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ABSTRACT

Perceptual Speed (PS) is a cognitive ability that is known to affect
multiple factors in Information Retrieval (IR) such as a user’s search
performance and subjective experience. However PS tests are diffi-
cult to administer which limits the design of user-adaptive systems
that can automatically infer PS to appropriately accommodate low
PS users. Consequently, this paper evaluated whether PS can be
automatically classified from search behaviour using several ma-
chine learning models trained on features extracted from TREC
Common Core search task logs. Our results are encouraging: given
a user’s interactions from one query, a Decision Tree was able to
predict a user’s PS as low or high with 86% accuracy. Additionally,
we identified different behavioural components for specific PS tests,
implying that each PS test measures different aspects of a person’s
cognitive ability. These findings motivate further work for how best
to design search systems that can adapt to individual differences.

CCS CONCEPTS

« Human-centered computing — Human computer interaction
(HCI); - Computing methodologies — Machine learning; « In-
formation systems — Users and interactive retrieval.

ACM Reference Format:

Olivia Foulds, Alessandro Suglia, Leif Azzopardi, and Martin Halvey. 2020.
Predicting Perceptual Speed from Search Behaviour. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR "20), July 25-30, 2020, Virtual Event, China. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3397271.3401210

1 INTRODUCTION

Information retrieval (IR) is a complex activity involving human-
computer interaction (HCI) where users issue queries to search for
and find relevant information depending on their task needs [2].
When conducting online searches, a lot of information is visibly pre-
sented to a user. As such, differences in a user’s individual cognitive
ability for processing visual stimuli are known to affect perfor-
mance. Specifically, Perceptual Speed (PS) has been shown to be
an influential factor affecting information-seeking [2, 11]. PS is
defined by an individual’s ability to accurately view, scan, and com-
pare visual information that is presented to them [5]. Many tests
that attempt to measure PS have been around for over 50 years,
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where the generalised format involves identifying how fast and ac-
curately an individual can identify certain targets in a visual search
task: high PS scorers successfully complete the task in the shortest
amount of time with the fewest mistakes; whereas 1ow PS scorers
take longer and have poorer performance [10].

In IR, PS has been shown to significantly affect many parts of
the search process. For example, compared to high PS, people with
low PS have: engaged in less search activity through issuing shorter
queries, clicking on fewer results and thus viewing fewer docu-
ments [8]; reported a more negative user experience, greater self-
reported workload, perceived interfaces as less usable, and felt less
satisfied with their search [8, 22]; preferred data to be visualised
differently [9, 15]; and completed tasks with poorer performance,
taking longer [2, 22] while learning less [5].

To understand why low PS users have such a negative search
experience, a study was conducted where search interfaces with
more components were considered less usable, more distracting
and confusing to users with low PS - resulting in lower user en-
gagement [22]. This makes sense considering other research has
identified that people with low PS have a lower eye fixation rate,
and so struggle with scanning what is in front of them [20, 21].
Consequently, these authors have stated the need for systems that
can infer PS and subsequently adapt to help low PS scorers achieve
a better search experience, for example, by adding tools such as
highlighting or providing more space in less cluttered interfaces.
These adaptations could theoretically allow low PS users to better
navigate search results with less visual scanning required, while not
reducing the information density for high PS users, which could
lead to a degraded search experience.

However, current PS tests can take up to 20 minutes to per-
form [1]. This may be reasonable for a user to complete if their
cognitive abilities are assumed to be stable over time [19]. Yet, other
research has found that cognitive abilities are not stable, and in-
stead can be affected by environmental factors such as tiredness
levels or depressive symptoms [7, 16]. This would imply that PS
is a changeable ability, requiring regular re-testing. Accordingly,
it would be preferable if PS levels could be inferred automatically,
from people’s interactions, which would enable systems to adapt
according to the user’s current PS levels.

Despite the importance of PS levels in IR and HCI there have
been few attempts to infer the PS levels of users given their in-
teractions with the system. In those studies [9, 20], eye gaze data
from users undertaking information visualisation search tasks was
used to build various Machine Learning (ML) models to predict
whether the user had low or high levels based on one PS test. Hav-
ing achieved the best accuracy scores of 57.1% in [20], and 60.6%
in [9], this suggests that predicting PS levels from eye-gaze interac-
tion is difficult. Furthermore, due to additional costly equipment
that is sometimes physically uncomfortable, eye-tracking is hard
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to deploy at scale, which limits its applicability in large scale user-
adaptive systems.

Consequently, detecting a user’s PS level from other forms of
interaction may be preferable. For example, how many documents
are clicked on and how long they are viewed for may be strong
indicators of PS levels as it has been shown that low PS users take
longer completing search tasks [2, 22] and interact with search
systems less [8]. Thus, it seems possible that search behaviour
could be used to infer PS level. If this was the case then a user’s
online browsing patterns should allow systems to alter the visual
display to dynamically accommodate individual abilities. Therefore,
in this study we explore the following research questions in the
context of information seeking:

(1) Given a user’s search behaviour, can we accurately predict
their perceptual speed?
(2) And, if so, what behaviours are most informative?

2 METHOD

We obtained search logs from a user study conducted on Prolific
where 38 users undertook search tasks from the TREC Common
Core 2017 track [3]. After a practice task to familiarise users with
the system, Topics 341, 347, 408, and 435 comprised the main search
tasks and were counterbalanced in accordance with a previous IR
study [17]. Users were given up to 8 minutes to find as many dif-
ferent and relevant articles that helped them learn about the given
topic. A standard web search interface was used where users could
query, inspect up to 10 result summaries per page, view articles,
and bookmark them as relevant. The underlying retrieval system
was composed from the Whoosh IR toolkit! with the BM25 retrieval
algorithm (B = 0.75). To imitate standard news article pages, graph-
ical advertisements sourced from the Ads of the World database®
were randomly allocated onto articles as a top and bottom banner,
and four right-railed ads. Users were native English speakers (23M,
14F, and 1 other) ranging in age from 18 to 58 with a mean of 32
years, who received roughly US$13 compensation for participating.

While the logs contained many details, including user perfor-
mance statistics, here, we only focus on behaviour. This allows
for wider application to many different search tasks based on a
user issuing one query. By focusing on per-query, differently from
previous research using session-based information [9], a new user
would only have to issue one query to determine their PS, as op-
posed to completing an entire search session. We therefore used the
following behavioural metrics associated with 575 queries: Length
of query; Ne of words per query; Time spent issuing the query; Time
on search engine result page (SERP); Mean time per result snippet;
Total time viewing articles; Mean time per article; Total time of en-
tire search session; Ne of unique articles clicked/viewed; Ne of SERPs
viewed; Estimated Ne of results inspected; Depth of the last result
snippet clicked in the SERP; Depth of the last result snippet hovered
over in the SERP; Ne of mouse hovers over result snippets; Ne of mouse
hovers over unique result snippets; Ne of mouse hovers over all adverts
(ads), top-positioned ads, bottom-positioned ads, and side-positioned
ads; Ne of ads clicked; and Ne of user-triggered events during a query
session (E.g. Ne of articles/ads clicked, hovered etc.).

Uhttps://pypi.org/project/Whoosh/ - last accessed January, 2020.
2See https://www.adsoftheworld.com/ - last accessed January, 2020.
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Figure 1: Individual scores for both Perceptual Speed tests

2.1 Perceptual Speed Tests

For each user, we also had their corresponding scores from two
computerised PS tests, which were administered in the same session
as the search tasks and based on Ekstrom’s Kit of Factor Referenced
Cognitive Tests [10].

Finding A’s (FA). Users searched for two minutes through lists
of words identifying any that contained the letter ‘a’.

Number Comparison (NC). Users had two minutes to inspect
pairs of numbers, presented in a list, and select non-identical pairs.

In both FA and NC, a user’s score was the number of correctly
identified targets, minus how many they incorrectly identified.
Figure 1 shows the normal distribution of scores for each test. For FA,
scores ranged from 7-40 with mean 23.32 (o = 6.351), and median
23. For NC, scores ranged from 9-28 with mean 17.61 (o = 4.824),
and median 17. The Pearson correlation coefficient between FA and
NC was 0.047. Similar to [4], this suggests that they were measuring
two different aspects of PS. We therefore ensured that low and
high PS scorers were calculated separately for each test. Previous
research divided users into low and high PS groups based on a
median split [8, 22]. Subsequently, for FA, any user with a score
of 23 or below was coded as low (20) and the rest were coded as
high (18), while for NC users, any with the score of 17 or below
were coded as 1ow (20) and the rest were coded as high (18).

In addition, guidelines for administering PS tests state that at
least two PS tests should be performed to determine a valid PS
measure [10]. However, guidance is lacking for how to combine
scores [11]. We therefore developed our own coding system to
derive an Overall Perceptual Speed (OP) measure: A user was
low if they were low on both PS tests, medium if they were low on
one but not the other, and high if they did not score low on either.
This resulted in 10-1ow , 20-medium, and 8-high users.

2.2 Models

To perform the classification tasks (i.e. predict low/high on FA and
NC, and predict low/medium/high on OP), we employed several
standard machine learning models as per [9, 20]: Support Vector
Machine (SVM), Decision Tree, Random Forest, Logistic Regression,
Neural Networks and a Majority Class baseline. For the Neural
Network model, we experimented with three different architec-
tures, but only present the best results which came from the 1-layer
feed-forward network with 32 hidden units and ReLU activation
function [18]. We used a softmax activation function in the last layer
of the network to obtain a probability distribution over the class
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labels. We trained the model for 50 epochs using the ADAM [14]
optimiser with batch size 32 minimising the cross entropy loss.
Network weights were initialised using the Glorot Uniform initiali-
sation scheme [12].

For all the models, due to the reduced number of data points, we
applied k-fold cross validation (k = 5) to obtain a better estimate of
the model performance. Accuracy on the test set was our evalua-
tion measure for the classification task. Features were also scaled
uniformly to improve the convergence rate of the learning methods.
The Neural Network was implemented using Keras 3 whereas all
the others were implemented using scikit-learn 4. Default model
parameters were used, unless otherwise specified.

3 RESULTS

Table 1 provides the accuracy achieved by each model for each clas-
sification task. While most models outperformed the baseline, the
Decision Tree had the best performance with accuracies of 74.96%
on the Finding A’s (FA) task, and 57.39% on Overall Perceptual
Speed (OP) task, whereas the the Number Comparison (NC) task
achieved it’s best accuracy of 61.74% from a Neural Network.

To identify which behaviours contributed the most towards the
class predictions for each task, we applied a feature selection al-
gorithm based on mutual information 3. Table 2 shows the five
main predictive features for FA, NC, and OP. From this, we can
see that the number of user-triggered events was important for all
classification tasks, while the result hover depth, number of articles
clicked on, and number of side-ads hovered over were important for
at least two of the tasks. Additionally, different features correspond
to each dataset. For example, time measures appear important for
NC, but not FA or OP .

We then re-ran all models using only the top five features for
each dataset, also shown in Table 1. While the accuracy of some
models degraded (e.g. Logistic Regression), the performance for
Random Forest and Decision Trees increased considerably. The
Decision Tree consistently delivered the best performance with
86.09% accuracy on FA , 83.30% for NC , and 69.57% for OP .

We further analysed the data looking for possible patterns be-
tween the PS class values and the five most relevant features. For
each feature, we computed the mean differences between classes,
and identified the following behaviours:

Finding A’s. Compared to high PS, low PS users triggered more
events, inspected more results, clicked on more articles, had greater
result hover depth, and hovered over more ads at the side.

Number Comparison. Compared to high PS, low PS users hov-
ered over more side-ads but less top-ads, spent longer examining
each snippet and article, but overall actually triggered less events.

Overall PS. Again in comparison to high PS users, 1ow PS clicked
on more articles, had greater result hover depth, hovered over more
bottom-ads, but overall hovered over less ads resulting in less over-
all user-triggered events. Yet, medium PS users triggered the most
events, hovered over the most bottom and overall ads, and were in
between low and high PS for article clicks and result hover depth.

3https://keras.io/
*https://scikit-learn.org/
5 As described in: https:/tinyurl.com/mutual-info

4 DISCUSSION AND FUTURE WORK

This paper aimed to explore whether Perceptual Speed (PS), which
affects information-seeking, can be predicted from people’s search
behaviour, and if possible, identify which features of search be-
haviour are most informative. Our results showed that we could
classify the PS levels of our users with accuracy scores up to 86.1%
depending on the type of PS test and model. These findings are
particularly promising as they are substantial improvements over
the majority class baselines of 54.3% and 50.1%. In previous attempts
only minor improvements over the majority class baseline were
reported [9, 20] — while it is not possible to directly compare stud-
ies as prior work was performed on different data — it is worth
noting that our work only used behavioural log data rather than
eye-tracking data. A clear benefit of using log-based features is that
it can be deployed more widely, and at scale. However, it would be
interesting to explore how combining the log-based features and
eye-gaze data could be utilised to further improve accuracy.

Given the potential to accurately classify the PS of users, this
work paves the way for further investigations into PS and IR. If the
PS levels of users can be inferred from search behaviour, then an
open question that arises is: “how do we tailor and adapt IR search
interfaces to provide the best user experience and search perfor-
mance to users with varying cognitive abilities?". More research is
clearly required as currently, only suggestions for how to accom-
modate different PS levels have been stated, such as highlighting
tools and different data visualisations [20].

In this work, we have tried to infer the PS levels of users given
two different PS tests. One of the interesting findings was that ac-
curately classifying users into low or high for these tests required
very different features. For example, measures of time were not
helpful in inferring PS levels on the FA test, but time spent examin-
ing result snippets and articles were useful in inferring PS levels on
the NC test. Additionally, although the number of user-triggered
events was a main feature for both individual PS tests, the opposite
pattern occurred where low PS in FA have more interaction, yet
low PS users in NC have less interaction. This further suggests
that different interface adaptations may be required for different
types of PS aspects, depending on the task required. It also rein-
forces the suggestions in the guidelines for administering multiple
PS tests [10, 11]. Thus, more work is required to investigate what
types of PS tests are most appropriate in the context of IR.

Our work, however, is not without limitations. Firstly, our sam-
ple size was relatively small reducing both the ability to draw more
reliable conclusions as well as training classifiers that better gener-
alise. Secondly, our analysis was based on data from one particular
search task (i.e. topic search) within the context of news (i.e. TREC
Common Core) using a standard web search interface. Additionally,
we trained our models based on query log data recorded in isolation
and not in the context of an entire search session. Given that search
behaviours can change over time [6], it may be possible to develop
models which exploit this temporal element and the dependency
between interactions (e.g. via Recurrent Neural Networks [13]) to
improve PS predictions. Finally, although we used more PS tests
than previous works, different PS tests measure different aspects of
PS [4], and there are many other PS tests that we did not consider.
Therefore, it is worth exploring how well other aspects of PS can
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Table 1: Accuracy values (%) for each of the classification tasks and PS tests. Bold text indicates the highest score for each
model. The Decision Tree generally performs the best overall.

Perceptual Model . Neural Decision | Random Logistic
Speed PS Class Attributes Baseline Network SVM Tree Forest | Regression

s - , . All features 50.09 58.09 58.43 74.96 60.70 51.48

Finding A's | Low/High 5 main 50.09 5443 | 5652 | 86.09 71.13 47.83
Number Low/Hich All features 50.61 61.74 60.00 59.83 59.13 60.00
Comparison £ 5 main 50.61 61.91 63.83 83.30 73.39 55.30

. All features 54.26 53.74 56.00 57.39 51.48 54.78

Overall | Low/Med/High | mumrrmes 54.26 5270 | 5461 | 69.57 59.30 53.91

Table 2: The top 5 behaviours (where 1 is most informative) REFERENCES

for predicting Perceptual Speed in Finding A’s, Number
Comparison, and Overall Perceptual Speed.

FA | NC | OP
Total sum of all user-triggered events 1 1 1
Number of unique articles clicked/viewed 5 n/a | 2
Depth of last result snippet hover in SERP 2 n/a
Mean time spent per article n/a |3 n/a
Mean time spent per result snippet n/a | 4 n/a
Estimated number of results inspected 3 n/a | n/a
Number of hovers over top-positioned ads n/a |5 n/a
Number of hovers over bottom-positioned ads | n/a | n/a | 3
Number of hovers over side-positioned ads 4 2 n/a
Number of hovers over all ads n/a | n/a |5

be predicted from other PS tests, and whether these aspects may
relate to different search behaviours. In summary, more research
is required, with larger numbers of participants, in a variety of
different search contexts, with other PS Tests, so that these findings
can be further generalised.

In conclusion, we have shown that a user’s Perceptual Speed
classification can be predicted, with reasonably high accuracy, from
search behaviour. Furthermore, different behaviours appear to cor-
respond to different PS abilities. Our findings are highly encour-
aging and point to the need for a number of different lines for
future research in pursuit of developing dynamic search interfaces
and systems that are tailored and adapted to individual cognitive
abilities.
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