
Seismic Safety Assessment of Buildings with Fly-Ash Concrete  

 

Kirtikanta Sahoo1; Prateek Kumar Dhir2; Peri Raghav Ravi Teja3; Pradip Sarkar4; and Robin Davis5 

1Assistant Professor, Department of Civil Engineering, KIIT University, Bhubaneswar 751024, India. 

Email: sahoo.kirti@gmail.com.  

2Ph. D. Scholar at Department of Civil and Environmental Engineering, University of Strathclyde, 

Glasgow G1 1XJ, United Kingdom. Email: prateek.dhir@strath.ac.uk (corresponding author) 

3 M. Tech. Scholar at Department of Civil Engineering, National Institute of Technology, Rourkela 

769008, India. Email: prraviteja04@gmail.com. 

4Professor, National Institute of Technology, Rourkela 769008, India. Email: sarkar.pradip@gmail.com. 

5Assistant Professor, National Institute of Technology, Calicut 673601, India. Email: 

robin.davisp@gmail.com. 

 

ABSTRACT 

Sustainable concrete construction has encouraged the utilization of industrial wastes (fly ash, silica 

fume, ground granulated blast furnace slag, metakaolin, etc.) as a composite cementitious material due to 

its high pozzolanic activity. Among them, fly ash (FA) concrete is gaining high popularity in the 

construction industry due to its several benefits to the concrete structures with increased structural 

performance. In order to estimate the seismic performance of FA concrete buildings, a probabilistic study 

needs to be performed for its mechanical parameters at various performance limit states. Weibull, normal, 

log-normal and gamma distribution probability distribution models are considered for three 

goodness-of-fit tests such as the Kolmogorov-Smirnov (KS), Chi-square (CS) and log-likelihood (LK) 

tests. Among them, the lognormal distribution is found to be the closest distribution in describing the 

variations in the mechanical properties of FA concrete as compared to other distributions. It was observed 

that 20% to 40% partial replacement of FA with cement gives an improved performance to the structures 

with enhanced structural safety at economical cost. 
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INTRODUCTION 

Increasing growth of industries has increased the production of industrial waste which is greatly 

responsible for the present environmental damage and there is an urgent need for their effective utilization. 

Among the various types of supplementary materials, fly ash (FA) was introduced in the construction 

industry due to their pozzolanic activity which subsequently leads to a reduction of global CO2 footprint 

significantly. So, the minimal use of Portland cement can significantly reduce the impact of the concrete 

industry on the environment. The increased popularity of FA concrete in recent years is due to the 

benefits like reduced water demand, improved workability, minimized crack formation by drying and 

thermal shrinkage, robustness against rebar corrosion, alkali-silica expansion, and sulfate attack (Saha et 

al. 2018, 2019; Saha 2019; Saha and Sarker 2020). 

The accurate evaluation of structural safety is based on the accurate prediction of the uncertainty 

associated with its mechanical properties. But, in conventional structural design, this aspect is always 

ignored. The deterministic assumption of the is not a realistic approach while considering the material 

parameters and due to this, probabilistic structural analysis is gaining popularity nowadays as it considers 

the uncertainty in material properties against natural loads such as earthquakes, wind, etc. 

Campbell and Tobin (1967), Soroka (1968), Chmielewski and Konapka (1999), Graybeal and Davis 

(2008) studied on the variability of compressive strength of concrete and reported that the coefficient of 

variation in a normal distribution of a considered parameter doesn’t exceed 15-20% with a minimal 

skewness. Campbell and Tobin (1967) and Soroka (1968) found that at a high coefficient of variation, the 

skewness is significant and the lognormal distribution is found to be more rational to signify the tail areas 

of distribution as compared to normal distribution. Recently, concrete compressive strength variability 

was characterized by Chen et al. 2013 using several statistical standards. The available literature on the 

regular cement concrete may not be suitable to characterize the variability of FA concrete accurately, 

which raises a need for the design and safety assessment of the FA concrete buildings in the future.  



In this study, the mechanical properties of the FA concrete were experimentally tested and for the 

variability study, the normal and log-normal distributions are considered for its variability study. A 

best-fitted probability distribution function for concrete with altered amounts of FA is generated by 

adopting different statistical tests. Along with that, the relative dynamic performance of buildings built 

with a varying replacement of FA is compared with the regular reinforced concrete (RC) buildings for a 

selected site hazard condition.  

RESEARCH SIGNIFICANCE 

Literature on the probability distribution of mechanical properties of structure with normal concrete 

is available. However, the study of variability of concrete, prepared by the partial replacement of FA is 

quite rare. Mechanical properties of FA concrete are analytically described using various probability 

distribution functions and the best-fit distribution function is selected by performing various 

goodness-of-fit tests. The seismic performance of the FA concrete is evaluated by fragility and reliability 

curves considering the variability in the material properties. The concept of seismic safety evaluation of 

buildings with partial replacement of FA adds a new dimension to the current research. 

EXPERIMENTATION 

One set of control mix with three sets of concrete mixes (with partial replacement of FA) are 

prepared where the mixture proportions are obtained as per the guidelines of Indian Standard, IS 10262 

(2009). As this is a study of the behaviour of concrete incorporating various percentages of fly ash, the 

mix design is carried out for the control mix only. All the other mixes are obtained by adding various 

percentages (20%, 40% and 60%) of fly ash by weight of total cementitious content. The total 

cementitious content is taken as a constant which is the cement content in the control mix. Table 1 shows 

the proportions of cement, FA, natural sand, coarse aggregates, water and admixture by weight of the 

control mix as well as that of mixes with various percentages of FA dosages. Water content is maintained 

constant as 177.3 kg/m3, maximum doses of superplasticizer is kept as 3.5% of cement weight. Portland 

Slag Cement, having the 28-day compressive strength of 48 MPa and FA of class F was used for the 

study. The physical and chemical properties of both cement and FA are given in Table 2 and 3 



respectively. Natural river sand which conforms to Zone-II of IS: 383 (1970) is used as fine aggregates. 

Water absorption and the specific gravity of fine aggregates are obtained as 0.8% and 2.65, respectively. 

Coarse aggregates used in this study is collected from a local quarry having a maximum size of 20 mm 

with the water absorption and specific gravity of 0.6 % and 2. 75, respectively. Test specimens (Cube size: 

100mm x 100mm x 100mm, Cylinder size: 100mm x 200mm, Prism size: 100mm x 100mm x 500mm) 

are casted in a weather condition where the ambient temperature range is maintained about 210C to 450C 

and humidity range was about 47% to 63%. The specimens were cured in a water filled tank located near 

laboratory. 

Variation in Mechanical Properties 

A total of 90 concrete cubes (3 mixes with 30 samples for each mix) with various proportions of FA 

was tested for the compressive strength and presented in Table 4. The control specimen shows a varying 

compressive strength of 24.18 - 34.60 MPa with a mean and Standard Deviation (SD) of 30.37 and 2.71 

respectively. The minimum, maximum, mean and SD of other concrete specimens with varying 

proportions of FA are also tabulated here. It was observed that, the mean compressive strength of concrete 

increases with FA content and attains a peak of 34.63 MPa. It can be observed from the table that; the SD 

of compressive strength is inversely proportional to the FA content and which may be for the high 

inherent variability in the properties of FA. The observed mean compressive strength of concrete is shown 

in Fig. 1 for each of the FA dosage. 

Flexural strength of FA concrete was tested for 90 concrete cubes and the output is tabulated in Table 

4. The control specimen shows a varying flexural strength of 5.63-6.82 MPa with a mean and SD of 6.32 

and 0.33 respectively. The minimum, maximum, mean and SD of other concrete specimens with varying 

proportions of FA are also tabulated here. It was observed that, at 20% of FA content, the mean 

compressive strength of FA concrete rises with FA content and attains a peak of 6.36 MPa. The SD of 

flexural strength is found to be inversely proportional to the FA content and which may be due to the high 

inherent variability in the properties of FA. The observed mean flexural strength of concrete is shown in 

Fig. 2 for each level of FA dosage. 



Similarly, the split tensile strength test for FA concrete was carried out for 90 samples and results are 

tabulated in Table 4. The control specimen shows a varying split tensile strength ranging from 2.18 – 2.90 

MPa with a mean and SD of 2.60 and 0.23 respectively. It was observed that the mean split tensile 

strength of concrete increases with FA content and attains a maximum value of 2.48 MPa. The SD of split 

tensile strength is found to be inversely proportional to the FA content and which may be due to the high 

inherent variability in the properties of FA.  The observed mean split tensile strength of concrete is 

shown in Fig. 3 for each of the FA dosage. 

  



Development of Variability Models 

The FA concrete buildings need to be designed and analyzed using a probabilistic approach in order to 

estimate its seismic performance accurately. The variability in the mechanical properties of FA concrete 

is described with different probability distribution models as presented in this section. The standard 

probability distribution models like truncated normal, lognormal, gamma and Weibull distributions are 

selected for the analysis. Out of the considered models, the model that gives the optimum result is chosen 

by performing certain goodness-of-fit tests. The tests like Kolmogorov-Smirnov (KS), Log-likelihood 

(LK) and Chi-square criterion (CS) at a 5% significance level are performed. The probability distribution 

with minimal KS distance and CS value and with maximum LK are considered as the best fit which has 

been successfully validated by Chen et al. (2013) and Stone et al. (1986). 

While conducting goodness-of-fit test, if there is any ambiguity between the results of three tests then, 

priority is given to KS and LK tests. This is because CS test is affected by binning of data in to different 

class intervals and its suitability is best shown when a large number of random variables are considered. 

Tables 5, 6 and 7 represent the different distributions for compressive strength, flexural strength, and split 

tensile strength, respectively. In the same way, cumulative probability distributions are made from the 

experimental data and compared with assumed distribution functions as shown in Figs. 4-6. 

Statistical inference for the mechanical properties of FA concrete 

The shape and scale parameters of distributions (KS distances, LK and CS values) for compressive 

strength of FA concrete are shown in Table 5 and it can be observed that all three criteria (KS, CS, and 

LK) are not in agreement with a single distribution for describing the compressive strength of concrete 

expect the case of 40% FA concrete. However, minimal deviances among the goodness-of-fit test values 

for all the mixes are observed. 40% replacement of FA is found to be satisfying all the selection criteria 

for minimum KS distance, minimum CS and maximum LK where lognormal distribution is the best fit 

model for the mix with 20% and 60% FA replacement. Fig. 4 shows the probability distributions obtained 

experimentally and statistically using cumulative probability distribution models for the compressive 

strength of FA concrete. 



Flexural test results (Table 6) of FA concrete shows that all three testing criteria (KS, CS, and LK) 

possess minimal deviations among the goodness-of-fit test values for all the mixes. Weibull distribution 

meets the KS and CS selecting criteria for the mix with 20% FA and 60% FA mix fits the gamma 

distribution. Fig. 5 represents the variation in the cumulative probability distribution of flexural strength 

for different mix proportions. 

Similarly, the assessed shape and scale parameters of distributions (KS distances, LK and CS values) 

for split tensile strength of FA concrete (Table 7) shows that all three criteria (KS, CS, and LK) are not in 

agreement with a single distribution for describing the split tensile strength of concrete. The lognormal 

distribution is found to be satisfying the selection criteria considering KS and LK for 20% FA 

replacement. Normal and Weibull distributions are found to be the best fitting for 40% and 60% FA 

replacement, respectively. The cumulative probability distribution models for the split tensile strength of 

the FA concrete mix are presented in Fig. 6. The probabilistic distribution functions with associated 

mechanical parameters are tabulated in table 8 and it is clear that the Log-normal distribution and the 

Weibull distribution functions describe the variability in the mechanical properties of fly ash concrete 

most accurately. 

SEISMIC FRAGILITY CURVES AND PROBABILITY DISTRIBUTION MODEL 

The probability distribution of the mechanical properties of FA concrete can be accurately established 

through the seismic fragility curves and the reliability indices during the building performance evaluation. 

The present study uses a simplified approach suggested by Ellingwood (2001) for the development of the 

fragility curve. 

The seismic hazard curve, GA(x), is a plot of P [A = a] and the ground acceleration intensity (a). The 

target limit state probabilities for a series of progressively severe stages, LSi, as follows; 

     aAPaALSPLSP
a

ii === |       (Eq. 1) 

In the above expression, the associated uncertainty is mentioned as the fragility function, FR(x) and found 

to be in an agreement with a two-parameter lognormal probability distribution supported by previous 



studies (Song and Ellingwood 1999, Cornell et. al. 2002, Haran 2014 and Haran et. al. 2015). The point 

estimate of iLS  of the state i can be estimated by uniting the FR(x) with the derivative of GA(x), thus 

eliminating the acceleration state, 

  ( )= dx
dx

dG
xFLSP A
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       (Eq. 2) 

The reliability index conforming to the failure probability can be estimated by the following standard 

equation; 

 ( )iPf LSP1−−=          (Eq. 3) 

Where ϕ ( ) represents the standard normal distribution. 

A linear relationship was observed between the annual probability of occurrence and the spectral 

acceleration at moderate to large ground accelerations and the hazard function, GA(a), which is expressed 

as follows; 

])/(exp[1)( k

A uxxG −−−=
       (Eq. 4) 

where u and k are the parameters of the distribution.  

Nath and Thingbaijam (2012), Pallav et al. (2012), Raju et al. (2012) and Sitharam et al. (2015) have 

developed the seismic hazard map for India. Iyengar et al. (2010) and Dhir et al. (2018) have used the 

data available at National Disaster Management Authority to develop the seismic hazard curves for the 

seismic hazard analysis. Imphal, being one of the most vulnerable places of seismic zone-V of Indian 

seismic hazard map is considered in the present study (Fig. 7).  

Selected Frame 

A typical four-storey-two-bay RC bare frame with a symmetric plan and elevation is selected (Fig. 8). 

This building is designed as per IS 456 (2000) considering the for seismic forces corresponding to the 

highest seismic zone V (PGA of 0.36 g) as per IS 1893 (2002) and considering medium soil conditions 

(N-value in the range 10–30). The characteristic strength of concrete and steel are taken as 25 MPa and 



415 MPa, respectively. A dead load of slab was calculated to be 0.00375 MPa on which a live load of 

0.003 MPa was considered. 230 mm thick brick walls are considered and applied separately as a 

uniformly distributed load on beams.  

In order to represent the different practical conditions, different building models are chosen with 

varying proportions of FA and the associated variability with the strength properties of concrete was 

observed. The selected building frame is designated with a standard name as XY, where X denotes ‘FA’ 

for fly ash and the percentage of replacement of FA is denoted by Y. The design details of the selected 

frame are shown in Table 9. 

Structural Modelling 

Selected buildings are modeled for nonlinear time history analysis needed for the seismic risk 

assessment. The Open System for Earthquake Engineering Simulation (OpenSEES) Laboratory tool 

developed by McKenna et al. (2014) is considered for all the analysis. A force-based nonlinear 

beam-column fiber element that considers the spread of plasticity along the element is used for modeling 

the beams and columns. The formulation of the force-based fiber element is explained in Lee and 

Mosalam (2004). Kunnath (2007) shows the sensitivity due to the number of integration points in each 

element and suggest the use of five integration points for fiber elements, which is considered in the 

present study. The modeling of the core concrete performed by bearing in mind the influence of the 

special reinforcement detailing in the beams and columns as suggested by Kent and Park (1971) and the 

cover concrete is modeled as unconfined concrete. Steel rebars are modelled as per 

Giuffre-Menegotto-Pinto steel material model and the details of reinforcement modeling are available in 

Filippou et al. (1983). 

A lumped mass approach is taken into account where both the dead loads and the live loads (25%) are 

considered and the Rigid diaphragm constraints are used for the floor slab in-plane stiffness modelling. 

The Raleigh damping model is used for dynamic analysis as reported by Filippou et al. (1992). 44 ground 

motions are taken into consideration (Haselton et al. 2012). During the non-linear analysis, the converted 

ground motions are further matched with IS 1893 (BIS 2002) design spectrum using a computer program 



(Mukherjee and Gupta 2002). Uncertainties in concrete compressive strength, reinforcing steel yield 

strength, and global damping ratio are considered during the seismic performance study. Table 10 shows 

the mean and coefficient of variation (COV) of the normal probability distributions of the previous 

parameters are obtained from published literature. Details of random variables used are available in Dhir 

et al. (2018). 

Seismic Fragility Curves 

The exceedance probability of Inter Storey Drift (ISD) can be presented by a fragility function, FR(x) 

for a selected structural limit state (LS) at a specific Peak Ground Acceleration (PGA); 
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where C is the drift capacity at a selected limit state, D is the drift demand, SC is the median of the chosen 

limit state (LS), SD is the median of the drift demand. βc and βd/PGA are dispersions in the capacities and the 

PGA respectively. The building type and the construction quality significantly influence the magnitude of 

βc. The values of βc are 0.10, 0.25 and 0.40 for good, fair and poor quality of construction respectively 

(ATC 58 2012) and selected as 0.25 in this study. Nielson et. al. (2005), Davis et. al. (2010b), Rajeev and 

Tesfamariam (2012), Bhosale (2017, 2018), Dhir et al. (2018, 2020), Mistri et al. 2019, Sahu et al. (2019) 

and Sahoo et al. (2020) have developed the seismic fragility curves of RC frames using the above 

methodology. 

The PSDMs are developed, and presented using Peak ground Acceleration (PGA) for the nonlinear 

analysis. Cornell et.al (2002) estimated the median demand, ISD (SD) by a generalized equation as 

follows.  

( )
b

ISD a PGA=           (Eq. 6) 

Where a and b are the regression coefficients from PSDMs. 



Selected Performance limit states 

The different level of damage sustainability of any structure has always been the representative of its 

structural limit states. The median inter-storey drift limits for RC moment-resisting structures at various 

performance levels (SC) are suggested by Ghobarah (2000) and ASCE/SEI 41-06 (2007). In the present 

study, 2% and 4% of drift limits are considered for RC frames representing significant damage (SD) and 

collapse prevention (CP) as suggested by ASCE/SEI 41-06 (2007). 

Material uncertainty  

Compressive strength of concrete and steel, and the global damping ratio are the most sensitive 

variables considered as random and Table 11 shows the mean and standard deviations of these selected 

variables. A set of 44 numbers of computational models is produced using the Latin Hypercube sampling 

technique for the nonlinear dynamic analysis. 

  



PSDMs for all selected frames  

The 44 computational models were generated using 44 numbers of earthquake ground motions scaled 

from 0.1g to 1.0g for a particular randomly selected PGA. The maximum inter-storey drifts are plotted on 

a logarithmic scale for the buildings modeled with FA concrete (Fig. 9). The regression analysis is 

performed and a power law relationship (Eq. 6) is established for each of the frame during the 

development of PSDM. The regression coefficients (a and b) of the PSDMs are tabulated in Table 12. It 

can be observed that the higher the value of inter-storey drift, the higher will be the vulnerability of the 

building.  

Fragility Curves 

The developed Fragility curves for all selected frames at selected performance limit states are presented in 

Fig. 10. The fragility curves for SD and CP performance levels are shown in Figs. 10(a) and 10(b) 

respectively. It can be observed that, the seismic performance of frames with 20% partial replacement of 

FA are found to be performing better than the other frames and frames having 60% replacement of FA are 

more vulnerable than the frame with normal concrete. 

Comparison of reliability indices 

The estimated reliability indices give a better understanding of the performance of all the selected frames 

quantitatively. The site seismic hazard curve of Imphal located in the North East region of India was 

chosen for the estimation of reliability. PO-I and PO-II are the two performance objectives selected 

against the structural capacity where, PO-I represents the Significant Damage (SD) state performance 

limit at an earthquake occurrence probability of 10% in 50 years and PO-II represents the Collapse 

Prevention (CP) stage where the earthquake occurrence probability is 2% in 50 years. From the selected 

hazard curve (Fig.7), PGAs corresponding to the 10% and 2% probability of occurrence are obtained as 

0.67g and 1.35g respectively. The reliability indices for the FA concrete frames for selected performance 

limits are presented in Fig. 11. Similarly, the calculated reliability indices for the selected frames at PO-I 

and PO-II performance objectives are tabulated in Table 13. FA20 is found to be having the highest 



reliability index values at PO-I and PO-II for the selected building frame. It was observed that 20-40% 

partial replacement of FA may be appropriate for attending the better seismic performance. 

  



SUMMARY AND CONCLUSIONS 

In order to describe the variability in the mechanical properties of FA concrete, a statistical analysis 

was performed taking the experimental outcomes with a two-parameter probability function. Several 

distributions are selected to describe the experimental data closely by establishing the best-fit models for 

compressive strength (Table 14), flexural strength (Table 15) and split tensile strength (Table 16) of FA 

concrete as reported in the Appendix. Statistical distributions with the most accurate prediction are 

proposed for the selected parameters. KS, CS, and LK, the three selected statistical criteria are not always 

in agreement with some concrete mixes with a single distribution. In this case, the closest fit model is 

chosen as per the KS distance and the LK value (Chen et al. 2013). The present study suggests the use of 

lognormal distribution function as the distribution model as it most closely describes the variations 

associated with the mechanical properties of FA concrete. The performance of the selected building 

frames using FA concrete is evaluated using fragility curves and reliability indices and it was observed 

that 20-40% partial replacement of FA may amplify the performance of the structure. 

It is also to be noted that the present study does not account for the variability of the concrete 

incorporating FA in a realistic practical construction situation. The mix proportions of concrete used in 

such a practical industrial construction may have variability due to raw materials obtained from different 

sources, fly ash from different sources, variability due to different weather conditions, differences in 

workmanships, difference in mix designs etc. On the other hand, the present study conducts all the 

experiments in an ideal laboratory environment, casting of the cubes are all carried out almost in the same 

climatic conditions and time, the sources of the raw materials used for the concrete are all from the same 

sources. The variability of the resulting fly ash concrete in the present study is assumed due to the change 

in different dosages of fly ash. Hence the variability information attempted here can be treated at the 

lower bound by the results expected from a comprehensive study mentioned above. Hence, the present 

study is limited, however, in the absence of such an exhaustive comprehensive study, the variability 

results obtained in the present study can be treated at the lower bound of the expected variability. 
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Table 1. Considered material proportions 

Mixture name Control 20% FA 40% FA 60%FA 

Cement (kg/m3) 394 315.20 236.4 157.60 

FA (kg/m3) - 78.80 157.60 236.40 

Natural sand (kg/m3) 641 641 641 641 

Coarse aggregate (kg/m3)  1114 1114 1114 1114 

w/c 0.450 0.450 0.450 0.450 

Water (kg/m3) 177.3 177.30 177.30 177.30 

Admixture (kg/m3) 1.970 2.760 3.150 3.550 

*Conversion factor kg/m3= multiply by 0.062428 lb/ft3 

Table 2. Physical and chemical properties of Portland Slag Cement 

Properties 
Test 

Results 

Requirement as 

per IS:455-1989 

Physical Requirements 

Specific Surface (blane) 

m2/kg 
343 

225 (Minimum) 

 

Specific Gravity 3.01  

Chemical Requirements 

Insoluble Residue (% by mass) 2.0 4.0 (Maximum) 

MgO % (by mass) 6.7 10.0 (Maximum) 

SO3 % (by mass) 1.8 3.0 (Maximum) 

S % (by mass) 0.2 1.5 (Maximum) 
 

Table 3. Physical and chemical requirements of FA 

Parameter Test Results 
Requirement as per IS 3812 

(Part1) :2003 

Physical Requirements 

Fineness-Specific surface in 

m2/kg 
329 320.00 (Minimum) 

>45 Micron (%) 2.72 34.0 (Maximum) 

Chemical Requirements 

SiO2 (%) 39.88 35.00 (Minimum) 

MgO 1.15 5.00 (Maximum) 
 

  



Table 4. Mechanical properties of FA Concrete  

Specimen 

Compressive Strength 

(MPa) 
Flexural Strength (MPa) 

Tensile Splitting Strength 

(MPa) 

Mean SD Range Mean SD Range Mean SD Range 

Control 30.37 2.71 
24.18-3

4.60 
6.32 0.33 

5.63-6.

82 
2.60 0.23 

2.18-2.

90 

20% FA 34.63 1.15 
32.28-3

6.95 
6.36 0.48 

5.51-7.

15 
2.48 0.35 

1.98-3.

13 

40% FA 28.48 1.50 
25.4-31

.14 
4.53 0.34 

3.94-5.

07 
1.79 0.06 

1.66-1.

89 

60% FA 14.79 0.93 
13.37-1

6.48 
3.33 0.18 

2.90-3.

68 
1.37 0.09 

1.17-1.

52 

 

Table 5. Shape and scale parameters for evaluating the compressive strength 

Mix Name Distribution Shape Scale KS CS LK 

Control 

Weibull 13.49 31.57 0.07 0.64 -71.49 

Gamma 125.85 0.24 0.07 0.88 -72.37 

Normal 30.37 2.71 0.06 0.71 -72.05 

Lognormal 0.09 30.23 0.07 0.76 -72.58 

20% FA 

Weibull 32.25 35.18 0.20 5.36 -47.99 

Gamma 939.47 0.03 0.16 4.59 -46.23 

Normal 34.63 1.15 0.15 4.74 -46.26 

Log Normal 0.03 3.54 0.15 4.67 -46.21 

40% FA 

Weibull 20.82 29.19 0.17 3.88 -55.55 

Gamma 370.59 0.07 0.12 4.16 -54.29 

Normal 28.48 1.50 0.12 4.00 -54.34 

Log Normal 0.05 3.34 0.12 3.88 -54.30 

60% FA 

Weibull 15.23 17.11 0.13 0.71 -41.52 

Gamma 259.88 0.05 0.10 1.10 -39.95 

Normal 14.79 0.93 0.09 0.97 -40.04 

Log Normal 0.06 2.69 0.11 1.01 -39.94 

 

  



Table 6 Shape and scale parameters for evaluating the flexural strength 

Mix Name Distribution Shape Scale KS CS LK 

Control 

Weibull 22.70 6.47 0.14 - -5.76 

Gamma 374.40 0.01 0.10 - -6.00 

Normal 6.32 0.33 0.10 - -5.91 

Lognormal 0.05 6.29 0.09 - -6.07 

20% FA 

Weibull 6.58 14.87 0.10 2.81 -21.07 

Gamma 173.66 0.036 0.12 4.6 -20.65 

Normal 6.36 0.48 0.11 4.19 -20.61 

Log Normal 0.07 1.84 0.12 4.47 -20.71 

40% FA 

Weibull 4.69 15.09 0.18 0.37 -10.44 

Gamma 183.06 0.02 0.17 1.31 -9.72 

Normal 4.53 0.34 0.16 1.03 -9.75 

Log Normal 0.07 1.50 0.16 1.22 -9.74 

60% FA 

Weibull 3.38 20.21 0.08 1.64 -8.16 

Gamma 326.64 0.01 0.07 1.49 -8.46 

Normal 3.30 0.18 0.07 1.44 -8.60 

Log Normal 0.05 1.19 0.07 1.63 -8.36 
 

Table 7. Shape and scale parameters for evaluating the split tensile strength 

Mix Name Distribution Shape Scale KS CS LK 

Control 

Weibull 13.59 2.70 0.10 - -1.45 

Gamma 123.06 0.21 0.11 - -0.65 

Normal 2.60 0.23 0.10 - -0.87 

Lognormal 0.09 2.58 0.10 - -0.50 

20% FA 

Weibull 2.64 7.62 0.15 1.81 -12.27 

Gamma 50.5 0.04 0.15 1.28 -10.82 

Normal 2.48 0.35 0.15 1.34 -11.24 

Log Normal 0.14 0.89 0.14 1.04 -10.70 

40% FA 

Weibull 1.82 32.86 0.14 0.61 -40.51 

Gamma 823.22 0.02 0.16 1.03 -39.83 

Normal 1.79 0.06 0.08 0.92 -40.63 

Log Normal 0.03 0.58 0.08 0.95 -40.49 

60% FA 

Weibull 1.42 18.03 0.09 2.46 -29.91 

Gamma 221.50 0.00 0.14 3.73 -28.76 

Normal 1.37 0.09 0.11 3.18 -29.11 

Log Normal 0.06 0.31 0.11 3.27 -28.64 

 

  



Table 8. Most appropriate statistical distribution functions for the mechanical properties of FA 

Concrete 

FA content in 

concrete (%) 
compressive strength flexural strength split tensile strength 

0 Weibull Lognormal Lognormal 

20 Lognormal Weibull Lognormal 

40 Lognormal Lognormal Normal 

60 Lognormal Gamma Weibull 

 

Table 9. The design and detailing of the frames 

Members 
Floor no./ 

Storey no. 

Width 

(mm) 

Depth 

(mm) 

Reinforcement type 

Longitudinal Transverse 

Beam 1 to 3 300 450 
[5-250 φ] (Top) +  

[4-20 φ] (Bottom) 
10 φ @100 c/c 

Beam 4 300 450 
[5-250 φ] (Top) +  

[4-16 φ] (Bottom) 
10 φ @100 c/c 

Column 1-4 350 350 
8-25 φ (Uniformly 

distributed) 
10 φ @175 c/c 

 

Table 10: Description of selected random variables 

Random variables Mean COV (%) 
Probability 

Distribution  
Source 

Concrete compressive 

strength 
33.66 MPa 21.0 Normal Ranganathan (1999) 

Steel yield strength 483.47 MPa 10.0 Normal Ranganathan (1999) 

Global damping ratio 5 % 76.0 Lognormal 
Celik and 

Ellingwood (2009) 
 

Table 11. Concrete compressive strength of selected building types  

Frame ID Mean (MPa) C.O.V (%) 
Distribution 

function 

C 30.28 8.94 Lognormal 

FA20 34.63 3.32 Lognormal 

FA40 28.48 5.26 Lognormal 

FA60 14.79 6.28 Lognormal 
 

Table: 12. Regression output of PSDM for control and FA concrete buildings 

Frame ID a (PGA)b a b 

C 2.58 (PGA) 0.620 2.58 0.62 

FA20 2.34 (PGA) 0.620 2.34 0.62 

FA40 2.95 (PGA) 0.720 2.95 0.72 

FA60 5.32 (PGA) 0.840 5.32 0.84 
 

  



Table 13. Reliability Index (Pf) for control and FA concrete 

Frame ID 
PO-I 

βPf (Pf) 

PO-II 

βPf (Pf) 

C 1.07(1.42E-01) 1.76(3.92E-02) 

FA20 1.33(9.17E-02) 2.06(1.97E-02) 

FA40 1.07(1.42E-01) 1.76(3.92E-02) 

FA60 1.08(1.40E-01) 1.69(4.55E-02) 
 

Appendix. Mechanical Properties of FA Concrete 

Table 14. compressive strength of FA concrete (in MPa) 

Sl. No. Control 

20% 

replacement  

by FA 

40% 

replacement  

by FA 

60% 

replacement  

by FA 

1 24.18 32.28 25.40 13.37 

2 26.23 32.88 26.40 13.37 

3 26.66 33.29 26.50 13.43 

4 26.76 33.29 26.50 13.43 

5 27.26 33.58 27.16 13.75 

6 27.41 33.60 27.16 13.90 

7 27.81 33.67 27.28 13.91 

8 28.54 33.67 27.28 13.97 

9 28.64 34.01 27.71 14.12 

10 28.84 34.01 27.71 14.12 

11 29.21 34.02 27.81 14.25 

12 29.72 34.30 27.97 14.79 

13 29.83 34.31 27.98 14.80 

14 30.22 34.43 27.98 14.8 

15 30.51 34.45 28.21 14.86 

16 30.98 34.54 28.24 14.86 

17 31.17 34.56 28.25 14.88 

18 31.34 34.65 28.49 14.94 

19 31.52 34.66 28.74 15.13 

20 31.56 34.66 28.85 15.13 

21 31.82 35.67 29.89 15.22 

22 32.57 35.67 29.89 15.22 

23 32.81 35.70 29.92 15.31 

24 32.81 35.70 29.97 15.31 

25 32.85 35.83 29.99 15.70 

26 33.28 35.83 29.99 15.74 

27 33.57 36.00 30.45 16.25 

28 34.11 36.25 30.49 16.32 

29 34.29 36.51 31.14 16.48 

30 34.60 36.95 31.14 16.48 

Mean 30.37 34.63 28.48 14.79 

SD 2.71 1.150 1.505 0.934 

Conversion factor MPa= multiply by 0.1450 ksi  



Table 15. flexural strength of FA concrete (in MPa) 

Sl No. Control 

20% 

replacement  

by FA 

40% 

replacement  

by FA 

60% 

replacement  

by FA 

1 5.94 5.51 3.94 2.90 

2 6.12 5.58 3.94 2.97 

3 6.47 5.69 4.16 3.03 

4 6.81 5.69 4.16 3.03 

5 6.06 5.82 4.18 3.09 

6 6.65 5.82 4.18 3.09 

7 6.16 5.84 4.26 3.20 

8 5.96 5.91 4.26 3.20 

9 6.82 5.96 4.29 3.20 

10 6.52 6.11 4.29 3.23 

11 5.63 6.11 4.30 3.23 

12 6.47 6.17 4.30 3.26 

13 6.15 6.24 4.32 3.26 

14 6.70 6.36 4.50 3.28 

15 5.87 6.39 4.53 3.30 

16 6.65 6.54 4.53 3.30 

17 6.19 6.54 4.61 3.31 

18 6.50 6.54 4.61 3.35 

19 6.34 6.54 4.62 3.35 

20 6.41 6.57 4.72 3.39 

21 5.63 6.58 4.76 3.39 

22 6.47 6.58 4.78 3.42 

23 6.15 6.74 4.86 3.46 

24 6.70 6.77 4.86 3.47 

25 5.87 6.77 4.88 3.47 

26 6.65 6.85 4.88 3.47 

27 6.19 7.10 5.03 3.47 

28 6.70 7.10 5.03 3.55 

29 5.87 7.14 5.07 3.55 

30 6.65 7.15 5.07 3.68 

Mean 6.32 6.36 4.53 3.33 

SD 0.33 0.48 0.34 0.18 

Conversion factor MPa= multiply by 0.1450 ksi 

  



Table 16. split tensile strength of FA concrete (in MPa) 

Sl. No. Control 

20% 

replacement  

by FA 

40% 

replacement  

by FA 

60% 

replacement  

by FA 

1 2.21 1.98 1.66 1.17 

2 2.69 2.00 1.66 1.19 

3 2.64 2.01 1.70 1.24 

4 2.71 2.01 1.71 1.26 

5 2.67 2.14 1.73 1.28 

6 2.57 2.14 1.74 1.29 

7 2.46 2.17 1.74 1.29 

8 2.54 2.20 1.76 1.29 

9 2.67 2.21 1.77 1.31 

10 2.26 2.21 1.77 1.32 

11 2.61 2.23 1.77 1.35 

12 2.29 2.23 1.77 1.35 

13 2.73 2.29 1.78 1.36 

14 2.85 2.42 1.78 1.38 

15 2.18 2.42 1.79 1.38 

16 2.81 2.45 1.79 1.41 

17 2.35 2.46 1.79 1.41 

18 2.88 2.52 1.79 1.41 

19 2.90 2.52 1.81 1.41 

20 2.96 2.69 1.81 1.42 

21 2.67 2.72 1.84 1.43 

22 2.26 2.75 1.84 1.44 

23 2.61 2.79 1.85 1.45 

24 2.29 2.83 1.85 1.45 

25 2.64 2.85 1.86 1.46 

26 2.71 2.94 1.86 1.46 

27 2.67 2.94 1.87 1.49 

28 2.57 3.03 1.88 1.49 

29 2.46 3.10 1.89 1.52 

30 2.67 3.13 1.89 1.52 

Mean 2.60 2.48 1.79 1.37 

SD 0.23 0.35 0.063 0.093 

*Conversion factor MPa= multiply by 0.1450 ksi 

 

 

 

 

 

 



Fig. 1. Compressive strength distribution of FA concrete cubes 

Fig. 2: Flexural strength distribution of FA concrete cubes 

Fig. 3: Split tensile strength distribution of FA concrete cubes 

Fig. 4: Cumulative Probability Distribution (experimental and assumed) for compressive strength 

Fig 4 (a) Control 

Fig 4 (b) 20% FA 

Fig 4 (c) 40% FA 

Fig 4 (d) 60% FA 

Fig. 5:  Cumulative Probability Distribution (experimental and assumed) for flexural strength 

Fig 5 (a) Control 

Fig 5 (b) 20% FA 

Fig 5 (c) 40% FA 

Fig 5 (d) 60% FA 

Fig. 6:  Cumulative Probability Distribution (experimental and assumed) for split tensile strength 

Fig 6 (a) Control 

Fig 6 (b) 20% FA 

Fig 6 (c) 40% FA 

Fig 6 (d) 60% FA 

Fig. 7: Selected seismic hazard curve. (Adapted from Dhir et al. 2018, © ASCE.) 

Fig. 8:  Typical four-storey RC frame selected for the present study 

Fig.9: PSDM for control and FA concrete frames 

Fig. 10: Fragility curves for control and FA concrete 

Fig 10 (a) At SD 

Fig 10 (b) At CP 

Fig. 11: Reliability curves for control and FA concrete 

Fig 10 (a) At SD 



Fig 10 (b) At CP 

 




