is low, which results in an unbalanced category distribution;

• Aggregation 2 (A2): in order to mitigate the unbalancing effect among
categories and to increase the number of data points for each category,
the previous accident outcomes have been aggregated into two main
categories: Navigational Accidents (NA), which includes Grounding/
Stranding (C1), Contact (C3), and Collision (C4), and Non- Naviga-
tional Accidents (NNA), which includes all the remaining categories
(C2 + C5 + C6 + C7 + C8 + C9) considered as a unique group;

• Aggregation 3 (A3): the accident outcomes have been aggregated into
seven groups, the first group incorporate all NA, while the NNA are
considered as an individual category;

• Aggregation 4 (A4): the nine accident outcomes have been aggregated
into four similar accident categories. NAs have been still considered as
an independent group as the first aggregation. The Hull Failure (C7),
Loss of Control (C8) and Damage to Ship or Equipment (C9) con-
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Abb. Feature [%] Abb. Feature [%]

F01 Anthropometric factors 2.2 F48 Lack of motivation/morale 13.2

F02 Audit 2.2 F49 Lack of priority to IMR 2.2

F03 Checks 2.2 F50 Lack of resources 2.2

F04 Conflicting orders, cross-pressure 1.1 F51 Lack of responsibility for own job 2.2

F05 Contingency plans not updated 2.2 F52 Lack of skill 30.8

F06 Cowboy attitudes, horseplay 1.1 F53 Lack of warning systems 1.1

F07 Crisis handling 1.1 F54 Lacks initiative to deal with emergencies 8.8

F08 Cross-pressure from schedule 0.0 F55 Language problem 1.1

F09 Design 0.0 F56 Life saving equipment 0.0

F10 Design error 3.3 F57 Long working periods, much overtime 5.5

F11 Deviation from standards/specifications 1.1 F58 Low job satisfaction, monotony 1.1

F12 Display design, controls 2.2 F59 LTA assessment of needs and risks 2.2

F13 Emergency plans 1.1 F60 LTA communication 8.8

F14 Emergency procedures 2.2 F61 LTA design verification 1.1

F15 Emergency training program 7.7 F62 LTA Formal safety assessment, risk analysis 12.1

F16 Expectations of supervisor is unclear 4.4 F63 LTA medical services provided 0.0

F17 Failure not detected during IMR 1.1 F64 LTA mental and psychological state 17.6

F18 Follow-up of non-conformities 0.0 F65 LTA physical/physiological capability 3.3

F19 Frequent change of watch schedule 1.1 F66 LTA planning 1.1

F20 Hazardous/ messy workplace 0.0 F67 LTA Safety plan and program 2.2

F21 Health control of personnel 1.1 F68 LTA System review and evaluation 2.2

F22 Hiring and selection policy 1.1 F69 Management training 0.0

F23 Idleness, waiting 1.1 F70 No review or critical tasks 2.2

F24 Improper performance of maintenance/repair 2.2 F71 Person-to-person conflict 0.0

F25 Improper supervisory example 12.1 F72 Pressure to keep schedule and costs 1.1

F26 Inadequate briefing, instruction 12.1 F73 Regulation 2.2

F27 Inadequate control of life saving equipment 1.1 F74 Regulatory procedures 1.1

F28 Inadequate fighting equipment 1.1 F75 Regulatory standards 4.4

F29 Inadequate illumination 0.0 F76 Resistance to change 2.2

F30 Inadequate maintenance 1.1 F77 Restricted fairway 1.1

F31 Inadequate manning 5.5 F78 Right tools and equipment unavailable 1.1

F32 Inadequate procedures and check lists 14.3 F79 Safety awareness, cutting corners 22.0

F33 Inadequate promotion of Safety 4.4 F80 Sea motion 0.0

F34 Inadequate standards or specifications 5.5 F81 Selection/training of officers 1.1

F35 Inadequate testing 1.1 F82 Social and cultural barriers and conflicts 6.6

F36 Inadequate training program 12.1 F83 Supervision 0.0

F37 Inadequate work methods 15.4 F84 Supervisors not in touch 1.1

F38 Inadequate work preparation 18.7 F85 Surveillance 2.2

F39 Inappropriate peer pressure 1.1 F86 Too high work load/low work load 3.3

F40 Inappropriate regulations 1.1 F87 Too low visibility for observation 2.2

F41 Inspection 6.6 F88 Traffic density hinders vessel control 1.1

F42 Lack of communication and coordination 4.4 F89 Training ignored 8.8

F43 Lack of co-ordination of tasks 4.4 F90 Unclear roles and responsibility 0.0

F44 Lack of information 5.5 F91 Use of wrong equipment 1.1

F45 Lack of knowledge 34.1 F92 Work instruction 1.1

F46 Lack of leadership 4.4 F93 Work place inspections 0.0

F47 Lack of maintenance 1.1 F94 Wrong person assigned 0.0

Table 1: Dataset input variables. [%] means % of elements in that feature that are equal
to 1 (actually contributing factor).

Abb. Accident Type Size

C1 Grounding/Stranding 23

C2 Capsizing/Listing 5

C3 Contact 12

C4 Collision 19

C5 Fire/Explosion 9

C6 Flooding/Foundering 12

C7 Hull Failure 1

C8 Loss of Control 7

C9 Damage to Ship or Equipment 3

Table 2: Accident categories and sizes.
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formed a second cluster that represents Equipment, Operational and
Structural Accidents (EOSA). This aggregation was created as EOSA
might be considered as prior conditions that can derive into additional
NA accidents. Fire/Explosion (C5) was considered as an independent
group (F\EA) due to its own accident nature. As a final group, related
to Safety and Stability Accidents (SSA), Capsizing/Listing (C2) and
Flooding/Foundering (C6) were considered as single grouped.

Abb. Group Size

A1 C1, C2, C3, C4, C5, C6, C7, C8, C9 -

A2 NA (C1 + C3 + C4), 54

NNA (C2 + C5 + C6 + C7 + C8 + C9) 37

A3 NA (C1 + C3 + C4), 54

C2, C5, C6, C7, C8, C9 -

A4 NA (C1 + C3 + C4), 54

EOSA (C7 + C8 + C9), 11

F\EA (C5), 9

SSA (C2 + C6) 17

Table 3: Proposed aggregation and sizes. - means that the size is reported already in
Table 2

3. Data-Driven Methods

In order to address the specific problem described in the previous section,
the authors will adopt state-of-the-art data-driven approaches. In particu-
lar, given the available data, the problem of determining the most influential
human factors in maritime accidents can be mapped into a standard feature
ranking problem (Shalev-Shwartz & Ben-David, 2014). The specific problem
here is to rank the human factors based on their ability to be influential in
predicting the type of accident in the set of accidents available. This will
allow stating that, based on the available data, the top human factors in the
ranking are the most influential in understanding a particular incident and
the most influential in understanding the maritime accidents. To perform
an accurate, effective, and reliable feature ranking a two-steps approach is
implemented. The first step is to build a predictive model (Shalev-Shwartz
& Ben-David, 2014) of the accident type based on the presence or not of
the different human factors. This step can be performed using different ap-
proaches, in this paper the authors will exploit two different state-of-the-art
approaches: Random Forests (RF) (Breiman, 2001; Harb et al., 2009) and
Multiclass (Hsu & Lin, 2002) Support Vector Machines (Shawe-Taylor &
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Cristianini, 2004) with Boolean Kernels (Polato et al., 2018) - MSVM-BK,
since the presence or not of the different human factors can be represented
with a Boolean vector. The second step is to rank (Guyon & Elisseeff, 2003;
Guyon et al., 2008) the different human factors based on their ability to in-
fluence the model outputs. For what concerns this second steps RF naturally
provide, as a by-product of the model creation, the ranking of the different
input features (Louppe, 2014) while for MSVM-BK the authors will exploit
the Backward Elimination algorithm to extract the same information (Larose,
2015).

3.1. Building a Predictive Model

Let us consider the now-classical multiclass classification problem (Shalev-
Shwartz & Ben-David, 2014) with a Boolean feature space. In particular, let
us consider an input space X = 0, 1d, consisting of d features (the presence
or not of a particular human factor), and an output space Y = {1, 2, · · · , c}
consisting of c possible classes (the accident type, c depends on the type of
grouping). The authors’ proposed approach is to estimate the unknown rule
that maps an item X ∈ X to an item Y ∈ Y . It is worth noting that the
rule can be non-deterministic (Shalev-Shwartz & Ben-David, 2014) and some
values of X may be missing (Donders et al., 2006). For this reason, an ad-
ditional category is introduced for that particular feature. A set of labelled
samples Dn = {(X1, Y1), · · · , (Xn, Yn)} is available for the learning phase. A
learning algorithm Ah, characterised by its hyperparameters h, maps D to
a function f = Ah(Dn). The error that f commits in approximating the
unknown mapping rule is measured with reference to a loss function `. In
this particular classification problem framework, the authors decided to use
the loss function that counts the number of misclassified samples have been
chosen: `(f(X), Y ) = [f(X) 6= Y ], in which the Iverson bracket notation is
exploited. The expected error of f is generally referred as to generalisation
error (Shalev-Shwartz & Ben-David, 2014) and defined as

L(f) = E {`(f(X), Y )} . (1)

It is evident that L(f) cannot be computed, as the distribution of the samples
is unknown, nevertheless, it is still possible to compute its empirical estimator
(empirical error) which is defined as

L̂(f, Tt) =
1

t

∑
(X,Y )∈Tt

`(f(X), Y ), (2)
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where Tt = {(X1, Y1), · · · , (Xt, Yt)} must be a different set from Dn, which
has been used to build f to ensure that the estimator of the model quality
is unbiased Oneto (2019).

When it comes to binary classification problems, namely Y ∈ {±1},
RF (Breiman, 2001) can be considered as a state-of-the-art powerful learn-
ing algorithm. Nevertheless, to describe the RFs in detail, the authors
would like to recall the definition and construction of a binary Decision Tree
(DT) (Rokach & Maimon, 2008). A binary DT represents a flowchart-like
structure in which each internal node represents a test of a feature, each
branch is associated with the outcome of the test, and each leaf node rep-
resents a class label. In this framework, a path from the root to a leaf is
representing a classification rule. A recursive schema is utilised to build the
DT until it reaches its desired depth nd. Each node of the DT, starting
from the root node, can be built by choosing both the attribute and the cut
that most effectively splits the set of samples into two subsets based on the
information gain.

Formally, for Boolean features, the node test of a feature j (briefly called
cut or split) can be defined as

Xj = 0. (3)

Based on this cut, it is possible to split the original data Dn into two subsets
D0
n and D1

n such that

D0
n = {(X, Y ) ∈ Dn|Xj = 0}, D1

n = Dn \ D0
n. (4)

Then, it is possible to define the information gain of Eq. (3), namely the
reduction in entropy (or confusion) induced by the cut

G(j) = H(D)− |D
0
n|
n

H(D0
n)− |D

1
n|
n

H(D1
n), (5)

where H is the entropy of the set of samples

H(D) =
∑

i∈{Distinct values of Y ∈D}

|D(Y = i)|
|D|

logc

(
|D(Y = i)|
|D|

)
(6)

D(Y = i) = {(X, Y ) ∈ D|Y = i}. (7)

Consequently, the best cut is defined as

j∗ = arg max
j∈{1,··· ,d}

G(j). (8)
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At this point, it is possible to briefly describe the learning phase of each of
the nt trees that are composing the RF. In particular, from Dn, nb samples
are taken with replacement, and D′ is built. A tree is constructed with D′,
but the best split is chosen among a subset of nv predictors over the possible
nf predictors randomly chosen at each node. The tree is grown until its
depth reaches the maximum value of nd or until all the samples in D′ are
correctly classified. During the classification phase of a previously unseen X,
each tree classifies X into a class Y ; the final classification is the mode of
all the answers of each tree in the RF. Note that nb, nv, nd, and nt are the
hyperparameters of the RF. If nb = n, nv =

√
nf , and nd = ∞ we obtain

the original RF formulation (Breiman, 2001), where nt is usually chosen as
a tradeoff between accuracy and efficiency (Orlandi et al., 2016).

In the case of binary classification problems, namely Y ∈ {±1}, one of
the most powerful learning algorithm, are the SVM. Then, the SVM classifier
is defined as

f(X) = sign(W Tφ(X) + b), (9)

where φ is an unknown nonlinear function which maps {0, 1}r → RD the
weights W ∈ RD and the bias B ∈ R are found by solving the following
(primal) convex constrained quadratic programming problem:

min
W,B,ξ

1

2
‖W‖2 + C1T ξ (10)

Yi
(
W Tφ(Xi) +B

)
≥ 1− ξi, ξi ≥ 0,

where 1i = 1 ∀i ∈ {1, · · · , n} (Shawe-Taylor & Cristianini, 2004). This prob-
lem is known as the Tikhonov formulation of the SVM, as it can be seen as
a regularised ill–posed problem. The introduction of the n Lagrange multi-
pliers α1, . . . , αn, allow writing the Problem (10) in its dual form, for which
state-of-the-art solvers are available (Shawe-Taylor & Cristianini, 2004)

min
α

1

2

n∑
i=1

n∑
j=1

αiαjYiYjK(Xi, Xj)−
n∑
i=1

αi (11)

0 ≤ αi ≤ C,
n∑
i=1

yiαi = 0,

where K(Xi, Xj) = φ(Xi)
Tφ(Xj) is a suitable kernel function (Schölkopf

et al., 2001) which allow solving the problem without knowing explicitly
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φ (Shawe-Taylor & Cristianini, 2004). After solving Problem (11), it is pos-
sible to use the Lagrange multipliers in order to define the dual form of the
SVM classifier

f(x) =
n∑
i=1

YiαiK(Xi, X) + b. (12)

There are many hyperparameters in SVM. C in Problems (10) and (11) is the
first one. The second one is the kernel in Problem (11). The third one is the
kernel parameters if present. For what concerns the type of kernels, some of
them are specifically developed for the case when X = {0, 1}d and are called
Boolean Kernels, reviewed and evolved here (Polato et al., 2018). With-
out describing them in details, since the mathematical background needed is
over-complicated for the purposed of this paper, the idea is to not represent
all the possible analogical functions in Rd but just all the possible Boolean
functions in {0, 1}d. This allows to remove much useless function and im-
prove the quality of the learning procedure. All these Boolean Kernels are
characterised by one or more hyperparameters and in this work we will ex-
plore all the kernels and all the ranges of hyperparameters adopted in (Polato
et al., 2018). Even if SVM is a very powerful tool, real world problems are
frequently characterised by c > 2 classes. SVM cannot naively tackle multi-
class classification problems, and to overcome this limitation of SVM several
techniques can be applied (Hsu & Lin, 2002). As the problem under inves-
tigation is a multiclass classification problem, the authors decided to exploit
the All-Versus-All (AVA) approach. The main reasons behind this choice are:
(a) AVA is the simplest method, (b) if the original problem is balanced, AVA
does not create unbalanced classification problems (c) the proposed learning
problem is characterised by a small size. In particular, the AVA method
consists in building c(c− 1)/2 training sets each one containing data from two
different classes, u and v. These sets are used for training c(c− 1)/2 different
binary classifiers and the resulting models are saved for the forward phase.
To classify a new pattern, the resulting model is applied in input to all the
binary classifiers, and the majority voting is taken as a predictor.

As described for both M-SVM-BK, all the proposed algorithms have a se-
ries of hyperparameters that need to be tuned and once the model is built a
statistical reliable estimation of its performance need to be constructed. The
optimal hyperparameters selection and the unbiased estimation of the perfor-
mance of the final model are fundamental problems when it comes to learning
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from data (Oneto, 2019). The authors applied the resampling methods be-
cause of their simplicity and proved effectiveness in real world problems ap-
plication (Oneto, 2020). The original dataset Dn is resampled once (or many
times (r)), with or without replacement, to build three independent datasets:
training Lil, validation V iv, and test sets T it , with i ∈ Ir = {1, · · · , r}. Note
that ∀i ∈ Ir

Lil ∩ V iv = �, Lil ∩ T it = �, V iv ∩ T it = �, Lil ∪ V iv ∪ T it = Dn. (13)

The best set of hyperparameters has been selected to create models based on
Lil with i ∈ Ir which is characterised by good, on average, performances with
respect to V iv with i ∈ Ir. Since the data belonging to Lil are independent
from V iv, the best set of hyperparameters should belong to the one which can
achieve a small error on a data set that is independent from the training set.
When the best set of hyperparameters is found, it is possible to select the
best model training the algorithm using the whole dataset and test it in on
T it . The model’s error, achieved with the training on Lil ∪ V iv is independent
from T it , and for this reason, the error committed on the test set is an unbi-
ased estimator of the generalisation error. In this work the non-parametric
Bootstrap has been utilised, as it is the most powerful resampling method.
For this reason, l = n and Lil must be sampled with replacement from Dn,
while V iv and T it must be sampled without replacement from the sample of
Dn that has not been sampled in Lil (Oneto, 2019). It is worth noting that
for the non-parametric Bootstrap procedure r ≤

(
2n−1
n

)
.

3.2. Feature Ranking

As described above from the models build with RF and M-SVM-BK, it
is possible to rank the Boolean features (human factor present or not for
a particular accident) in order to understand the most important ones for
understanding the maritime accidents.

In this context, feature rankings methods based on RF is surely a state-of-
the-art approach (Louppe, 2014; Louppe et al., 2013). Several measures are
available for feature importance in Random Forests. One approach is the one
based on the Gini Importance or Mean Decrease in Impurity (MDI) which
evaluates each feature importance as the sum over the number of splits (across
all the trees) including the feature, proportionally to the number of samples
it splits. Another powerful approach is the one based on the Permutation
Importance or Mean Decrease in Accuracy (MDA), where the importance is
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assessed for each feature by removing the association between that feature
and the target. This can be achieved with a random permutation (Good,
2013) of the values of the feature, and measuring the resulting increase in
error. The influence of the correlated features is also removed. In particular,
for every tree, two quantities are computed: the first quantity is the error
on the out-of-bag samples utilised during the prediction, while the second
quantity is the error on the out-of-bag samples after a random permutation
of the values of a variable. Consequently, these two values are subtracted,
and then the average of the result over all the trees in the ensemble represents
the raw importance score for the variable under consideration. Both MDI
and MDA can be adopted since they can be easily carried out during the
main prediction process inexpensively.

Nevertheless, also M-SVM-BK is a very powerful technique for building
a predictive model but unfortunately it does not provide, naturally, also a
ranking of the features exploited for building the model. For this purpose
a wrapper method (Guyon & Elisseeff, 2003; Guyon et al., 2008) has been
exploited which allow deriving this information a posteriori. The method
that will be used is the backward elimination (Guyon & Elisseeff, 2003) which
eliminates one feature. In particular, for each of the features two quantities
are computed: the error on a test set when all the features are exploited and
the same quantity when the particular feature is removed. Then the raw
importance is computed bu subtracting the second from the first. Then the
features are ranked based on this score.

Note that for each method, multiple ranking results are available. One
for each of the type of labels described in Section 2 and, in case of RF, one
for each of the feature ranking methods (for RF the authors considered MDI
and MDA, while for M-SVM-BK just the backward elimination). Finally,
the different rankings have been aggregated into a unified merged ranking by
using Borda’s method (Sculley, 2007), where we summed the two position of
each feature in the two rankings and sorted the ranking accordingly.

4. Experimental results

In this section, the authors report the results of applying the methodol-
ogy proposed in Section 3 on the data described in Section 2 for solving the
problem of understanding what the most important factors which charac-
terise the maritime accidents are. For this purpose, during the model selec-
tion phase the authors search nb ∈ {0.70, 0.75, · · · , 1.20}n, nv ∈ d0.00,0.05,··· ,1d
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and nd ∈ {1, 2, 4, 8, 16, 32, 64} for RF where we set nt = 5000 since increasing
more nt does not change the results. For what concern M-SVM-BK the au-
thors search C ∈ 10{−6.0,−5.5,··· ,6.0} and select the kernels and its hyperparam-
eters between all the possible combination proposed in (Polato et al., 2018).
Tables 4 and 5 report the confusion matrices (in %) for RF and M-SVM-BK
on the different classification problems described in Section 2. Because of
space constraints, the average % has been reported, in any case variance is
always below the 5% of the results. Both RF and M-SVM-BK models are
characterised by a satisfactory accuracy for the task under consideration.

From Tables 6 to 13, we reported the top 10 features ranked by RF and
M-SVM-BK on the different classification problems described in Section 2,
considering the different aggregations. From the results, it is possible to
observe that the methodology is robust and not affected by the particular
aggregation choice, providing a consistent ranking of the features. Table 14
reports the features ranking obtained by counting the frequency of occurrence
on all the classification problems. While Tables 15 and 16 report the top 10
features ranked by RF and M-SVM-BK on all the classification problems
described in Section 2. It is possible to note that the features reported
in Table 14 are quite different from the ones obtained using the proposed
approach and reported in Table 15 and 16 Moreover, the results obtained
based on a simplistic evaluation of the frequency of occurrences does not
support or show any predictive power ability of these features.

From the Top 10 features that were ranked from the RF and M-SVM-BK
methods, it is possible to note that the majority of these factors are related
with inadequate procedures or deviation from the Standard Operating Pro-
cedure (SOP) (i.e. F05 - Contingency plans not updated, F37 - Inadequate
work methods and F38 - Inadequate work preparation), or with inadequate
training (i.e. F15 - Emergency training program, F45 - Lack of knowledge,
F52 - Lack of skill and F89 - Training ignored). Inadequate procedures have
been often referred to in the literature as a potential cause for maritime ac-
cidents. For example, research conducted in EU funded SEAHORSE project
concluded that up to a third of SOP are ineffective hence not being ade-
quately followed during ship operations (Kurt et al., 2016, 2015). Thus, in
their study Chang & Lin (2006) revealed that inadequate procedures and/or
inadequate resources are the major contributors into fire and explosion acci-
dents. Regarding inadequate training, it has also been reported in the liter-
ature as a highly contributing factor into maritime accidents. For instance,
Puisa et al. (2018) conducted an analysis of various maritime accidents, which
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revealed that inadequate training was often an observable feature, appearing
frequently across all accident reports analysed. In addition, Graziano et al.
(2016) applied the Technique for Retrospective and Predictive Analysis of
Cognitive Errors (TRACEr) to reveal that fatigue or inadequate training
and instruction led to most of the failures identified in their study. More-
over, also a study performed by Kum & Sahin (2015) concluded that maritime
accidents in extreme environments are often associated with inadequate qual-
ity and extension of training. Furthermore, additional accident contributing
factors, which are neither related to inadequate procedures nor insufficient
training, have been also ranked in the Top 10 contributors (i.e. F01 - An-
thropometric factors, F24 - Improper performance of maintenance/repair,
F26 - Inadequate briefing, instruction, F31 - Inadequate manning and F79
- Lack of knowledge). Above-mentioned factors are not often referred to in
the literature as a common accidental cause (e.g. anthropometric factors).
Nevertheless, one of the main limitations in EMCIP taxonomy is the lack of
a proper description for each contributing factor, which often lead to mis-
interpretation when accident investigators are identifying which accidental
factors are involved in an specific accident scenario. Thus, this misinter-
pretation may often lead to the inadequate selection of certain contributing
factors when analysing an accident, which causes that certain factors are ac-
counted more times that they appear, justifying that those factors have also
been ranked in the Top 10 features even if they are not known as common
accidental causes.

5. Conclusions

In this work, a method to define numerical models able to establish the
most influential human factors contributing to the maritime accident has
been presented. The work aims to identify the main relevant human factors
involved in accident development and ranking their contribution. With this
purpose in mind, a two-stage approach is introduced to build a robust and
reliable data-driven model capable of predicting the type of accident based on
the contributing factors. The outcome of the model is utilised for the factors’
ranking based on their influence on the predictions. Two different state-of-
the-art methods, Ensemble and Kernel methods, have been presented, able
to exploit the sources of information provided by a real database containing
marine accidents involving UK vessels worldwide and all ships operating in
UK territorial waters.
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Table 4: Confusion matrices (in %) of RF on the different classification problems described
in Section 2. Where the considered categories are: C1 - Grounding/stranding, C2 - Capsiz-
ing/Listing, C3 - Contact, C4 - Collision,C5 - Fire/Explosion, C6 - Flooding/Foundering,
C7 - Hull failure, C8 - Loss of control, C9 - Damage to ship or equipment, NA - Naviga-
tional Accident, NNA - Non Navigational, EOSA - Operational and Structural Accidents,
F\EA - Fire and Explosions, SSA - Safety and Stability Accidents.

Truth

A1 C1 C2 C3 C4 C5 C6 C7 C8 C9

P
re

d
.

C1 12.13 0.76 2.00 3.47 1.44 2.00 0.15 1.10 0.45

C2 0.97 2.64 0.43 0.75 0.31 0.43 0.03 0.24 0.10

C3 2.32 0.40 6.33 1.81 0.75 1.04 0.08 0.57 0.23

C4 3.67 0.63 1.65 10.02 1.19 1.65 0.12 0.90 0.37

C5 1.74 0.30 0.78 1.36 4.75 0.78 0.06 0.43 0.18

C6 2.32 0.40 1.04 1.81 0.75 6.33 0.08 0.57 0.23

C7 0.19 0.03 0.09 0.15 0.06 0.09 0.53 0.05 0.02

C8 1.35 0.23 0.61 1.06 0.44 0.61 0.04 3.69 0.14

C9 0.58 0.10 0.26 0.45 0.19 0.26 0.02 0.14 1.58

Truth

A2 NA NNA

P
re

d
.

NA 52.22 4.88

NNA 7.12 35.78

Truth

A3 C2 C5 C6 C7 C8 C9 NA

P
re

d
.

C2 3.24 0.25 0.34 0.03 0.19 0.08 3.29

C5 0.24 5.84 0.62 0.05 0.34 0.14 5.92

C6 0.31 0.59 7.78 0.06 0.45 0.18 7.89

C7 0.03 0.05 0.07 0.65 0.04 0.02 0.66

C8 0.18 0.35 0.48 0.04 4.54 0.11 4.60

C9 0.08 0.15 0.21 0.02 0.11 1.95 1.97

NA 1.41 2.67 3.70 0.27 2.03 0.83 35.01

Truth

A4 EOSA F\EA NA SSA

P
re

d
.

EOSA 8.10 0.44 5.82 0.92

F\EA 0.45 6.63 4.76 0.75

NA 2.69 2.15 39.76 4.50

SSA 0.85 0.68 9.00 12.52
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Table 5: Confusion matrices (in %) of M-SVM-BK on the different classification problems
described in Section 2. Where the considered categories are: C1 - Grounding/stranding,
C2 - Capsizing/Listing, C3 - Contact, C4 - Collision,C5 - Fire/Explosion, C6 - Flood-
ing/Foundering, C7 - Hull failure, C8 - Loss of control, C9 - Damage to ship or equip-
ment, NA - Navigational Accident, NNA - Non Navigational, EOSA - Operational and
Structural Accidents, F\EA - Fire and Explosions, SSA - Safety and Stability Accidents.

Truth

A1 C1 C2 C3 C4 C5 C6 C7 C8 C9

P
re

d
.

C1 17.44 0.46 1.19 2.07 0.86 1.19 0.09 0.65 0.27

C2 0.58 3.79 0.26 0.45 0.19 0.26 0.02 0.14 0.06

C3 1.38 0.24 9.10 1.08 0.45 0.62 0.05 0.34 0.14

C4 2.19 0.38 0.98 14.41 0.71 0.98 0.07 0.54 0.22

C5 1.04 0.18 0.47 0.81 6.82 0.47 0.03 0.26 0.10

C6 1.38 0.24 0.62 1.08 0.45 9.10 0.05 0.34 0.14

C7 0.12 0.02 0.05 0.09 0.04 0.05 0.76 0.03 0.01

C8 0.81 0.14 0.36 0.63 0.26 0.36 0.03 5.31 0.08

C9 0.35 0.06 0.16 0.27 0.11 0.16 0.01 0.09 2.27

Truth

A2 NA NNA

P
re

d
.

NA 57.44 1.30

NNA 1.90 39.36

Truth

A3 C2 C5 C6 C7 C8 C9 NA

P
re

d
.

C2 4.23 0.14 0.19 0.01 0.11 0.04 1.84

C5 0.13 7.62 0.35 0.03 0.19 0.08 3.32

C6 0.18 0.33 10.15 0.03 0.25 0.10 4.43

C7 0.01 0.03 0.04 0.85 0.02 0.01 0.37

C8 0.10 0.19 0.27 0.02 5.92 0.06 2.58

C9 0.04 0.08 0.12 0.01 0.06 2.54 1.11

NA 0.79 1.50 2.07 0.15 1.14 0.47 45.69

Truth

A4 EOSA F\EA NA SSA

P
re

d
.

EOSA 10.76 0.15 1.94 0.31

F\EA 0.15 8.80 1.59 0.25

NA 0.90 0.72 52.81 1.50

SSA 0.28 0.23 3.00 16.63
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Table 6: Top 10 features ranked by RF on the Aggregation No. 1 classification problem
described in Section 2.

Aggregation 1

Pos. Feat. Description

1 F45 Lack of knowledge

2 F89 Training ignored

3 F15 Emergency training program

4 F05 Contingency plans not updated

5 F82 Social and cultural barriers and conflicts

6 F01 Anthropometric factors

7 F24 Improper performance of maintenance/repair

8 F26 Inadequate briefing, instruction

9 F25 Improper supervisory example

10 F54 Lacks initiative to deal with emergencies

Table 7: Top 10 features ranked by RF on the Aggregation No. 2 classification problem
described in Section 2.

Aggregation 2

Pos. Feat. Description

1 F38 Inadequate work preparation

2 F89 Training ignored

3 F37 Inadequate work method

4 F31 Inadequate manning

5 F15 Emergency training program

6 F52 Lack of skill

7 F01 Anthropometric factors

8 F16 Expectations of supervisor is unclear

9 F64 LTA medical services provided

10 F45 Lack of knowledge
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Table 8: Top 10 features ranked by RF on the Aggregation No. 3 classification problem
described in Section 2.

Aggregation 3

Pos. Feat. Description

1 F45 Lack of knowledge

2 F89 Training ignored

3 F15 Emergency training program

4 F38 Inadequate work preparation

5 F05 Contingency plans not updated

6 F24 Improper performance of maintenance/repair

7 F79 Safety awareness, cutting corners

8 F37 Inadequate work method

9 F52 Lack of skill

10 F64 LTA medical services provided

Table 9: Top 10 features ranked by RF on the Aggregation No. 4 classification problem
described in Section 2.

Aggregation 4

Pos. Feat. Description

1 F89 Training ignored

2 F15 Emergency training program

3 F38 Inadequate work preparation

4 F05 Contingency plans not updated

5 F24 Improper performance of maintenance/repair

6 F37 Inadequate work method

7 F45 Lack of knowledge

8 F79 Safety awareness, cutting corners

9 F60 LTA communication

10 F52 Lack of skill
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Table 10: Top 10 features ranked by M-SVM-BK on the Aggregation No. 1 classification
problem described in Section 2.

Aggregation 1

Pos. Feat. Description

1 F15 Emergency training program

2 F01 Anthropometric factors

3 F89 Training ignored

4 F05 Contingency plans not updated

5 F38 Inadequate work preparation

6 F26 Inadequate briefing, instruction

7 F31 Inadequate manning

8 F37 Inadequate work method

9 F24 Improper performance of maintenance/repair

10 F45 Lack of knowledge

Table 11: Top 10 features ranked by M-SVM-BK on the Aggregation No. 2 classification
problem described in Section 2.

Aggregation 2

Pos. Feat. Description

1 F89 Training ignored

2 F15 Emergency training program

3 F24 Improper performance of maintenance/repair

4 F05 Contingency plans not updated

5 F01 Anthropometric factors

6 F26 Inadequate briefing, instruction

7 F37 Inadequate work method

8 F31 Inadequate manning

9 F38 Inadequate work preparation

10 F45 Lack of knowledge
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Table 12: Top 10 features ranked by M-SVM-BK on the Aggregation No. 3 classification
problem described in Section 2.

Aggregation 3

Pos. Feat. Description

1 F15 Emergency training program

2 F05 Contingency plans not updated

3 F01 Anthropometric factors

4 F89 Training ignored

5 F24 Improper performance of maintenance/repair

6 F31 Inadequate manning

7 F26 Inadequate briefing, instruction

8 F37 Inadequate work method

9 F45 Lack of knowledge

10 F38 Inadequate work preparation

Table 13: Top 10 features ranked by M-SVM-BK on the Aggregation No. 4 classification
problem described in Section 2.

Aggregation 4

Pos. Feat. Description

1 F15 Emergency training program

2 F24 Improper performance of maintenance/repair

3 F01 Anthropometric factors

4 F05 Contingency plans not updated

5 F89 Training ignored

6 F38 Inadequate work preparation

7 F31 Inadequate manning

8 F37 Inadequate work method

9 F26 Inadequate briefing, instruction

10 F52 Lack of skill

23



Table 14: Top 10 features ranked counting the frequency of occurrence on all the classifi-
cation problems described in Section 2.

Frequency Count

Pos. Feat. Description

1 F45 Lack of knowledge

2 F52 Lack of skill

3 F79 Safety awareness, cutting corners

4 F38 Inadequate work preparation

5 F64 LTA physical/physiological capability

6 F37 Inadequate work methods

7 F32 Inadequate procedures and check lists

8 F48 Lack of motivation/morale

9 F25 Improper supervisory example

10 F26 Inadequate briefing, instruction

Table 15: Top 10 features ranked by RF on all the classification problems described in
Section 2.

RF

Pos. Feat. Description

1 F38 Inadequate work preparation

2 F45 Lack of knowledge

3 F89 Training ignored

4 F15 Emergency training program

5 F05 Contingency plans not updated

6 F37 Inadequate work methods

7 F24 Improper performance of maintenance/repair

8 F01 Anthropometric factors

9 F79 Safety awareness, cutting corners

10 F52 Lack of skill
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Table 16: Top 10 features ranked M-SVM-BK on all the classification problems described
in Section 2.

M-SVM-BK

Pos. Feat. Description

1 F15 Emergency training program

2 F89 Training ignored

3 F01 Anthropometric factors

4 F05 Contingency plans not updated

5 F24 Improper performance of maintenance/repair

6 F26 Inadequate briefing, instruction

7 F31 Inadequate manning

8 F37 Inadequate work methods

9 F38 Inadequate work preparation

10 F45 Lack of knowledge

Although the proposed data-driven approach has been proved accurate
and robust, some limitations are worth to be highlighted. In particular, as
human factor related studies and investigations are relatively new, a limited
amount of data is available. Therefore the statistical relevance of the results
is limited. Moreover, a lack of proper guidelines for accident investigators led
to an inconsistent data collection procedure that needs further improvement.
The data collection is a blind process where the accidents’ authorities make
available only anonymous data, without sufficient description of the events.
Therefore the process of linking data with accident report is difficult and
challenging.

The outcome of this research will allow helping the researchers and policy-
makers to prioritise areas of investigation and development a set of measures
to mitigate, reduce and eventually eliminate the root causes of maritime
accidents. Furthermore, as the approach is human unbiased, the developed
methodology can be applied to other sectors that have a high contribution
of human factors in accidents. Aviation, railway and nuclear industries are
potential candidates for the methodology application. Next steps of the
research will consider the utilisation of a more extensive data set, including
accidental data not only from the European Union (EMSA) but also global
data such as the one collected by IMO.
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Linköping University Electronic Press.

Navas de Maya, B., Kurt, R. E., & Turan, O. (2018). Application of fuzzy
cognitive maps to investigate the contributors of maritime collision acci-
dents. In Transport Research Arena (TRA).

29



O’Hare, D., Wiggins, M., Batt, R., & Morrison, D. (1994). Cognitive failure
analysis for aircraft accident investigation. Ergonomics , 37 , 1855–1869.

Oneto, L. (2019). Model Selection and Error Estimation in a Nutshell .
Springer.

Oneto, L. (2020). Model selection and error estimation in a nutshell .
Springer.

Orlandi, I., Oneto, L., & Anguita, D. (2016). Random forests model selection.
In European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning (ESANN).

Osman, O. A., Hajij, M., Karbalaieali, S., & Ishak, S. (2019). A hierarchical
machine learning classification approach for secondary task identification
from observed driving behavior data. Accident Analysis & Prevention,
123 , 274–281.

Papanikolaou, A., Bitha, K., Eliopoulou, E., & Ventikos, N. P. (2014). Sta-
tistical analysis of ship accidents occurred in the period 1990-2012 and
assessment of safety level of ship types. Maritime Technology and Engi-
neering , .

Petersen, J. P., Winther, O., & Jacobsen, D. J. (2012). A machine-learning
approach to predict main energy consumption under realistic operational
conditions. Ship Technology Research, 59 , 64–72.

Polato, M., Lauriola, I., & Aiolli, F. (2018). A novel boolean kernels family
for categorical data. Entropy , 20 , 444.

Praetorius, G., Kataria, A., Petersen, E. S., Schröder-Hinrichs, J. U., Bal-
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