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Abstract

This paper studies the design and pricing of an extended warranty menu, which offers
multiple options with differentiated lengths and prices. The power law process is used
to model product failures and evaluate warranty costs. The multinomial logit model is
adopted to describe customer choice behaviors. From a warrantor’s perspective, the design
and pricing problem is to determine which candidate options to offer and the associated
prices so as to maximize the expected warranty profit. We show that the optimal strategy
is to offer all candidate options associated with a cost-plus-margin pricing policy, with the
same profit margins for all options. If only a limited number of options can be offered, then
the options with the highest valuation margins should be selected. In addition, we present
three extended models by incorporating heterogeneous warranty breadths, free preventive
maintenance programs, and customers with heterogeneous perceptions of product failure
probability. Major findings in the extended models include: i) a free preventive maintenance
program should be attached to a warranty option only when it is feasible for that option;
and ii) when the customer population is heterogeneous, the equal-margin pricing policy is
no longer optimal. Overall, this work will equip practitioners with a quantitative tool to
design and price extended warranty menus in various practical scenarios.

Keywords: pricing, extended warranty, warranty menu, multinomial logit model

1. Introduction

Nowadays, most consumer durables are sold with a manufacturer’s warranty (also called
base warranty) which protects customers from product failures in certain years after pur-
chase. In addition to base warranties, manufacturers, retailers, and even third-party insurers
(hereafter referred to as warrantors) are selling extended warranty (EW) contracts in the

∗Corresponding author
Email addresses: xlwang28-c@my.cityu.edu.hk (Xiaolin Wang), xiujiezhao@tju.edu.cn (Xiujie

Zhao), b.liu@strath.ac.uk (Bin Liu)

Preprint submitted to European Journal of Operational Research May 8, 2020



market. Unlike a base warranty that is free-of-change and bundled with the product, an
EW is an optional contract offering customers an additional protection, usually after the ex-
piration of base warranty, and has to be bought separately with an extra premium (Murthy
and Jack, 2014). In recent years, the market for EWs is flourishing, attributed largely to
providers’ pursuit for high profitability and buyers’ desire for peace of mind. It is widely
recognized that EWs are highly profitable, which is especially important in the context that
profit margins of products themselves are decreasing (Gallego et al., 2014). According to the
Business Week,1 profit margins on EWs of Best Buy and Circuit City were around 50%-60%
in 2003, which was almost 18 times the margins on their products. On the other hand, al-
though the economic value of EWs is often questioned by consumer magazines and experts,
there are still many customers willing to buy EWs for peace of mind (Huysentruyt and Read,
2010). Generally, customers who suspect their products are vulnerable to breakdowns are
more likely to purchase an EW (Abito and Salant, 2019). The attach rates of EWs (i.e.,
the fraction of product buyers who also buy an EW) vary across product categories—from
around 20% on computer-related items to 50% on major appliances, and even higher.2

A common practice of selling EWs is that when customers purchase a new product either
online or at stores, they are recommended to buy an optional EW as well. For example, Fig-
ure 1 shows a screenshot from tmall.com, where EW information is posted in the “Confirm
Order Information” page. In this manner, customers can choose to buy any EW option or
not immediately after they decide to purchase the product. More often than not, customers
have diverse preferences on warranty features such as length and price. Recently, many war-
rantors have launched flexible EW programs in which differentiated options are designed to
segment customers and attain competitive advantages. In general, the flexibility of an EW
program can be reflected in its length, price, breadth (which components and services are
covered), starting and ending points, renewal/cancellation policy, and maintenance strategy
(Jack and Murthy, 2007). For instance, the three warranty options in Figure 1 differ in two
key features—length and price. By offering such an EW menu, the warrantor can adjust
warranty lengths and prices to attract customers who are willing to pay more for longer
protection, without losing those who have a “lesser taste” for protection.

The aim of this paper is to study the design and pricing of such kind of EW menus. We
refer to individual contracts in a warranty menu as different options of the generic contract.
Warranty options might differ from each other in the aforementioned features such as price
and length. This creates a major hurdle in the warranty-menu design and pricing problem:
Different options might serve as substitutes so that the demand of a specific option depends
not only on its length, price, or other features, but also on those of the other options.
This research intends to solve this problem by adopting the multinomial logit (MNL) choice
model which is widely used in assortment planning and multi-product pricing problems.
The MNL model can be derived from a random utility maximization theory where each
customer chooses the option with the highest utility out of the options available (Ben-Akiva
and Lerman, 1985). Based on this model, we first investigate the following problem from a

1“The Warranty Windfall” Business Week, December 20, 2004.
2“Service Contract Market Research”, Warranty Week, March 9, 2017.
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Figure 1: Huawei MateBook’s EW menu offered by an online store on tmall.com (translated version).

warrantor’s perspective: Given a list of candidate contract lengths, determine which options
to offer and the associated prices so as to maximize the expected warranty profit per unit
sold. We find that the optimal strategy is to offer all candidate options associated with a cost-
plus-margin pricing policy, with a uniform profit margin for all options. More importantly,
if only a limited number of options can be offered—which is a common industrial practice,
then the options with the highest valuation margins should be selected.

In addition, we present three extended models to generalize the original model. The
first one deals with the design and pricing of an EW menu with heterogeneous warranty
breadths. We show that the cost-plus-margin pricing policy with an identical profit margin
is still optimal in this case. The second one studies the problem of bundling a free preventive
maintenance (PM) program with a subset of warranty options. We find that it is worthwhile
to bundle a free PM program with a specific option only when it is feasible for that option.
As a result, the warranty attach rate and expected warranty profit would become higher
if a feasible PM program is bundled. Finally, the third one considers customers with het-
erogeneous perceptions of product failure probability via the mixed MNL (MMNL) model.
An interesting finding is that the equal-margin pricing policy is no longer optimal in this
scenario. Overall, the three extensions not only enrich the degree of flexibility in a warranty
menu but also enhance scientific contributions of this work.

The rest of the paper is organized as follows. Section 2 reviews the relevant literature.
Sections 3 and 4 formulate and then analyze the EW-menu design and pricing problem,
respectively. Then, Section 5 explores the three extended models. Numerical examples are
also given to demonstrate the models and results. Finally, Section 6 concludes the paper.
All technical proofs are presented in the Appendix.

2. Literature review

The topic of this work falls in the design and pricing of EW contracts. In broad terms, the
existing research on this topic can be classified into two types: The first type focuses mainly
on the EW design and pricing in supply chain contexts (see, e.g., Desai and Padmanabhan,
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2004; Jiang and Zhang, 2011; Heese, 2012; Li et al., 2012; Mai et al., 2017; He et al., 2018;
Bian et al., 2019; Ma et al., 2019), whereas the second stream does not consider supply chain
structures (see, e.g., Su and Shen, 2012; Tong et al., 2014; Musakwa, 2015; Su and Wang,
2016b; Huang et al., 2017). In the latter case, EW contracts are designed and/or priced
predominately from the warrantor’s perspective, through warranty cost analysis; while most
studies in the former case adopt linear demand functions—either directly assumed or derived
from a utility-based formulation of heterogeneous risk preferences—and then make optimal
EW design decisions by examining both customer’s and warrantor’s problems. Our work
distinguishes itself from theirs in the sense that (i) we aim at designing an EW menu that
contains multiple substitutable options, rather than a single EW contract; and (ii) the
demands of EW options are captured by the MNL model which is a nonlinear function of
their lengths and prices.

A concept that is similar, sometimes equivalent, to the warranty menu is flexible war-
ranties. In this regard, a number of studies focus on flexible two-dimensional warranty
contracts, by deriving multiple combinations of age and usage limits for a given warranty
cost (see, e.g., Manna et al., 2006; Shahanaghi et al., 2013; Su and Wang, 2016a; Ye and
Murthy, 2016). The main deficiency of these studies is that the flexible contracts are designed
for a fixed warranty cost, without considering customer choices and the profit-maximization
objective. Moreover, flexible EW contracts have aroused many interests and different as-
pects have been investigated, e.g., starting point (Jack and Murthy, 2007; Tong et al.,
2014), deferral and renewal options (Lam and Lam, 2001; Hartman and Laksana, 2009),
month-by-month commitment (Gallego et al., 2014), as well as flexible PM strategies (Su
and Wang, 2016b; Huang et al., 2017; Wang et al., 2017). In addition, Padmanabhan and
Rao (1993), Padmanabhan (1995), and Lutz and Padmanabhan (1998) study the design
of warranty menus with self-selection constrains—that is, customers are able to self-select
into the coverage level specifically designed for them. In this work, however, the EW menu
contains multiple substitutable options with distinct lengths, prices, or other features; more
importantly, without self-selection constraints, the MNL choice model adopted here is able
to account for the substitution among available options.

The MNL model is a widely used utility-based choice model where each customer chooses
the option with the highest utility from the options available (Ben-Akiva and Lerman, 1985).
Talluri and Van Ryzin (2004) make the first attempt to apply the standard MNL model in
revenue management. They show that the revenue-ordered assortment without constraints
on the offer sets is optimal. Hopp and Xu (2005) study strategic impacts of modular design
on the optimal length and price of a differentiated product line. Li and Huh (2011) study a
product-line pricing problem with the MNL and Nested Logit models. A salient finding in
Hopp and Xu (2005) and Li and Huh (2011) is that the profit margin, defined as price minus
cost, at optimality is constant across all products. Rusmevichientong et al. (2014) and Li
et al. (2019) further investigate the assortment planning and product-line pricing problems,
respectively, under the MMNL model. They show that the revenue-ordered assortment and
the equal-margin pricing policy are generally no longer optimal under the MMNL model.
Recent applications of MNL in assortment planning and product-line pricing problems can be
found in, e.g., Wang and Cui (2017), Strauss et al. (2018), Wang (2018), Lee and Eun (2020),
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and Maclean and Ødegaard (2020). To the best of our knowledge, this work represents the
first attempt to apply MNL in the design and pricing of after-sales service contracts, instead
of physical products. In essence, EW is a typical kind of after-sales service that protects
customers from product failures, and its value resolves only when the warranted item fails
in the protection period. In this work, the cost and utility functions in MNL are specifically
tailored to the warranty context by incorporating product failure probability and customers’
perception of this probability.

We note that the MNL model has already been adopted in several studies to characterize
warranty demands. Among them, Chu and Chintagunta (2009) and Guajardo et al. (2016)
deal with base warranties, while Jindal (2015) and Abito and Salant (2019) look at EWs.
Our work differs from theirs in the sense that they focus primarily on empirical investigations
of the values and demand drivers of warranties for different types of products, whereas we
deal with the design and pricing of EW menus from an analytical perspective. Nevertheless,
the successful applications of MNL in empirical studies well support the adoption of this
model in our work.

Overall, this research aims to contribute to the existing warranty literature by studying
a new warranty-menu design and pricing problem. The MNL-based customer choice model
tailored here provides a basis that can be built upon in order to incorporate more features
in the warranty menu, such as heterogeneous warranty breadths, free PM programs, and
customers with heterogeneous perceptions of product failure probability.

3. The model

Consider a single product (e.g., laptop, home appliance) whose design life is L. Each
unit of the product is sold with a “free” base warranty of length wb whose price is merged
into the product selling price. At the point of sale, an EW menu is also recommended
to customers, immediately after they finalize their decision to buy the warranted product
(Abito and Salant, 2019). The EW menu is flexible in the sense that each customer can
choose any option out of the options available. Of course, customer might decide not to
buy any option at all. Suppose that n warranty options are available in the menu, denoted
by N = {1, 2, . . . , n}, and each option i comes with distinct length wi and price pi, i ∈ N .
Then, the menu can be represented by {w,p} = {(wi, pi)}i∈N , where w := {wi}i∈N and
p := {pi}i∈N . An EW contract takes effect after the expiry of base warranty. So, if option
i is bought by a customer, then the total warranty length is wb + wi; otherwise, the total
warranty length is simply wb. One thing noteworthy is that by considering the product’s
design life, we confine ourselves to wi ∈ [0, L− wb].

3.1. Warranty cost model

Offering warranty3 contracts is not free from the warrantor’s perspective, because servic-
ing warranty claims in the field incurs expenses. For warranty cost modeling purposes, we

3Henceforth, we will use the terms “warranty” and “extended warranty” interchangeably, if not mentioned
otherwise. Any reference to base warranty will be explicitly stated.
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assume that any item failures during the base warranty and EW periods will be immediately
rectified by minimal repairs, as is typically done in the literature (Huang et al., 2017; Su and
Shen, 2012; Ye and Murthy, 2016). A minimal repair restores a failed item to its functioning
state just prior to failure. Under this assumption, item failures will occur according to a
non-homogeneous Poisson process with an intensity function λ(t) having the same form as
the hazard rate of the time to first failure (Murthy and Jack, 2014). Thus, the expected
servicing cost c(wi) of warranty option i ∈ N can be expressed as

c(wi) = cr

∫ wb+wi

wb

λ(t)dt = cr(Λ(wb + wi)− Λ(wb)), (1)

where Λ(t) =
∫ t

0
λ(x)dx and cr is the average minimal repair cost borne by the warrantor.

We further assume that the product of interest has a power law intensity function with
shape parameter β and scale parameter α, i.e., λ(t) = β/α(t/α)β−1 and Λ(t) = (t/α)β. This
form has been widely employed in the reliability literature due to its flexibility in describing
different kinds of failure characteristics (Wu, 2019). Specifically, β < 1, β = 1, and β > 1
correspond to infant mortality, random failures, and aging/wear-out failures, respectively,
which exhibit decreasing, constant, and increasing failure intensities. In this situation, Eq.
(1) can be rewritten as

c(wi) = cr

((
wb + wi

α

)β
−
(wb
α

)β)
. (2)

In this work, only β ≥ 1 is considered as infant mortality shall be eliminated by screen-
ing or burn-in tests before product release. This implies that the expected warranty cost
c(wi) is non-negative and convex increasing in wi. In the warranty-menu design and pricing
problem, we assume that an identical cost model c(·) is applied to all warranty options,
because its parameters (e.g., α and β in Eq. (2)) depend solely on the product’s reliability
characteristics and the warranty options’ breadths. In particular, the servicing cost of a
specific warranty option would increase (resp. decrease) if the product reliability is deteri-
orated (resp. improved) and/or more (resp. less) components/services are covered. As we
are dealing with a single product and its warranty options have the same breadth, the form
of warranty cost c(·) should be the same for all options. One thing noteworthy is that the
warranty cost model in Eq. (1) is general and can accommodate to any forms of intensity
function λ(t).

3.2. Customer choice model

We adopt the well-known MNL model to characterize discrete customer choice behaviors.
As mentioned earlier, MNL assumes that customers act as utility maximizers. The random
customer utility for warranty option i ∈ N can be defined as

ui = v(wi)− pi + εi, (3)
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where v(wi) is the average customer-perceived valuation (measured in money units) of option
i and εi measures the randomness of the utility function that is affected by unobservable
characteristics.

The customer-perceived valuation v(wi)—also called reservation price in Aydin and Ryan
(2000)—of a warranty option is the maximal price a customer is willing to pay for that option.
For each warranty option i ∈ N , v(wi) can be further modeled as

v(wi) = cmδ(ri), (4)

where cm is the customer-paid repair cost for an out-of-warranty failure (generally, cm is
much larger than cr, and known for customers), ri is the product failure probability during
the protection period of option i, and δ(·) is the weight customers assign to failure probability
ri. Note that ri is an increasing function of wi, although the function argument is omitted
for clarity. With the minimal repair assumption above, ri can be derived as ri = ri(wi) =
1− exp(Λ(wb)− Λ(wb + wi)).

The detailed explanation of utility function (3) is as follows. From a customer’s perspec-
tive, the value of warranty option i resolves only when the warranted unit fails in the time
interval [wb, wb +wi] and the associated rectification cost is waived. To be specific, if a unit
covered by option i fails, then the customer would save cm units of money for failure repair.
As a result, conditional on product failing under option i, with a perceived probability δ(ri),
the customer’s average utility of buying this option is given by cm− pi; whereas conditional
on no failure, the average utility becomes −pi. In this vein, customers make their purchase
decision regarding a warranty option by assessing the perceived repair expenses, in the event
that the option is not purchased, against the premium to be paid for buying the option.
This is consistent with the observation in UK Competition Commission (2003).

Furthermore, it is evident that customers tend to distort actual failure probability due
to the lack of product reliability information (Abito and Salant, 2019). Such probability
distortion behavior can be characterized by δ(·). Commonly adopted formulations of this
function include

δ(ri) = exp(−(− log(ri))
λ), (5)

used in Abito and Salant (2019) and

δ(ri) = rλi /(r
λ
i + (1− ri)λ)1/λ, (6)

applied in Jindal (2015), where λ ∈ (0, 1) is the model parameter, and a larger value of
λ reflects a smaller distortion. Notice that when λ → 1, we have δ(ri) = ri for both
(5) and (6), corresponding to an ideal case that customers can precisely estimate the true
failure probability. Figure 2 illustrates the two probability distortion functions. One can
observe that the failure probability tends to be overestimated when it is small, whereas
underestimated when it is medium or large. This shows a commonly observed inverse S
shape; see, e.g., Abito and Salant (2019) and Jindal (2015).

Again, we assume that all warranty options share the same form of valuation function
v(·). This is appropriate when an identical breadth is applied to all options and the customer

7



0 0.1 0.2 0.3 0.4 0.5
r

0

0.1

0.2

0.3

0.4

0.5

δ
(r
)

(a) δ(r) = exp(−(− log(r))λ)

λ = 0.1
λ = 0.4
λ = 0.7
45◦ line

0 0.1 0.2 0.3 0.4 0.5
r

0

0.1

0.2

0.3

0.4

0.5

δ
(r
)

(b) δ(r) = rλ/(rλ + (1 − r)λ)1/λ

λ = 0.4
λ = 0.7
λ = 0.9
45◦ line

Figure 2: Illustration of the probability distortion functions. One can see that δ(r) ≥ r for small r, whereas
δ(r) < r for medium or large r. In sub-figure (a), all curves intersect at point (e−1, e−1); while in sub-figure
(b), the curves intersect with the 45-degree straight line in an ascending order of λ.

population is homogeneous in the perception of product failure probability. This assumption
is made mainly for the sake of simplicity and tractability. It will be relaxed in Section 5 to
accommodate more realistic scenarios.

According to the utility maximization theory, a rational customer will select the warranty
option that maximizes her utility. Note that u0 ≡ ε0 is the utility of the outside option,
corresponding to the case that a customer does not buy any warranty option. An underlying
assumption of MNL is that the random terms εi’s are independent and identically distributed
Gumbel random variables, i.e., Pr(εi ≤ x) = exp(− exp(−(x/µ + χ))), where χ ≈ 0.5772
is Euler’s constant and µ > 0 is a scale parameter. It is a standard result for MNL (see
Ben-Akiva and Lerman, 1985, for a derivation) that for given w and p, a customer will
choose warranty option i ∈ N with probability

qi(w,p;N ) = Pr

(
ui = max

j∈N
uj

)
=

exp
(
v(wi)−pi

µ

)
1 +

∑
j∈N exp

(
v(wj)−pj

µ

) , (7)

and turn to the outside option with probability q0(w,p;N ) = 1−
∑

i∈N qi(w,p;N ).
One property noteworthy is that if δ(ri) is an increasing function of ri, which is well

satisfied by (5) and (6), then qi(w,p;N ) would increase as wi increases and/or pi decreases.
Recall that ri is increasing in wi. If δ(ri) is an increasing function of ri, then δ(ri), as
well as v(wi), are increasing in wi (according to the chain rule). Due to the fact that
∂qi(w,p;N )/∂wi > 0 and ∂qi(w,p;N )/∂pi < 0 for all i ∈ N , the property above is
verified. Another property to note is that the scale parameter µ in (7) affects the MNL’s
behavior (Strauss et al., 2018): As µ → 0, MNL becomes purely deterministic (i.e., qi = 1
if ui = maxj∈N uj; zero, otherwise); while when µ→∞, the utility of each option becomes
irrelevant and the choice probability is constant across all available options and the outside
option (i.e., qi = 1/(1 + n), ∀i ∈ N ). This shows the flexibility and power of MNL as a
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customer choice model.
A further remark is that the valuation function v(·) in (4) is different from those in most

MNL-based assortment planning and pricing studies where the valuation for each option
is either a constant (see, e.g., Talluri and Van Ryzin, 2004; Li and Huh, 2011; Li et al.,
2019; Wang, 2018) or a linear function of product quality (see, e.g., Wang and Cui, 2017).
Although this difference does not make the analysis more complicated, the valuation model,
as well as the warranty cost model, specifically tailored to warranties allow us to incorporate
more features in an appropriate manner, such as heterogeneous warranty breadths, free
PM programs, and customers with heterogeneous probability perceptions (see Section 5 for
details).

3.3. Expected profit per unit sold

We consider the purchase of warranty contracts occurs only at the point of product sale.
This is not far away from the reality as most warranty contracts are bought at this point.4

Moreover, we focus below on customers’ warranty purchase decision conditional on they
already buying the main product. This is because warranty is largely an afterthought in the
buying process. In this manner, the potential market size for warranty is the total number
of customers who have bought the product, which is considered exogenous for the warranty-
menu design and pricing problem; the choice probability qi(w,p;N ) then represents the
proportion of product buyers who purchase warranty option i as well. As a result, the
total probability of warranty purchase (i.e., the warranty attach rate) is given by Q =∑

i∈N qi(w,p;N ).
As the total market size of the product is supposed to be fixed, we can simply deal with

the expected warranty profit per unit sold, as follows:

Ω(w,p;N ) =
∑
i∈N

(pi − c(wi))qi(w,p;N ), (8)

where pi − c(wi) is the expected profit margin (markup) of warranty option i.

4. Design and pricing of an EW menu

In this section, we discuss the optimal design and pricing of a warranty menu. We
consider a scenario in which the contract lengths of n warranty options are pre-specified.
In the real world, the length of a warranty contract is usually a positive integer, which
may be 6 months, 12 months, or 18 months, for example. It is thus a common practice for
warrantors to pre-specify a list of warranty options with distinct lengths and then decide on
which options to offer (i.e., offer set S ⊆ N ) and the optimal prices for the offered options.

4For example, UK Competition Commission (2003) finds that more than 80% of customers in UK obtain
their warranties at the point of product purchase. Also, Warranty Week suggests that the best time and
place to sell an EW is at the time and place where the attached product is purchased; see the newsletter of
July 25, 2007.
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With the objective of profit maximization, the warranty-menu design and pricing problem
can be formulated as

max
S⊆N ,p

Ω(w,p;S). (9)

Generally, it is not easy to solve this problem using standard optimization techniques,
since the objective function is not well behaved. Following Wang (2018) and Wang and
Cui (2017), we reformulate the problem as follows: Let Ω(w,p;S) = π for any prices p.
Rearranging terms and after some algebraic manipulations, we obtain∑

i∈S

(pi − c(wi)− π) exp

(
v(wi)− pi

µ

)
= π. (10)

The derivation of this formula can be found in the proof of Theorem 1 (see the Appendix).
Notice that the left-hand side (LHS) is strictly decreasing in π for any specific p while the
right-hand side (RHS) is a 45-degree straight line. Therefore, the optimization problem (9)
is equivalent to finding a unique intersection between a strictly decreasing function and a
45-degree line. After reformulation, the problem is much more tractable.

The optimal warranty-menu design and pricing decisions are presented in the following
theorem.

Theorem 1. (i) The optimal offer set is S∗ = N .
(ii) The optimal price of each option i is given by

p∗i = c(wi) + π∗ + µ, (11)

where π∗ is the unique solution to

µ
∑
i∈N

exp

(
v(wi)− c(wi)− π − µ

µ

)
= π. (12)

(iii) The resulting warranty attach rate is given by

Q∗ =
∑
i∈N

qi(w,p
∗;N ) =

π∗

µ+ π∗
. (13)

A key finding here is that all candidate options should be offered (i.e., S∗ = N ) when
the lengths of warranty options are pre-specified and the warrantor determines the offer
set and associated prices. Given any w, the optimal price of each option i is given by
p∗i = c(wi) + π∗ + µ, i ∈ N . As a consequence, the profit margins of all options, at
optimality, are identical and given by p∗i − c(wi) = π∗ + µ, i ∈ N . In other words, the
optimal warranty prices for given w should be specified in a way that the profit margins
are the same for all options. This finding is consistent with the existing literature (see, e.g.,
Aydin and Ryan, 2000; Hopp and Xu, 2005; Li and Huh, 2011; Wang and Cui, 2017). This
is because in standard logit-type choice models, cross-price elasticities are identical for all
pairs of products (Hopp and Xu, 2005). Furthermore, it is interesting to find that when
the optimal pricing policy above is applied, the resultant warranty attach rate Q∗ can be
explicitly expressed as a function of the expected profit π∗.
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Corollary 1. The price-length ratio p∗i /wi is either decreasing or first decreasing and then
increasing in wi ∈ [0, L− wb], i ∈ N .

The price-length ratio is an essential indicator that customers may refer to when choosing
from multiple warranty options. Corollary 1 presents an interesting property about the
monotonicity of this ratio. There are two possible scenarios: (a) p∗i /wi is decreasing in wi;
or (b) it is first decreasing and then increasing in wi, resulting in a “U-shaped” curve. This
property is somewhat supported by the real case in Figure 1, where the price-length ratios
of the 1-year, 2-year, and 3-year options are 77.80, 60.40, and 63.27, respectively; in this
case, the price-length ratio first decreases and then increases with the (discrete) growth of
wi. In essence, this property is attributed to the cost-plus-margin pricing policy, where the
warranty cost c(wi) is convex increasing in wi while the profit margin π∗+µ is constant across
all options. The price-length ratio p∗i /wi is thus a combination of an increasing term and a
decreasing term. As a result, it might exhibit a decreasing or U-shaped trend, depending
on the relative magnitude of the two terms. In practice, one would expect that customers
are more likely to choose one option if its price-length ratio is lower. Such behavior can be
captured by the contextual reference effect (see, e.g., Wang, 2018). We leave this topic for
future research.

Define ηi := v(wi)−c(wi) as the valuation margin of option i, i.e., the difference between
average customer valuation v(wi) and warranty cost c(wi) of that option. Recall that the
difference between price pi and warranty cost c(wi) is the profit margin of option i. Then
we have the following corollary which is an intuitive follow-up result of Theorem 1.

Corollary 2. The optimal profit π∗ is increasing in ηi, for all i ∈ N ; and the optimal profit
margin p∗i − c(wi) for each option i is increasing in ηj, for all i, j ∈ N .

The first part implies that the warrantor can make more profits by selling warranty
options with higher valuation margins. The customer valuation v(wi) reflects the average
willing-to-pay for option i. Thus, a larger difference between customer valuation and war-
ranty cost offers the warrantor more potentials to extract profit. The second part follows
the first part but delivers a more interesting finding: If the warrantor replaces one of the
existing options with one having a higher valuation margin, then the new menu will result
in a higher profit, which in turn translates to an increase in the warranty prices for all op-
tions. This is due to the substitution and cannibalization effect and the fact that all profit
margins are identical at optimality. More specifically, if the valuation margin of a specific
option i becomes high, then the warrantor would like more customers to buy it for profit
maximization; since the total market size is fixed, the warrantor has to increase the prices
of all other options to induce customers to purchase option i.

In reality, however, the warrantor may include only a limited number of options, say, m
(m < n), in a warranty menu even though all of the n options are profitable. For example,
only three warranty options are offered in Figure 1. In this situation, the warrantor needs to
determine which options to include in the menu with limited advertising space to maximize
the warranty profit. Based on the results in Corollary 2, the following corollary describes
the optimal warranty-option selection strategy when considering a limited menu size.
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Table 1: The optimally designed warranty menu and related metrics.

wi ri v(wi) c(wi) ηi p∗i qi (%) p∗i /wi

1 0.09 72.30 19.06 53.24 87.02 5.66 87.02
2 0.21 116.79 48.10 68.70 116.06 19.51 58.03
3 0.35 160.21 86.37 73.84 154.33 29.44 51.44
4 0.49 202.78 133.41 69.37 201.37 20.58 50.34
5 0.61 243.67 188.88 54.79 256.84 6.41 51.37
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Figure 3: Customer valuations, warranty costs, and optimal prices for the five options.

Corollary 3. If the warrantor is limited to include only m out of the n warranty options in
a menu, then the m options with the highest valuation margins should be selected.

This result is quite natural. It implies that if we re-order the warranty options so that
η1 > η2 > · · · > ηn, then the warrantor should choose options 1 to m—the m options that
have the highest valuation margins (Aydin and Ryan, 2000). This is because the valuation
margin ηi is the “largest” possible profit margin that customers are willing to pay for option
i. Therefore, the warrantor should give higher priorities to warranty options with higher
valuation margins.

Example 1. Consider a hypothetical electronic appliance whose design life is L = 10
years. The product is covered by a free 1-year base warranty, i.e., wb = 1 year. The
warrantor intends to design a warranty menu for this product. Assume that the product has
a power law intensity with scale parameter α = 6.06 and shape parameter β = 1.82, and
the average repair cost borne by the warrantor is cr = 200 CNY. However, if a customer
does not buy any warranty option, then she needs to pay, on average, cm = 450 CNY for
an out-of-warranty repair. Further assume that the distortion of product failure probability
can be captured by Eq. (5), i.e., δ(ri) = exp(−(− log(ri))

λ), and the associated parameter is
λ = 0.69. The scale parameter of MNL is set to µ = 12.5. The optimally designed warranty
menu with five options and the related metrics are shown in Table 1 and Figure 3. Note
that the units for time and money are years and CNY, respectively.
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Figure 4: Trends of the price-length ratios under different values of λ.

The optimal warranty menu is {w,p} = {(1, 87.02), (2, 116.06), (3, 154.33), (4, 201.37), (5, 256.84)}.
The corresponding profit per unit sold is π∗ = 55.46 CNY, and the warranty attach rate is
Q∗ = 81.61%. As can be seen from Table 1, the choice probabilities of the second, third,
and fourth options are significantly larger than others. This is because the average customer
utilities v(wi)−pi for these options are positive (see Figure 3), which in turn results in large
choice probabilities. On the other hand, the first and fifth options still have small choice
probabilities, even though the corresponding average customer utilities are negative. This
phenomenon is caused by the influence of random term εi in utility model (3), as well as the
fact that exponent terms exp(·) in MNL always generate positive choice probabilities. As
the valuation function v(wi) (resp. warranty cost c(wi)) is concave (resp. convex) increasing
in wi, the valuation margins—defined as average valuation minus warranty cost—of the sec-
ond, third, and fourth options are the largest (see Table 1). As a result, if the warrantor is
limited to include only m (m ≥ 3) out of the five options in a menu, then the second, third,
and fourth options ought to be chosen for profit maximization purposes (refer to Corollary
3).

Moreover, the price-length ratio p∗i /wi, at optimality, is decreasing in wi for wi ∈
{1, 2, 3, 4}, and becomes slightly increasing thereafter (see Table 1). To illustrate a dif-
ferent pattern, Figure 4 shows the price-length ratios for three different values of λ, i.e.,
0.2, 0.5, and 0.8. One can observe that when λ = 0.2, the price-length ratio is consistently
decreasing in wi; whereas the ratios for λ = 0.5 and λ = 0.8 exhibit a decreasing-then-
increasing pattern when wi is increasing in a discrete manner. This validates the analytical
result in Corollary 1.

Furthermore, if we consider nested warranty menus with increasing number of options,
i.e., {(w1 = 1, p1)}, {(w1 = 1, p1), (w2 = 2, p2)}, . . . , then Figure 5 shows the expected
profit per unit sold versus the number of options under different values of λ. We find that
as the number of available options increases, the expected warranty profit also grows, until
reaching a specific limit. The warranty attach rate Q∗ shall exhibit the same pattern, as it
equals to π∗/(µ + π∗). This is due to the fact that warranty options with long protection
periods will have negative customer utilities, thus contribute little to the warranty profit
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Figure 5: Expected warranty profit versus the number of options under different values of λ.

and attach rate. In addition, the profit curve approaches to its limiting value faster when
λ is smaller. This observation stems from the concavity of valuation function. Specifically,
when λ becomes smaller, the concavity of v(wi) is severer (see Figure 2), and thus the
customer utility would become negative even for smaller wi. Consequently, the profit curve
will approach to its limiting value faster as wi increases. Another observation to highlight is
that the warranty profit is smaller when λ becomes larger. This is because a larger λ reflects
a smaller distortion of failure probability, implying that customers are able to estimate the
true failure probability in a more accurate manner. Therefore, the warrantor’s expected
profit per unit sold will become smaller due to the loss of asymmetric advantage in product
reliability information.

5. Extensions

The warranty-menu design and pricing problem studied above can serve as a workhorse
model on top of which many additional features can be incorporated. In this section, three
extended models are developed by incorporating heterogeneous warranty breadths, free PM
programs, and customers with heterogeneous perceptions of product failure probability, re-
spectively.

5.1. Heterogeneous warranty breadths

In the previous sections, we presumed that warranty options in a menu differ only in price
and length. In reality, however, warranty options might have different types of breadth,
namely, they might cover different sets of components and/or add-on services. For ex-
ample, Ford’s extended service plans include PowertrainCare, BaseCare, ExtraCare, and
PremiumCare, under which the number of components covered are 29, 84, 113, and 1000+,
respectively.5 Another example is the protection plans of HP Spectre x360 laptop, which

5Refer to http://www.lombardfordwarrantys.com.
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Figure 6: HP Spectre x360 laptop’s EW menu (with two types of breadths) from store.hp.com.

differ not only in length and price but also in the inclusion/exclusion of accidental damages
such as spills, surges, and drops (see Figure 6). In this subsection, we extend our original
model to incorporate heterogeneous breadths into the warranty-menu design and pricing
problem. As a side note, a specific type of warranty breadth resembles a bundle of compo-
nents or add-on services (refer to Fuerderer et al., 1999, for bundle selling). That is to say, a
warranty menu with heterogeneous breadths is equivalent to a menu of nested bundles along
with different protection lengths. To our knowledge, quite limited studies on the design and
pricing of bundle menus can be found in the literature. Ferrer et al. (2010) and Cataldo
and Ferrer (2017) investigate the optimal composition and pricing of multiple bundles, i.e.,
which components or services to include in a set of bundles, and the associated optimal
price; whereas the aim of our work is to determine which bundles (with given compositions)
to include in the menu and the associated optimal prices. Nevertheless, the proposed model
below provides a new perspective on the design and pricing of bundle menus.

Suppose that there are K types of breadths across all warranty groups,6 each covering
a fixed number of components and/or add-on services. The warranty menu can then be
denoted by {w,p1,p2, . . . ,pK} = {(wi, pi,1, pi,2, . . . , pi,K)}i∈N , where pk := {pi,k}i∈N , and
pi,k is the price of warranty option with length wi and breadth type k. Notice that warranty
options in a specific group i, with any types of breadths, are of an identical length wi,
i ∈ N . In other words, all warranty options in a specific group differ only in breadth
type and price. Take the protection plans in Figure 6 as an example. There are two
types of warranty breadths: k = 1 (resp. k = 2) implies that the protection plans do
not (resp. do) cover accidental damages. The warranty menu can then be represented as
{(w1 = 2, p1,1 = 231.99, p1,2 = 251.99), (w2 = 3, p2,1 = 251.99, p2,2 = 275.99)}.

Although all options in a specific group have an identical warranty length, their servicing

6For clear presentation, in this subsection we refer to all options with the same length wi as in group i.
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costs and customer-perceived valuations are indeed different due to the heterogeneity in
breadth type. In general, when more components and/or add-on services are covered by
a warranty option, the associated servicing cost and customer-perceived valuation become
larger. Let ck(wi) and vk(wi) represent the expected warranty cost and customer valuation
of type-k breadth in group i, respectively. Then, the random customer utility of type-k
breadth in group i is given by ui,k = vk(wi) − pi,k + εi,k, where εi,k is a Gumbel random
variable. According to the setting above, the customer choice probability of type-k breadth
in group i ∈ N can be derived as

qi,k(w,p1, . . . ,pK ;N ) =
exp

(
vk(wi)−pi,k

µ

)
1 +

∑K
l=1

∑
j∈N exp

(
vl(wj)−pj,l

µ

) , (14)

and the expected warranty profit per unit sold is given by

Ω(w,p1, . . . ,pK ;N ) =
K∑
k=1

∑
i∈N

(pi,k − ck(wi))qi,k(w,p1, . . . ,pK ;N ). (15)

As before, the warrantor’s problem is to determine which groups to offer and the associ-
ated prices for given w, that is,

max
S⊆N ;p1,...,pK

Ω(w,p1, . . . ,pK ;N ). (16)

The optimization problem can be easily solved following the analysis in Section 4, and
the optimal warranty-menu design and pricing decisions are presented as follows.

Theorem 2. (i) The optimal strategy is to offer all groups and all breadth types.

(ii) The optimal price of type-k breadth in group i is given by

p†i,k = ck(wi) + π† + µ, (17)

where π† is the unique solution to

µ
K∑
k=1

∑
i∈N

exp

(
vk(wi)− ck(wi)− π − µ

µ

)
= π. (18)

(iii) The associated warranty attach rate is given by

Q† =
K∑
k=1

∑
i∈N

qi,k(w,p
†
1, . . . ,p

†
K ;N ) =

π†

µ+ π†
. (19)

Basically, the optimal warranty-menu design and pricing strategy with heterogeneous
breadth types is consistent with that in Theorem 1. The optimal strategy is to offer all
groups and all breadth types, and then determine the associated prices according to the
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Table 2: Parameter setting used in Example 2.

αl βl cr,l cm,l

Cluster 1 (l = 1) 6.06 1.82 200 450
Cluster 2 (l = 2) 7.12 2.55 150 300
Cluster 3 (l = 3) 6.88 1.00 180 230

Table 3: The optimally designed warranty menu and related metrics with three breadth types.

Breadth wi vk(wi) ck(wi) ηi,k p†i,k qi,k (%) p†i,k/wi

k = 1

1 72.30 19.06 53.24 130.03 0.11 130.03
2 116.79 48.10 68.70 159.06 0.38 79.53
3 160.21 86.37 73.84 197.34 0.58 65.78
4 202.78 133.41 69.37 244.38 0.40 61.10
5 243.67 188.88 54.79 299.85 0.13 59.97

k = 2

1 101.02 23.94 77.08 134.91 0.75 134.91
2 167.07 63.64 103.43 174.61 6.16 87.31
3 235.03 119.84 115.19 230.81 15.79 76.94
4 305.13 193.31 111.82 304.28 12.06 76.07
5 375.83 284.82 91.01 395.79 2.28 79.16

k = 3

1 146.84 50.11 96.73 161.08 3.61 161.08
2 233.15 115.97 117.18 226.94 18.52 113.47
3 317.34 198.33 119.01 309.30 21.44 103.10
4 401.37 297.96 103.41 408.93 6.15 102.23
5 484.34 415.64 68.71 526.61 0.38 105.32

cost-plus-margin pricing policy. The profit margins of any breadth types in any groups,
at optimality, are identical and given by π† + µ. The corresponding attach rate is still a
function of the expected warranty profit and is given by Q† = π†/(µ+ π†).

Similar to Corollary 1, we can easily obtain the following result on the monotonicity of
p†i,k/wi for any breadth type k.

Corollary 4. For any breadth type k = 1, 2, . . . , K, the price-length ratio p†i,k/wi is either
decreasing or first decreasing and then increasing in wi ∈ [0, L− wb], i ∈ N .

The property follows directly from Corollary 1, and it shows that the decreasing or U-
shaped trend of the price-length ratio well preserves for each breadth type. This property
also stems from the cost-plus-margin pricing policy which is optimal for this problem.

Example 2. Consider that the warrantor now plans to design five warranty groups of
lengths 1-5 years for the electronic appliance, and each of them has three breadth types. Sup-
pose that there are three mutually exclusive clusters of components and/or add-on services
for the product, which have distinct reliability characteristics and servicing costs. In partic-
ular, breadth type 1 only covers the first cluster, breadth type 2 covers the first and second
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Figure 7: Customer valuations, warranty costs, and optimal prices for the three breadth types.

clusters, and breadth type 3 covers all the three clusters. This setting is consistent with
those in the Ford and HP cases mentioned above. In this manner, the warranty cost ck(wi)
and customer valuation vk(wi) can be expressed as ck(wi) =

∑k
l=1 cr,l[(wb+wi)

βl−(wb)
βl ]/αβll

and vk(wi) =
∑k

l=1 cm,lδ(ri,l), where ri,l = 1− exp([(wb)
βl − (wb +wi)

βl ]/αβll ), and αl, βl, cr,l,
and cm,l are the model parameters associated with cluster l = 1, 2, 3. The values of λ and µ
are still set to λ = 0.69 and µ = 12.5, and the setting of other cluster-specific parameters is
summarized in Table 2. Notice that the parameter values for the first cluster is the same as
those in Example 1.

Table 3 shows the optimally designed warranty menu and related metrics. One can
see that only four options have sufficiently large (say, over 10%) choice probabilities, i.e.,
q3,2 = 15.79%, q4,2 = 12.06%, q2,3 = 18.52%, and q3,3 = 21.44%. This is well reflected in
Figure 7 that only these four options have positive average customer utilities. Likewise,
other options still have small choice probabilities, although the associated average customer
utilities are negative. In addition, Figure 8 shows that the price-length ratio for breadth type
1 exhibits a continuously decreasing trend in wi; while the price-length ratios for breadth
types 2 and 3 first decrease and then slightly increase when wi increases in a discrete manner.
This observation agrees with Corollary 4.

Under the optimal menu design, the expected warranty profit per unit sold is 98.47 CNY
and the corresponding warranty attach rate is 88.74%. The two figures are remarkably
larger than those with only a single breadth type (in Example 1). More interestingly,
when two more breadth types are offered, customers shift their choices from options 2-4 in
Example 1 (with breadth type 1) to options 3 and 4 with breadth type 2 and options 2 and
3 with breadth type 3 in this example. This demonstrates that offering warranty options
with heterogeneous breadth types, if well designed, has a great potential to attract more
customers by satisfying their diverse demands in protection breadth, which in turn leads to
a higher warranty profit and attach rate.
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Figure 8: Trends of the price-length ratios for different breadth types.

5.2. Free preventive maintenance program

For capital-intensive products, such as vehicles and high-priced electronic equipment,
regular PM activities are necessary to keep them in a good working condition. PM is
particularly important in the context of product warranty, as it can improve product relia-
bility and thus reduce warranty servicing cost. For instance, vehicles under warranty (base
and/or extended) are usually required to be preventively maintained in a regular manner
(Su and Wang, 2016b; Huang et al., 2017; Wang et al., 2020). A real example is that Nissan
launched the so-called 6615 program in Taiwan offering members an EW contract for six
years or 150,000 kilometers on six key systems, subject to PM every 6 months or 10,000
kilometers by authorized maintenance centers (Huang et al., 2017). It is thus of interest to
incorporate an appropriate PM program when designing a warranty menu. In this subsec-
tion, we study an optimization problem of bundling a free PM program with a subset of
warranty options.

Suppose that a warranty menu {w,p} is recommended to customers who have bought
the product, in which a free PM program is bundled with selected options. Let M ⊆ N
represent a set of warranty options that the warrantor decides to attach free PM services.
We consider a periodical PM program with a constant maintenance interval ∆. In this
situation, the number of PM services covered by option i is ni = bwi/∆c, where bxc is the
maximal integer that is smaller than or equal to x. Denote the expected total warranty
servicing cost of option i with PM by cpm(wi) = c

′
(wi) +nicpm, where c

′
(wi) is the expected

repair cost and nicpm is the cost of PM actions. Note that the expected repair cost with PM
should be smaller than that without PM, i.e., c

′
(wi) ≤ c(wi). On the other hand, regular

PM services bring some benefits to customers: i) PM services are usually costly so that
customers could save money if they are covered by warranty; and ii) the warranted items
will exhibit a better performance after PM. The two kinds of PM benefits are on top of
the valuation incurred by the warranty itself. We thus assume that the additional customer
utility from a single PM service is upm, and the total utility of the free PM program for
option i is niu

pm. Then, the random customer utility for warranty option i ∈ M can be
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expressed as
upmi = v(wi) + niu

pm − pi + εi. (20)

According to the MNL model, the choice probability of each warranty option and the
expected profit per unit sold, respectively, are given by

q̂i(w,p;M) =


exp
(
v(wi)+niu

pm−pi
µ

)
1+
∑
j∈M exp

(
v(wj)+nju

pm−pj
µ

)
+
∑
j /∈M exp

(
v(wj)−pj

µ

) , i ∈M;

exp
(
v(wi)−pi

µ

)
1+
∑
j∈M exp

(
v(wj)+nju

pm−pj
µ

)
+
∑
j /∈M exp

(
v(wj)−pj

µ

) , i /∈M,

(21)

and

Ω̂(w,p;M) =
∑
i∈M

(pi − cpm(wi))q̂i(w,p;M) +
∑
i/∈M

(pi − c(wi))q̂i(w,p;M). (22)

The PM bundling problem is, for given w and N , to determine which options to bundle
the free PM program and the optimal prices for all options, that is,

max
M⊆N ,p

Ω̂(w,p;M). (23)

Definition 1. A free PM program with maintenance interval ∆ is feasible for warranty
option i if niu

pm − cpm(wi) + c(wi) ≥ 0.

The feasibility condition of a free PM program for option i can be rewritten as niu
pm +

c(wi)− c
′
(wi) ≥ nicpm, where niu

pm + c(wi)− c
′
(wi) is the total benefits of the PM program

(consisting of an extra valuation, niu
pm, and a reduction in warranty cost, c(wi) − c

′
(wi))

and nicpm is the total PM expenses. That is to say, a free PM program is feasible for option
i only if its benefits are higher than or at least equal to its extra expenses. We note that
this feasibility condition can be well satisfied when an optimal PM decision with respect to
maintenance interval ∆ (and maintenance degree, for imperfect PM) is implemented, even
in the case of upm = 0; refer to Huang et al. (2017), Shahanaghi et al. (2013), Su and Wang
(2016b), and Wang et al. (2020), for example. Modeling and analysis of (imperfect) PM
policies are not the main focus of the paper and thus briefly discussed in Example 3.

Theorem 3. (i) It is optimal to bundle a free PM program with a specific warranty option
if the program is feasible for that option, i.e.,M‡ = {i ∈ N | niupm−cpm(wi)+c(wi) ≥
0}.

(ii) The optimal price for each option i is given by

p‡i =

{
cpm(wi) + π‡ + µ, i ∈M‡;

c(wi) + π‡ + µ, i /∈M‡,
(24)
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where π‡ is the unique solution to

µ
∑
i∈M‡

exp

(
v(wi) + niu

pm − cpm(wi)− π − µ
µ

)
+ µ

∑
i/∈M‡

exp

(
v(wi)− c(wi)− π − µ

µ

)
= π.

(25)

(iii) The corresponding warranty attach rate is given by

Q‡ =
∑
i∈N

q̂i(w,p
‡;M‡) =

π‡

µ+ π‡
. (26)

Theorem 3 indicates that not all warranty options should be bundled with the free PM
program. The PM program should be attached to a specific option only when it is feasible
for that option. This bundling condition is a general result that is applicable to traditional
product-line pricing problems in which free ancillary services are offered for selected prod-
ucts. Moreover, the optimal pricing policy in this problem is still the cost-plus-margin policy.
However, the optimal prices for warranty options with PM might be lower or higher than
those without PM, depending on the relative magnitudes of cpm(wi) and c(wi). Furthermore,
the profit margins of all options are still the same and the warranty attach rate is again a
function of π‡, as before.

Corollary 5. π‡ ≥ π∗ and Q‡ ≥ Q∗.

Corollary 5 implies that the warranty profit and attach rate in the PM bundling problem,
at optimality, are higher than or at least equal to those without considering free PM programs
(in Section 4), respectively. In other words, among the customers who have bought the
product, more of them would like to buy warranties if a free and feasible PM program is
bundled. As a result, the expected warranty profit becomes higher. This result is driven by
the net benefits (i.e., extra valuation plus warranty cost reduction) brought by the free PM
program, and it shows the necessity of attaching a feasible PM program to selected warranty
options.

Example 3. This example follows directly from Example 1. Suppose that the warran-
tor is considering to bundle a free imperfect PM program (having a constant maintenance
interval ∆) with a subset of warranty options. To this end, the warrantor needs to evalu-
ate the benefit and cost of the PM program to facilitate the decision-making process. We
first model the expected repair cost with imperfect PM bundled. In the literature, numer-
ous models have been developed to describe the effect of imperfect maintenance actions;
refer to Wu (2019) for a recent summary. In this example, we adopt the age reduction
model (see, e.g., Su and Wang, 2016b; Wang et al., 2020) for an illustration of imperfect
PM modeling. This model assumes that a PM action can restore the item to a specific
working state that corresponds to an age reduction between its actual and virtual ages. Let
τk = wb + k∆, k = 1, 2, . . . , ni, denote the item’s actual age at the kth PM action, with
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τ0 = wb. Then, the item’s virtual age immediately after the kth PM action is given by
ak = ak−1 + (1 − δ)(τk − τk−1), k = 1, 2, . . . , ni, where a0 = wb and δ ∈ [0, 1] is the age
reduction factor. If δ = 0, then no PM action is taken, i.e., ak = τk; if δ = 1, then the
damage accumulated during the (k−1)th and the kth PM actions is fully compensated, i.e.,
ak = ak−1; while if δ ∈ (0, 1), then the PM effect is imperfect.

It is easy to verify that ak can be recursively derived as ak = wb + k(1 − δ)∆, k =
1, 2, . . . , ni. According to the non-homogeneous Poisson process, the expected repair cost
for warranty option i with PM is given by

c
′
(wi) = cr

ni−1∑
k=0

∫ wb+k(1−δ)∆+∆

wb+k(1−δ)∆
λ(t)dt+ cr

∫ wb+ni(1−δ)∆+wi−ni∆

wb+ni(1−δ)∆
λ(t)dt, (27)

where the last term represents the expected repair cost incurred between the nith PM action
and the end of the warranty period.

Usually, the maintenance interval ∆ and age reduction factor δ should be determined
by minimizing the total warranty cost cpm(wi); see, e.g., Huang et al. (2017), Su and Wang
(2016b), and Wang et al. (2020). In this example, the main focus is not on PM optimization,
but on showcasing the warranty-menu design and pricing model. For this purpose, the PM-
related parameters are arbitrarily set to ∆ = 0.5, δ = 0.5, upm = 25, cpm = 25, and the values
of other parameters are the same as those in Example 1. Based on the parameter setting,
Table 4 shows the optimally designed warranty menu and associated metrics. One can see
that the free PM program should be attached to all warranty options except the first one,
according to the feasibility condition. Due to the implementation of a free PM program, the
customer valuations, warranty costs, and optimal warranty prices become larger than those
in Example 1. In this example, the third, fourth, and fifth options have sufficiently large
choice probabilities, implying that the free PM program helps improve the attractiveness
of long-duration warranty options. Under the optimal menu design, the warranty profit
per unit sold in the PM bundling problem is 71.91 CNY, and the associated attach rate
is 85.19%. These figures are indeed larger than those in Example 1, which is consistent
with Corollary 5. This demonstrates that attaching a free PM program to selected warranty
options can increase warranty profit and attach rate.

Furthermore, we investigate the optimal PM bundling strategy for various PM costs (see
Figure 9). One can observe that as the PM cost increases, it is less attractive to attach the
free PM program to warranty options. This is because the benefits of PM will gradually be
overtaken by the maintenance expenses incurred, when the PM cost becomes higher.

5.3. Heterogeneous customer population

In the foregoing (sub)sections, we implicitly assumed that the customer population is
homogeneous. In reality, however, customers might be heterogeneous (Lee and Eun, 2020) in
the sense that they have diverse perceptions of failure probability for the same product. As
a consequence, different customers would value the same warranty option differently. Such
customer heterogeneity can be captured by the MNL model with random parameters, i.e.,

22



Table 4: The optimal warranty menu and related metrics in the PM bundling problem.

wi PM v(wi) + niu
pm cpm(wi) ηi p∗i qi (%) p∗i /wi

1 72.30 19.06 53.24 103.48 1.22 103.48
2 X 191.79 119.58 72.21 204.00 5.58 102.00
3 X 285.21 199.87 85.34 284.28 15.95 94.76
4 X 377.78 284.79 92.99 369.20 29.41 92.30
5 X 468.67 374.22 94.44 458.64 33.03 91.73

Option 1

Option 2

Option 3

Option 4

Option 5

20 25 30 35
𝑐𝑝𝑚

PM

No PM

Figure 9: Optimal PM bundling strategy for various PM costs.

the MMNL model. In this subsection, we make an attempt to extend the original model by
considering heterogeneous customer population.

Suppose that there are K segments of customers. The actual failure probability ri and
warranty cost c(wi) of option i is identical across all customer segments, whereas customers in
different segments have different probability distortion behaviors. This way, each customer
segment k is characterized by a unique distortion parameter λk, corresponding to a unique
valuation function vk(wi) = cmδk(ri), where δk(·) is given by (5) or (6) with λk replacing λ.
The segment of a specific customer is unknown to the warrantor when she chooses a warranty
option. In this manner, the parameters λk’s are modeled as random variables drawn from
a discrete mixing distribution. This leads to the so-called discrete MMNL model (Li et al.,
2019), in which the customer population is split into a finite number of distinct segments
and warranty demand in each segment is governed by the MNL model.

The random utility of warranty option i for a customer in segment k is expressed as
ui,k = vk(wi) − pi + εi. According to the MMNL model, the conditional choice probability
of option i ∈ N in customer segment k = 1, 2, . . . , K, is given by

q̆i,k(w,p;N ) =
exp

(
vk(wi)−pi

µ

)
1 +

∑
j∈N exp

(
vk(wj)−pj

µ

) . (28)
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Denote by dk the probability that a randomly selected customer belongs to segment k,
with

∑K
k=1 dk = 1. Then, the choice probabilities of option i ∈ N and the outside option,

respectively, across all customer segments are given by

q̆i(w,p;N ) =
K∑
k=1

dkq̆i,k(w,p;N ), (29)

and

q̆0(w,p;N ) =
K∑
k=1

dkq̆0,k(w,p;N ) = 1−
∑
i∈N

q̆i(w,p;N ). (30)

For given w and p, the expected warranty profit per unit sold under the MMNL model
is given by

Ω̆(w,p;N ) =
∑
i∈N

(pi − c(wi))q̆i(w,p;N )

=
∑
i∈N

(pi − c(wi))
K∑
k=1

dkq̆i,k(w,p;N )

=
K∑
k=1

dk
∑
i∈N

(pi − c(wi))q̆i,k(w,p;N )

=
K∑
k=1

dkRk(w,p;N ),

(31)

where Rk(w,p;N ) =
∑

i∈N (pi − c(wi))q̆i,k(w,p;N ) is the expected warranty profit con-
tributed by customer segment k.

Likewise, the warranty-menu design and pricing problem taking into account customer
heterogeneity can be formulated as

max
S⊆N ,p

Ω̆(w,p;S). (32)

We highlight that the problem is much more difficult to solve than those before because the
MMNL model is highly ill-behaved. In particular, the above-used reformulation technique
fails in this problem. Recently, Li et al. (2019) developed efficient optimization algorithms
for product-line pricing problem under the discrete MMNL model, which is quite similar
to the warranty-menu design and pricing problem. However, our problem is indeed more
complicated than theirs, as it involves the selection of candidate warranty options. In what
follows, Li et al.’s methodology will be followed to discuss the warranty-menu design and
pricing problem.

We first take the first derivatives of Ω̆(w,p;S) with respect to pi:

∂Ω̆(w,p;S)

∂pi
= q̆i +

∑
j∈S

(pj − c(wj))
1

µ

K∑
k=1

dkq̆i,kq̆j,k

− (pi − c(wi))
1

µ

K∑
k=1

dkq̆i,k, i ∈ S.

(33)
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Note that in the equation above, q̆i(w,p;S) and q̆i,k(w,p;S) are simplified as q̆i and q̆i,k,
respectively, for notation brevity.

By setting ∂Ω̆(w,p;S)/∂pi to zero, we obtain the following iterative expression for the
optimal profit margin:

pi − c(wi) = µ+
K∑
k=1

dkq̆i,k
q̆i

Rk(w,p;S). (34)

Following Lemma 2 in Li et al. (2019), we have the following result regarding the profit
margins at optimality.

Proposition 1. For any S ⊆ N , let p?i represent the optimal price of option i ∈ S. Then,
in general, p?i − c(wi) 6= p?j − c(wj) for i 6= j.

Proposition 1 reveals an essential finding: The equal-margin pricing policy in Theorems 1-
3 no longer holds when taking into account heterogeneous customer population. An intuitive
explanation is that under the MMNL model, customers in different segments generate an
identical servicing cost for the same warranty option but have heterogeneous valuations for
that option. As a result, optimal warranty prices and thus profit margins should be, more or
less, also relevant to customer segments. Even when d1 = d2 = · · · = dK , i.e., the probability
that an arriving customer is from each given segment is equal, it is clear from Eq. (34) that
the profit margins p?i − c(wi), i ∈ S, are still not equal. This suggests that the heterogeneity
in customer population justifies a nonequal-margin pricing policy.

In contrast to the MNL-based warranty design and pricing problems studied above,
the profit function Ω̆(w,p;S) under the MMNL model is far less well-behaved. We thus
leave this challenging problem for future research. While, before ending the discussion, we
briefly introduce the main findings in Li et al. (2019) to provide some clues for solving our
problem. In particular, Li et al. (2019) have shown, in their product-line pricing problem,
that the equal-margin pricing property and the profit concavity property with respect to
the choice probability vector break down under the discrete MMNL model, even with strong
symmetric assumption for price sensitivities. More importantly, by taking advantage of
the profit concavity with respect to the choice probability vector in the MNL model, they
reformulate the MMNL-based profit function as the summation of a set of quasi-concave
functions. Three efficient algorithms are then developed to solve the product-line pricing
problem in various scenarios, which can be potentially employed in the warranty-menu design
and pricing problem.

6. Conclusions and further research

A recent trend in the EW market is that an increasing number of warrantors are offering
flexible EW menus in which differentiated options are designed to segment customers and
attain competitive advantages. In this paper, we investigate the design and pricing of an
EW menu—offering warranty options with different lengths and prices—based on the MNL
choice model. The warranty cost model is developed upon the well-established reliability
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and maintenance theory; while the customer utility model in MNL is built upon the em-
pirical studies of EW from the economic/marketing perspective. We first consider a simple
warranty-menu design and pricing problem from a warrantor’s perspective: Given a list of
candidate warranty lengths, determine which candidate options to offer and the associated
prices so as to maximize the warranty profit per unit sold. It is found that the optimal strat-
egy is to offer all candidate options associated with a cost-plus-margin pricing policy, with
a uniform profit margin for all options. However, if the menu size is limited due to practical
constraints, then the options with the highest valuation margins should be selected.

In addition, we develop three extended models to generalize the original model. The
first one deals with the design and pricing of a warranty menu with heterogeneous breadth
types. Mathematically, this model provides a new perspective on the design and pricing
of bundle menus. The second one focuses on a PM bundling problem in which a free PM
program is bundled with selected warranty options. We find that the free PM program
should be attached to a specific option only when it is feasible for that option. In particular,
this PM bundling condition is a general result that is applicable to traditional product-line
pricing problems in which free ancillary services are offered for selected products. Finally,
the third one further considers customers with heterogeneous perceptions of product failure
probability via the MMNL model. A finding particularly noteworthy is that the equal-margin
pricing policy is no longer optimal in the presence of customer heterogeneity, justifying a
nonequal-margin pricing policy.

This work makes an early effort to design and price EW menus based on the MNL model,
and thus opens up many opportunities for future research. First, the warranty-menu design
and pricing problem considering customer heterogeneity deserves in-depth investigations.
Second, more features can be involved in a warranty menu, e.g., the starting and ending
points, the renewal/cancellation policy, to name a few. Third, this study did not explicitly
model the impact of product value on customers’ warranty purchase decision. It is evident
that customers are more likely to purchase an EW if the warranted product has a higher
value (UK Competition Commission, 2003). We leave this interesting problem for future
research. Finally, empirical studies on real data sets are still needed to demonstrate the
goodness of fit and prediction accuracy of MNL in the warranty context.
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Appendix A. Technical proofs

Proof of Theorem 1. Let Ω(w,p;S) = π for any prices p. Rearranging terms and after some
algebraic manipulations, we have

Ω(w,p;S) =

∑
i∈N (pi − c(wi)) exp

(
v(wi)−pi

µ

)
1 +

∑
i∈N exp

(
v(wi)−pi

µ

) = π

⇔
∑
i∈S

(pi − c(wi)− π) exp

(
v(wi)− pi

µ

)
= π.

One can see that the optimization problem (9) is equivalent to identifying a unique
intersection between a strictly decreasing function and a 45-degree line, i.e.,

π = G(π) :=
∑
i∈S

gi(π), (A.1)

where gi(π) = maxpi gi(π, pi) and

gi(π, pi) = (pi − c(wi)− π) exp

(
v(wi)− pi

µ

)
.

By taking the first derivative of gi(π, pi) with respect to pi, we have

∂gi(π, pi)

∂pi
=

1

µ
exp

(
v(wi)− pi

µ

)
(µ− pi + c(wi) + π) .

It is clear that gi(π, pi) is increasing in pi for pi ≤ c(wi) + π + µ, and becomes decreasing
thereafter. Hence, gi(π, pi) attains its maximum at pi = c(wi) + π + µ, and thus gi(π)
becomes

gi(π) = µ exp

(
v(wi)− c(wi)− π∗ − µ

µ

)
> 0.

As gi(π) is always positive, it is beneficial to include all of the n warranty options in
the menu. Also, there exists a unique π∗ such that Eq. (A.1) (or equivalently, Eq. (12)) is
satisfied. For a warranty option of length wi, its optimal price is thus p∗i = c(wi) + π∗ + µ.

When the optimal pricing policy is applied, the warranty attach rate is given by

Q∗ =
∑
i∈N

qi(w,p
∗;N ) =

∑
i∈N exp

(
v(wi)−p∗i

µ

)
1 +

∑
i∈N exp

(
v(wi)−p∗i

µ

)
=

π∗/µ

1 + π∗/µ
=

π∗

µ+ π∗
.

The third equality follows directly from (12). This completes the proof.
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Proof of Corollary 1. By taking the first derivative of p∗i /wi with respect to wi, we obtain

∂(p∗i /wi)

∂wi
=
wc
′
(wi)− c(wi)− π∗ − µ

w2
i

.

Let ζ(wi) := wic
′
(wi) − c(wi) − π∗ − µ. Then, we have ζ

′
(wi) = wic

′′
(wi) ≥ 0 because

c
′′
(wi) ≥ 0. Thus, ζ(wi) is increasing in wi. Recall that the feasible range of wi is [0, L−wb].

It is clear that ζ(0) = −π∗ − µ < 0. However, there are two possible cases about the value
of ζ(L− wb) and thus the monotonicity of the price-length ratio:

(a) If ζ(L − wb) ≤ 0, then ∂(p∗i /wi)/∂wi is negative for any wi ∈ [0, L − wb]. Thus, the
price-length ratio p∗i /wi is decreasing in wi ∈ [0, L− wb].

(b) If ζ(L − wb) > 0, then there exists a unique w◦ such that ∂(p∗i /wi)/∂wi = 0. In
this case, ∂(p∗i /wi)/∂wi is negative for wi ∈ [0, w◦) and becomes positive for wi ∈
(w◦, L−wb]. Hence, the price-length ratio p∗i /wi will be decreasing in wi ∈ [0, w◦) and
then increasing in wi ∈ (w◦, L− wb].

This completes the proof.

Proof of Corollary 2. From Theorem 1, we know that π∗ is the solution to (12). If ηi =
v(wi)− c(wi) increases, then the LHS of (12) also increases. As a result, π∗ has to become
larger in order to make the equality valid.

Theorem 1 also tells us that the profit margin of option i is p∗i − c(wi) = π∗ + µ. Then,
it is straightforward to know that p∗i − c(wi) is increasing in ηj, ∀i, j ∈ N . This completes
the proof.

Proof of Corollary 3. This result can be proved by contradiction. Suppose the optimal offer
set does not contain options 1 to m. Then, the warrantor can replace an existing option
with the lowest valuation margin by a higher valuation-margin option that is currently not
included in the offer set. According to Corollary 2, this will increase the expected warranty
profit, and thus the original offer set is not optimal. This completes the proof.

Proof of Theorem 2. The proof is quite similar to that of Theorem 1 and thus omitted.

Proof of Corollary 4. The proof is quite similar to that of Corollary 1 and thus omitted.

Proof of Theorem 3. Let Ω̂(w,p;M) = π. As before, the optimization problem (23) can be
reformulated as finding an unique solution to

π = max
M⊆N ,p

{∑
i∈M

gpmi (π, pi) +
∑
i/∈M

gi(π, pi)

}
, (A.2)

where gpmi (π, pi) = (pi − cpm(wi) − π) exp(v(wi)+niu
pm−pi

µ
) and gi(π, pi) = (pi − c(wi) −

π) exp(v(wi)−pi
µ

).

28



It is straightforward to know that for any given M, the optimal pricing policy is

pi =

{
cpm(wi) + π + µ, i ∈M;

c(wi) + π + µ, i /∈M.

By substituting pi into (A.2), we have

π = max
M⊆N

{∑
i∈M

gpmi (π) +
∑
i/∈M

gi(π)

}
, (A.3)

where gpmi (π) = µ exp(v(wi)+niu
pm−cpm(wi)−π−µ

µ
) and gi(π) = µ exp(v(wi)−c(wi)−π−µ

µ
).

Then, for a given π, we need to choose an optimalM to solve (A.3) above. Mathemati-
cally, we need to compare gpmi (π) and gi(π) for any given π. It is clear that gpmi (π) ≥ gi(π)
when niu

pm − cpm(wi) + c(wi) ≥ 0. Therefore, it is optimal to bundle the free PM program
with option i if the program is feasible for that option.

Furthermore, when the optimal PM bundling and warranty pricing policies are applied,
the warranty attach rate can be obtained by

Q‡ =
∑
i∈N

q̂i(w,p
‡;M‡)

=

∑
i∈M‡ exp

(
v(wi)+niu

pm−p‡i
µ

)
+
∑

i/∈M‡ exp
(
v(wi)−p‡i

µ

)
1 +

∑
i∈M‡ exp

(
v(wi)+niupm−p‡i

µ

)
+
∑

i/∈M‡ exp
(
v(wi)−p‡i

µ

)
=

π‡

µ+ π‡
.

The last equality follows directly from (25). This completes the proof.

Proof of Corollary 5. By comparing (25) with (12), we find that if a feasible PM program
is bundled with selected warranty options, then the LHS of (25) is higher than or at least
equal to that of (12). Thus, it is straightforward to verify that π‡ ≥ π∗.

By comparing Q‡ with Q∗, we have

Q‡ =
π‡

µ+ π‡
=

1

1 + µ/π‡
≥ 1

1 + µ/π∗
= Q∗.

The inequality is due to the fact that π‡ ≥ π∗. This completes the proof.

Proof of Proposition 1. First of all, notice that
∑K

k=1
dk q̆i,k
q̆i

Rk(w,p;S) is a weighted average

of Rk(w,p;S) with weights dkq̆i,k/q̆i. It is clear that the weights are dependent on the option
index i.
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Assume for contradiction that p?i − c(wi) is the same for all options i ∈ S. Without loss
of generality, denote p?i − c(wi) = ϑ for all i, where ϑ is a constant. Then,

Rk(w,p
?;S) =

∑
i∈S

(p?i − c(wi))q̆i,k(w,p?;S)

= ϑ
∑
i∈S

q̆i,k(w,p
?;S) = ϑ (1− q̆0,k(w,p

?;S))

= ϑ

1− 1

1 +
∑

i∈S exp
(
vk(wi)−p?i

µ

)


= ϑ

1− 1

1 +
∑

i∈S exp
(
vk(wi)−c(wi)−ϑ

µ

)
 .

As can be seen, the value of Rk(w,p
?;S) depends on the segment index k, thus in

general Rk(w,p
?;S) is not equal across customer segments. As a result, the RHS of Eq.

(34) is a weighted average of the vector (R1, R2, . . . , RK) with non-equal elements and the
weights are associated with the warranty option index i. Therefore, the weighted average
must be a value that is dependent on index i. This results in a contradiction with our initial
assumption that p?i − c(wi) = ϑ for all i.

References

Abito, J. M., Salant, Y., 2019. The effect of product misperception on economic outcomes: Evidence from
the extended warranty market. Review of Economic Studies 86 (6), 2285–2318.

Aydin, G., Ryan, J. K., 2000. Product line selection and pricing under the multinomial logit choice model.
Working paper, Purdue University, West Lafayette, IN.

Ben-Akiva, M. E., Lerman, S. R., 1985. Discrete Choice Analysis: Theory and Application to Travel Demand.
The MIT press, Cambridge, MA.

Bian, Y., Xie, J., Archibald, T. W., Sun, Y., 2019. Optimal extended warranty strategy: Offering trade-in
service or not? European Journal of Operational Research 278 (1), 240–254.

Cataldo, A., Ferrer, J.-C., 2017. Optimal pricing and composition of multiple bundles: A two-step approach.
European Journal of Operational Research 259 (2), 766–777.

Chu, J., Chintagunta, P. K., 2009. Quantifying the economic value of warranties in the U.S. server market.
Marketing Science 28 (1), 99–121.

Desai, P. S., Padmanabhan, P., 2004. Durable good, extended warranty and channel coordination. Review
of Marketing Science 2 (1), 1–23.

Ferrer, J.-C., Mora, H., Olivares, F., 2010. On pricing of multiple bundles of products and services. European
Journal of Operational Research 206 (1), 197–208.

Fuerderer, R., Herrmann, A., Wuebker, G. (Eds.), 1999. Optimal bundling: marketing strategies for im-
proving economic performance. Springer, Berlin, Heidelberg.

Gallego, G., Wang, R., Ward, J., Hu, M., Beltran, J. L., 2014. Flexible-duration extended warranties with
dynamic reliability learning. Production and Operations Management 23 (4), 645–659.

Guajardo, J. A., Cohen, M. A., Netessine, S., 2016. Service competition and product quality in the U.S.
automobile industry. Management Science 62 (7), 1860–1877.

Hartman, J. C., Laksana, K., 2009. Designing and pricing menus of extended warranty contracts. Naval
Research Logistics (NRL) 56 (3), 199–214.

30



He, Z., Huang, D., He, S., 2018. Design of extended warranty service in a dual supply channel. Total Quality
Management & Business Excellence 29 (9-10), 1089–1107.

Heese, H. S., 2012. Retail strategies for extended warranty sales and impact on manufacturer base warranties.
Decision Sciences 43 (2), 341–367.

Hopp, W. J., Xu, X., 2005. Product line selection and pricing with modularity in design. Manufacturing &
Service Operations Management 7 (3), 172–187.

Huang, Y.-S., Huang, C.-D., Ho, J.-W., 2017. A customized two-dimensional extended warranty with pre-
ventive maintenance. European Journal of Operational Research 257 (3), 971–978.

Huysentruyt, M., Read, D., 2010. How do people value extended warranties? Evidence from two field
surveys. Journal of Risk and Uncertainty 40 (3), 197–218.

Jack, N., Murthy, D. N. P., 2007. A flexible extended warranty and related optimal strategies. Journal of
the Operational Research Society 58 (12), 1612–1620.

Jiang, B., Zhang, X., 2011. How does a retailer’s service plan affect a manufacturer’s warranty? Management
Science 57 (4), 727–740.

Jindal, P., 2015. Risk preferences and demand drivers of extended warranties. Marketing Science 34 (1),
39–58.

Lam, Y., Lam, P. K. W., 2001. An extended warranty policy with options open to consumers. European
Journal of Operational Research 131 (3), 514–529.

Lee, H., Eun, Y., 2020. Discovering heterogeneous consumer groups from sales transaction data. European
Journal of Operational Research 280 (1), 338–350.

Li, H., Huh, W. T., 2011. Pricing multiple products with the multinomial logit and nested logit models:
Concavity and implications. Manufacturing & Service Operations Management 13 (4), 549–563.

Li, H., Webster, S., Mason, N., Kempf, K., 2019. Product-line pricing under discrete mixed multinomial
logit demand. Manufacturing & Service Operations Management 21 (1), 14–28.

Li, K., Mallik, S., Chhajed, D., 2012. Design of extended warranties in supply chains under additive demand.
Production and Operations Management 21 (4), 730–746.

Lutz, N. A., Padmanabhan, V., 1998. Warranties, extended warranties, and product quality. International
Journal of Industrial Organization 16 (4), 463–493.

Ma, J., Ai, X., Yang, W., Pan, Y., 2019. Decentralization versus coordination in competing supply chains
under retailers’ extended warranties. Annals of Operations Research 275 (2), 485–510.

Maclean, K., Ødegaard, F., 2020. Dynamic capacity allocation for group bookings in live entertainment.
European Journal of Operational Research, in press.

Mai, D. T., Liu, T., Morris, M. D., Sun, S., 2017. Quality coordination with extended warranty for store-
brand products. European Journal of Operational Research 256 (2), 524–532.

Manna, D. K., Pal, S., Sinha, S., 2006. Optimal determination of warranty region for 2D policy: A customers’
perspective. Computers & Industrial Engineering 50 (1-2), 161–174.

Murthy, D. N. P., Jack, N., 2014. Extended Warranties, Maintenance Service and Lease Contracts: Modeling
and Analysis for Decision-making. Springer, London, UK.

Musakwa, F. T., 2015. Pricing a motor extended warranty with limited time and usage cover. ASTIN
Bulletin 45 (1), 101–125.

Padmanabhan, V., 1995. Usage heterogeneity and extended warranties. Journal of Economics & Management
Strategy 4 (1), 33–53.

Padmanabhan, V., Rao, R. C., 1993. Warranty policy and extended service contracts: Theory and an
application to automobiles. Marketing Science 12 (3), 230–247.

Rusmevichientong, P., Shmoys, D., Tong, C., Topaloglu, H., 2014. Assortment optimization under the
multinomial logit model with random choice parameters. Production and Operations Management 23 (11),
2023–2039.

Shahanaghi, K., Noorossana, R., Jalali-Naini, S. G., Heydari, M., 2013. Failure modeling and optimizing pre-
ventive maintenance strategy during two-dimensional extended warranty contracts. Engineering Failure
Analysis 28, 90–102.

Strauss, A. K., Klein, R., Steinhardt, C., 2018. A review of choice-based revenue management: Theory and

31



methods. European Journal of Operational Research 271 (2), 375–387.
Su, C., Shen, J., 2012. Analysis of extended warranty policies with different repair options. Engineering

Failure Analysis 25, 49–62.
Su, C., Wang, X., 2016a. Optimal upgrade policy for used products sold with two-dimensional warranty.

Quality and Reliability Engineering International 32 (8), 2889–2899.
Su, C., Wang, X., 2016b. A two-stage preventive maintenance optimization model incorporating two-

dimensional extended warranty. Reliability Engineering & System Safety 155, 169–178.
Talluri, K., Van Ryzin, G., 2004. Revenue management under a general discrete choice model of consumer

behavior. Management Science 50 (1), 15–33.
Tong, P., Liu, Z., Men, F., Cao, L., 2014. Designing and pricing of two-dimensional extended warranty

contracts based on usage rate. International Journal of Production Research 52 (21), 6362–6380.
UK Competition Commission, 2003. Extended warranties on domestic electrical goods: A report

on the supply of extended warranties on domestic electrical goods within the UK–Volumes 1,
2, and 3. Retrieved from https://webarchive.nationalarchives.gov.uk/20120120001955/http://

www.competition-commission.org.uk//rep_pub/reports/2003/485xwars.htm (accessed on Septem-
ber 11, 2019).

Wang, J., Zhou, Z., Peng, H., 2017. Flexible decision models for a two-dimensional warranty policy with
periodic preventive maintenance. Reliability Engineering & System Safety 162, 14–27.

Wang, R., 2018. When prospect theory meets consumer choice models: Assortment and pricing management
with reference prices. Manufacturing & Service Operations Management 20 (3), 583–600.

Wang, R., Cui, S., 2017. Product quality, service and pricing. Working paper, Johns Hopkins University,
Baltimore, MD.

Wang, X., Li, L., Xie, M., 2020. An unpunctual preventive maintenance policy under two-dimensional
warranty. European Journal of Operational Research 282 (1), 304–318.

Wu, S., 2019. A failure process model with the exponential smoothing of intensity functions. European
Journal of Operational Research 275 (2), 502–513.

Ye, Z.-S., Murthy, D. N. P., 2016. Warranty menu design for a two-dimensional warranty. Reliability Engi-
neering & System Safety 155, 21–29.

32

https://webarchive.nationalarchives.gov.uk/20120120001955/http://www.competition-commission.org.uk//rep_pub/reports/2003/485xwars.htm
https://webarchive.nationalarchives.gov.uk/20120120001955/http://www.competition-commission.org.uk//rep_pub/reports/2003/485xwars.htm

	Introduction
	Literature review
	The model
	Warranty cost model
	Customer choice model
	Expected profit per unit sold

	Design and pricing of an EW menu
	Extensions
	Heterogeneous warranty breadths
	Free preventive maintenance program
	Heterogeneous customer population

	Conclusions and further research
	Technical proofs

